*! nehurdle_truncnb1_het v1.0.0 *! 06 September 2024 *! Alfonso Sanchez-Penalver *! Version history at the bottom. /******************************************************************************* * ML lf2 evaluator for truncated negative binomial 1 hurdle model, that * * allows heterogeneity in the dispersion, and with heteroskedastic probit. * *******************************************************************************/ capture program drop nehurdle_truncnb1_het program define nehurdle_truncnb1_het version 11 args todo b lnfj g1 g2 g3 g4 H quietly{ // Evaluating the variables tempvar xb zg lnalpha alpha mu lnssel ssel mual mleval `zg' = `b', eq(1) mleval `xb' = `b', eq(2) mleval `lnssel' = `b', eq(3) mleval `lnalpha' = `b', eq(4) gen double `mu' = exp(`xb') gen double `ssel' = exp(`lnssel') gen double `alpha' = exp(`lnalpha') gen double `mual' = `mu' / `alpha' // Generate variables that are going to help in writing the functions tempvar zsel gen double `zsel' = `zg' / `ssel' // Log-Likelihood replace `lnfj' = lnnormal(- `zsel') if $ML_y1 == 0 replace `lnfj' = lnnormal(`zsel') - ln(1 - (1 + `alpha')^(- `mual')) + /// lngamma($ML_y2 + `mual') - lngamma(`mual') - lngamma($ML_y2 + 1) - /// ($ML_y2 + `mual') * ln(1 + `alpha') + $ML_y2 * `lnalpha' if /// $ML_y1 == 1 if (`todo' == 0) exit // Generate variables to help in writing the functions for the gradient // and Hessian tempvar lamzi nlamzi gen double `lamzi' = normalden(`zsel') / normal(`zsel') gen double `nlamzi' = normalden(`zsel') / normal(- `zsel') // Gradient // g1 (zg) replace `g1' = - `ssel'^(-1) * `nlamzi' if $ML_y1 == 0 replace `g1' = `ssel'^(-1) * `lamzi' if $ML_y1 == 1 // g2 (xb) replace `g2' = 0 if $ML_y1 == 0 replace `g2' = `mual' * (digamma($ML_y2 + `mual') - digamma(`mual') - /// ln(1 + `alpha') / (1 - (1 + `alpha')^(- `mual'))) if $ML_y1 == 1 // g3 (lnssel) replace `g3' = `zsel' * `nlamzi' if $ML_y1 == 0 replace `g3' = - `zsel' * `lamzi' if $ML_y1 == 1 // g4 (lnalpha) replace `g4' = 0 if $ML_y1 == 0 replace `g4' = `mual' * ((ln(1 + `alpha') - `alpha' / (1 + `alpha')) / /// (1 - (1 + `alpha')^(- `mual')) + digamma(`mual') - digamma($ML_y2 + /// `mual')) + $ML_y2 / (1 + `alpha') if $ML_y1 == 1 if (`todo' == 1) exit // Hessian // This is going to be a 4x4 with elements h12, h14, h21, h23, h32, h34, // and h41 equal to 0 tempvar d11 d13 d22 d24 d33 d44 tempname h11 h12 h13 h14 h22 h23 h24 h33 h34 h44 // h11 (zg zg) gen double `d11' = `ssel'^(-2) * `nlamzi' * (`zsel' - `nlamzi') if /// $ML_y1 == 0 replace `d11' = - `ssel'^(-2) * `lamzi' * (`zsel' + `lamzi') if /// $ML_y1 == 1 mlmatsum `lnfj' `h11' = `d11', eq(1) // h12 (zg xb) mlmatsum `lnfj' `h12' = 0, eq(1,2) // h13 (zg lnssel) gen double `d13' = `ssel'^(-1) * `nlamzi' * (1 - `zsel' * (`zsel' - /// `nlamzi')) if $ML_y1 == 0 replace `d13' = `lamzi' / `ssel' * (`zsel' * (`zsel'+ `lamzi') - 1) /// if $ML_y1 == 1 mlmatsum `lnfj' `h13' = `d13', eq(1,3) // h14 (zg lnalpha) mlmatsum `lnfj' `h14' = 0, eq(1,4) // h22 (xb xb) gen double `d22' = 0 if $ML_y1 == 0 replace `d22' = `mual' * (digamma($ML_y2 + `mual') - digamma(`mual') - /// ln(1 + `alpha') / (1 - (1 + `alpha')^(- `mual')) + `mual' * /// (trigamma($ML_y2 + `mual') - trigamma(`mual') + /// (1 + `alpha')^(- `mual') * (ln(1 + `alpha') / (1 - /// (1 + `alpha')^(- `mual')))^2)) if $ML_y1 == 1 mlmatsum `lnfj' `h22' = `d22', eq(2) // h23 (xb lnssel) mlmatsum `lnfj' `h23' = 0, eq(2,3) // h24 (xb lnalpha) gen double `d24' = 0 if $ML_y1 == 0 replace `d24' = `mual' * (digamma(`mual') - digamma($ML_y2 + `mual') + /// (ln(1 + `alpha') - `alpha' / (1 + `alpha')) / (1 - (1 + /// `alpha')^(- `mual')) + `mual' * (trigamma(`mual') - /// trigamma($ML_y2 + `mual') - ln(1 + `alpha') * (1 + /// `alpha')^(- `mual') * (ln(1 + `alpha') - `alpha' / (1 + `alpha')) / /// (1 - (1 + `alpha')^(- `mual'))^2)) if $ML_y1 == 1 mlmatsum `lnfj' `h24' = `d24', eq(2,4) // h33 (lnssel lnssel) gen double `d33' = `zsel' * `nlamzi' * (`zsel' * (`zsel' - `nlamzi') /// - 1) if $ML_y1 == 0 replace `d33' = - `zsel' * `lamzi' * (`zsel' * (`zsel' + `lamzi') - 1) /// if $ML_y1 == 1 mlmatsum `lnfj' `h33' = `d33', eq(3) // h34 (lnssel lnalpha) mlmatsum `lnfj' `h34' = 0, eq(3,4) // h44 (lnalpha lnalpha) gen double `d44' = 0 if $ML_y1 == 0 replace `d44' = `mual' * ((`alpha' / (1 + `alpha') - ln(1 + `alpha')) / /// (1 - (1 + `alpha')^(- `mual')) + (`alpha' / (1 + `alpha'))^2 / /// (1 - (1 + `alpha')^(- `mual')) + digamma($ML_y2 + `mual') - /// digamma(`mual') + `mual' * (trigamma($ML_y2 + `mual') - /// trigamma(`mual') + (1 + `alpha')^(- `mual') * ((ln(1 + `alpha') - /// `alpha' / (1 + `alpha')) / (1 - (1 + `alpha')^(- `mual')))^2)) - /// $ML_y2 * `alpha' / (1 + `alpha')^2 if $ML_y1 == 1 mlmatsum `lnfj' `h44' = `d44', eq(4) // Compose the Hessian mat `H' = (`h11',`h12',`h13',`h14') mat `H' = `H' \ ((`h12')',`h22',`h23',`h24') mat `H' = `H' \ ((`h13')',(`h23')',`h33',`h34') mat `H' = `H' \ ((`h14')',(`h24')',(`h34')',`h44') } end // Version 1.0.0 is an lf2 evaluator.