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Abstract 

This paper presents a counter-factual model identifying Average Treatment Effects (ATEs) by 

assuming conditional mean independence (CMI) when externality (or neighbourhood) effects are 

incorporated within the traditional Rubin’s potential outcome model. As such, it tries to generalize 

the usual linear regression-adjustment approach, widely used in program evaluation and 

epidemiology, when SUTVA (i.e. Stable Unit Treatment Value Assumption) is relaxed. The paper 

also provides a user-written Stata routine, ntreatreg, suitable for an easy implementation of the 

model. An instructional application using simulated data shows the statistical logic of the model the 

computational correctness of ntreatreg. 

 

  

 

Keywords: ATEs, Rubin’s causal model, SUTVA, neighbourhood effects, Stata command.   

 

JEL classification: C21, C31, C87 
 

 

 

 

 

 

 

 

February 2015 
 

 

An early version of this paper was presented at CEMMAP (Centre for Microdata Methods and Practice), University 

College London, on March 27th 2013. The author wishes to thank all the participants to the seminar and in particular 

Richard Blundell, Andrew Chesher, Charles Manski, Adam Rosen and Barbara Sianesi for the useful discussion. A 

more advanced version of the paper has been presented at the Department of Economics, Boston College, on November 

12
th

, 2013. The author wishes to thank all the participants to the seminar and in particular Kit Baum, Andrew 

Beauchamp, Rossella Calvi, Federico Mantovanelli, Scott Fulford and Mathis Wagner for their participation and 

suggestions.   



2 

 

1. Introduction 

In observational program evaluation studies, aimed at estimating the effect of an intervention on the 

outcome of a set of targeted individuals, it is generally assumed that “the treatment received by one 

unit does not affect other units’ outcome” (Cox, 1958). Along with other fundamental assumptions 

- such as, for instance, the conditional independence assumption, the exclusion restriction provided 

by instrumental-variables estimation, or the existence of a forcing-variable in regression 

discontinuity design - the no-interference assumption is required in order to obtain a consistent 

estimation of the (average) treatment effects (ATEs). It means that, if interference (or interaction) 

among units is assumed, traditional program evaluation methods such as control-function 

regression, selection models, matching or reweighting are bound to be biased estimations of the 

actual treatment effect
1
.   

Rubin (1978) calls this important assumption as Stable-Unit-Treatment-Value-Assumption 

(SUTVA), whereas Manski (2013) refers to Individualistic-Treatment-Response (ITR) to emphasize 

that this poses a restriction in the form of the treatment response function that the analyst considers. 

SUTVA (or ITR) implies that the treatment applied to a specific individual affects only the outcome 

of that individual, so that potential “externality effects” flowing for instance from treated to 

untreated subjects are sharply ruled out. 

In this paper, we aim at removing this hypothesis to understand what happens to the 

estimation of the effect of a binary policy (treatment) in the presence of neighbourhood (externality) 

effects taking place among supported (treated) and non-supported (untreated) units.  

Epidemiological studies have addressed this hot topic although restricting the analysis to 

experimental settings where treatment randomization is assumed (see, for instance: Rosenbaum, 

2007; Hudgens and Halloran, 2008; Tchetgen-Tchetgen and VanderWeele, 2010; Robins et al., 

2000). Differently, this paper moves along the line traced by econometric studies normally dealing 

with non-experimental settings where sample selection is the rule (i.e., no random draw is assumed) 

and an ex-post evaluation is thus envisaged (Sobel, 2006). In particular, we work within the binary 

potential outcome model that in many regards we aim at generalizing for taking into account 

neighbourhood effects. Our theoretical reference may be found in some previous works dealing 

with treatment effect identification in the presence of externalities and in particular in the papers by 

Manski (1993; 2013).  

                                                 
1
 The applied literature on the socio-economics of peer effect is rather vast; here we focus on that related to peer (or 

neighbourhood) effect within the Rubin’s potential outcome model (POM). Very recently, however, Angrist (2014) has 

provided a comprehensive critical review of problems arising in measuring the causal effect of a peer regressor on 

individual performance. Such article provides also a well documented survey of the literature on the subject.       
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Moreover, as by-product, this work also presents a Stata routine, ntreatreg, for 

estimating Average Treatments Effects (ATEs) when neighbourhood effects are taken into account.  

The paper is organized as follows: section 2 presents some related literature and positions 

our approach within the Manski’s notion of “endogenous” neighbourhood effects; section 3 sets out 

the model, its assumptions and propositions; section 4 presents the model’s estimation procedure; 

section 5 puts forward the Stata implementation of the model via the user-written routine 

ntreatreg and provides a simulated application; section 6 concludes the paper. Finally, appendix 

A sets out the proof of each proposition. 

 

2. Related literature 

The literature on the estimation of treatment effects under potential interference among units is a 

recent and challenging field of statistical and econometric study. So far, however, only few papers 

have dealt formally with this relevant topic (Angrist, 2014).       

Rosenbaum (2007) was among the first scholars paving the way to generalize the standard 

randomization statistical approach for comparing different treatments to the case of units’ 

interference. He presented a statistical model in which unit’s response depends not only on the 

treatment individually received, but also on the treatment received by other units, thus showing how 

it is possible to test the null-hypothesis of no interference in a random assignment setting where 

randomization occurs within pre-specified groups and interference between groups is ruled out.      

On the same vein, Sobel (2006) provided a definition, identification and estimation strategy 

for traditional average treatment effect estimators when interference between units is allowed, by 

taking as example the “Moving To Opportunity” (MTO) randomized social experiment. In his 

paper, he uses interchangeably the term interference and spillover to account for the presence of 

such a kind of externality. Interestingly, he shows that a potential bias can arises when no-

interference is erroneously assumed, and defines a series of direct and indirect treatment effects that 

may be identified under reasonable assumptions. Moreover, this author shows some interesting 

links between the form of his estimators under interference and the Local Average Treatment Effect 

(LATE) estimator provided by Imbens and Angrist (1994), thus showing that – under interference – 

treatment effects can be identified only on specific sub-populations.  

The paper by Hudgens and Halloran (2008) is probably the most relevant of this literature, 

as these authors develop a rather general and rigorous modelling of the statistical treatment setting 

under randomization when interference is potentially present. Furthermore, their approach paves the 

way also for extensions to observational settings. Starting from the same two-stage randomization 

approach of Rosenbaum (2007), these authors manage to go substantially farther by providing a 
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precise characterization of the causal effects with interference in randomized trials encompassing 

also the Sobel’s approach. They define direct, indirect, total and overall causal effects showing the 

relation between these measures and providing an unbiased estimator of the upper bound of their 

variance. 

Tchetgen-Tchetgen and VanderWeele (2010)’s  paper follows in the footsteps traced by the 

approach of Hudgens and Halloran (2008) and provides a formal framework for statistical inference 

on population average causal effects in a finite sample setting with interference when the outcome 

variable is binary. Interestingly, they also present an original inferential approach for observational 

studies based on a generalization of the Inverse Probability Weighting (IPW) estimator when 

interference is present. Unfortunately, they do not provide the asymptotic variances for such 

estimators. 

Aronow and Samii (2013) finally generalizes the approach proposed by Hudgens and 

Halloran (2008) going beyond the hierarchical experiment setting and providing a general variance 

estimation including covariates adjustment. 

  Previous literature assumes that the potential outcome y of unit i is a function of the 

treatment received by such a unit (wi) and the treatment received by all the other units (w-i), that is: 

 

yi(wi; w-i) (1) 

 

entailing that – with N units and a binary treatment for instance – a number of 2
N
 potential outcomes 

may arise. Nevertheless, an alternative way of modelling unit i’s potential outcome may be that of 

assuming: 

 

yi(wi; y-i) (2) 

 

where y-i is the (N-1)x1 vector of other units’ potential outcomes excluding unit i’s potential 

outcome. The notion of interference entailed by expression (2) is different from that implied by 

expression (1). The latter, however, is well consistent with the notion of “endogenous” 

neighbourhood effects provided by Manski (1993, pp. 532-533). Manski, in fact, identifies three 

types of effects corresponding to three arguments of the individual (potential) outcome equation 

incorporating social effects
2
:  

 

                                                 
2
 The literature is not homogeneous in singling out a unique name of such effects: although context-dependent, authors  

interchangeably refer to peer, neighbourhood, social, club, interference or interaction effects.   
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1. Endogenous effects. Such effects entail that the outcome of an individual depends on the 

outcomes of other individuals belonging to his neighbourhood. 

 

2. Exogenous (or contextual) effects. These effects concern the possibility that the outcome of 

an individual is affected by the exogenous idiosyncratic characteristics of the individuals 

belonging to his neighbourhood.  

 

3. Correlated effects. They are effects due to belonging to a specific group and thus sharing 

some institutional/normative condition (that one can loosely define as “environment”).   

 

Contextual and correlated effects are to be assumed as exogenous, as they clearly depend on pre-

determined characteristics of the individuals in the neighbourhood (case 2)  or of the neighbourhood 

itself (case 3). Endogenous effects are on the contrary of broader interest, as they are affected by the 

behaviour (measured as “outcome”) of other individuals involved in the same neighbourhood. This 

means that endogenous effects both comprise direct and indirect effects linked to a given external 

intervention on individuals. The model proposed in this paper incorporates the presence of  

endogenous neighbourhood effects as defined by Manski within a traditional binary counterfactual 

model and provides both an identification and an estimation procedure for the Average Treatment 

Effects (ATEs) in this specific case
3
.  

How can we position this paper within the literature? Very concisely, previous literature 

assumes that: (i) unit potential outcome depends on own treatment and other units’ treatment; (ii) 

assignment is randomized or conditionally unconfounded; (iii) treatment is multiple; (iii) potential 

outcomes have a non-parametric form. This paper, instead, assumes that: (i) unit potential outcome 

depends on own treatment and other units’ potential outcome; (ii) assignment is mean conditionally 

unconfounded; (iii) treatment is binary; (iv) potential outcomes have a parametric form.  

As such, this paper suggests a simple but workable way to relax SUTVA, one that seems 

rather easy to implement in many socio-economic contexts of application. 

 

                                                 
3
 A combined regression model including both individual treatments and outcomes may be expressed as: 

 

yi = f (wi; y-i; w-i) 

 

Arduini, Patacchini and Rainone (2014) provides a first attempt to modelling such a regression on individuals eligible 

for treatment, showing that the coefficient of wi (i.e., their measure of ATE) combines both treatments’ and outcomes’ 

direct and indirect effects on y. However, such a model is not embedded within the classical Rubin’ potential outcome 

model (POM). Differently, the paper proposed here provides a POM-consistent approach, generalized to the case of 

possible interaction among units. 
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3. A binary treatment model with “endogenous” neighbourhood effects 

This section presents a model for estimating the average treatment effects (ATEs) of a policy 

program (or a treatment) in a non-experimental setting in the presence of “endogenous” 

neighbourhood (or externality) interactions. We consider a binary treatment variable w - taking 

value 1 for treated and 0 for untreated units - assumed to affect an outcome (or target) variable y 

that can take a variety of forms. 

Some notation can help in understanding the setting: N is the number of units involved in the 

experiment; N1, the number of treated units; N0 the number of untreated units; wi the  treatment 

variable assuming value “1” if unit i is treated and “0” if untreated; y1i is the outcome of unit i when 

she is treated; y0i is the outcome of unit i when she is untreated; xi = (x1i , x2i ,  x3i , ... , xMi)  is a row 

vector of M exogenous observable characteristics for unit i = 1, ... , N. 

To begin with, as usual in this literature, we define the unit i’s Treatment Effect (TE) as: 

 

TEi = y1i  - y0i (3) 

 

TEi is equal to the difference between the value of the target variable when the individual is treated 

(y1), and the value assumed by this variable when the same individual is untreated (y0). Since TEi 

refers to the same individual at the same time, the analyst can observe just one of the two quantities 

feeding into (3) but never both. For instance, it might be the case that we can observe the 

investment behaviour of a supported company, but we cannot know what the investment of this 

company would have been, had it not been supported, and vice versa.  The analyst faces a 

fundamental missing observation problem (Holland, 1986) that needs to be tackled econometrically 

in order to recover reliably the causal effect via some specific imputation technique (Rubin, 1974; 

1977).  

Both y1i  and  y0i are assumed to be independent and identically distributed (i.i.d.) random 

variables, generally explained by a structural part depending on observable factors and a non-

structural one depending on an unobservable (error) term. Nevertheless, recovering the entire 

distributions of y1i  and y0i (and, consequently, the distribution of the TEi) may be too demanding 

without very strong assumptions, so that the literature has focused on estimating specific moments 

of these distributions and in particular the “mean”, thus defining the so-called population Average 

Treatment Effect (hereinafter ATE), and ATE conditional on xi (i.e., ATE(xi)) of a policy 

intervention as: 

 

ATE = E(yi1-yi0) (4) 
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ATE(xi) = E(yi1 - yi0 | xi) (5) 

 

where E(∙) is the mean operator. ATE is equal to the difference between the average of the target 

variable when the individual is treated (y1), and the average of the target variable when the same 

individual is untreated (y0). Observe that, by the law of iterated expectations, ATE = Ex{ATE(x)}. 

 Given the definition of the unconditional and conditional average treatment effect in (4) and 

(5) respectively, it is immediate to define the same parameters in the sub-population of treated 

(ATET) and untreated (ATENT) units, i.e.: 

 

 ATET = E(yi1-yi0 | wi=1)  

ATET(xi) = E(yi1 - yi0 | xi, wi=1)  

 

and  

 

ATENT = E(yi1-yi0 | wi=0)  

ATENT(xi) = E(yi1 - yi0 | xi, wi=0)  

 

The aim of this paper is to provide consistent parametric estimation of all previous quantities (we 

refer to as ATEs) in the presence of neighbourhood effects.  

To that end, we start with what is observable to the analyst in such a setting, i.e. the actual 

status of the unit i, that can be obtained as: 

 

yi = y0i + wi (y1i  - y0i) (6) 

 

Equation (6) is known as the Rubin’s potential outcome model (POM), and it is the fundamental 

relation linking the unobservable with the observable outcome. Given Eq. (6), we first set out all the 

assumptions behind the next development of the proposed model. 

 

Assumption 1. Unconfoundedness (or CMI). Given the set of random variables {y1i, y1i, wi , xi} as 

defined above, the following equalities hold: 

 

E(yig | wi , xi) = E(yig | xi)    with  g = {0,1} 
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Hence, throughout this paper, we will assume unconfoundedness, i.e. Conditional Mean 

Independence (CMI) to hold. As we will show, CMI is a sufficient condition for identifying ATEs 

also when neighbourhood effects are considered.  

 

Once CMI has been assumed, we then need to model the potential outcomes y0i and y1i in a 

proper way so to get a representation of the ATEs (i.e., ATE, ATET and ATENT) taking into 

account the presence of endogenous externality effects. In this paper, we simplify further our 

analysis by assuming some restrictions in the form of the potential outcomes. 

 

Assumption 2. Restrictions on the form of the potential outcomes. Consider the general form of the 

potential outcome as expressed in (2), and assume this relation to depend parametrically on a vector 

of real numbers θ = (θ0; θ1). We assume that: 

 

y1i(wi; xi; θ1) 

and  

y0i(wi; xi; y1,-i; θ0) 

 

Assumption 2 poses two important restrictions to the form given to the potential outcomes: (i) it 

makes them dependent on some unknown parameters θ (i.e., parametric form); (ii) it entails that the 

externality effect occurs only in one direction, from the treated individuals to the untreated, while 

the other way round is ruled out. 

 

Assumption 3. Linearity and weighting-matrix. We assume that the potential outcomes are linear in 

the parameters, and that a NxN weighting-matrix Ω of exogenous constant numbers is known.  

 

Under Assumptions 1, 2 and 3, the model takes on this form: 

   

1 1

1 1 1 1

0 0 0 0

1

1 1

0 1 0

,    with  1 

( )

CMI  holds

i i i

i i i i

N N

i ij j ij

j j

i i i i

y e

y s e

s y

y y w y y



 

 
 

  


   



 

   



 

x β

x β

 (7) 
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where i = 1, ..., N and j = 1, ..., N1, μ1 and μ0 are scalars, β0 and β1 are two unknown vector 

parameters defining the different response of unit i to the vector of covariates x, e0 and e1 are two 

random errors with zero unconditional variance and
is represents unit i-th neighbourhood effect due 

to the treatment administrated to units j (j = 1, ..., N1). Observe that, by linearity, we have that: 

 

1

1

1

   if  { 0}

0               if  { 1}

N

ij j

ji

y i w
s

i w





 

 
  


 (8) 

 

where the parameter ωij is the generic element of the weighting matrix Ω expressing some form of 

distance between unit i and unit j. Although not strictly required for consistency, we also assume 

that these weights add to one, i.e. 
1

1

1
N

ij

j




 . In short, previous assumptions say that units i 

neighbourhood effect takes the form of a weighted-mean of the outcomes of treated units and that 

this “social” effect has an impact only on unit i’s outcome when this unit is untreated. As a 

consequence, by substitution of (8) into (7), we get that: 

   

1

0 0 0 1 0

1

  


   
N

i i ij j i

j

y y ex β  (9) 

 

making clear that untreated unit’s i outcome is a function of its own idiosyncratic characteristics 

(xi), the weighted outcomes of treated units multiplied by a sensitivity parameter γ, and a standard 

error term.  

 We state now a series of propositions implied by previous assumptions.  

 

Proposition 1. Formula of ATE with neighbourhood interactions. Given assumptions 2 and 3 and 

the implied equations established in (7), the average treatment effect (ATE) with neighbourhood 

interactions takes on this form:   

 

1

1 0 1

1

ATE = E( ) E
N

i i i ij j i

j

y y e  





  
       

   

 

x δ x β

xδ vλ

 (10) 
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where 1λ β , E( )i ix x , 
1

1

E

i

N

ij j

j




 
 
 
 
 
 



v

v x  is the unconditional mean of the vector xi, and 

1 0 1.       The proof is in Appendix. See A1. 

 

Indeed, by the definition of ATE as given in (4) and by (7), we can immediately show that 

for such a model: 

 

 
1

1 0 1 1 1 0 0 1 0

1

ATE = E( ) E    


  
         

   

N

i i i i i ij j i

j

y y e y ex β x β  (11) 

 

where: 

 
1 1

1 1 1

1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1 1

1 1

N N

ij j ij j j

j j

N N N

ij ij j ij j

j j j

N N

ij j ij j

j j

y e

e

e
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   

  

 

  

 

   

  

 
  
 

 

  

 

x β

x β

x β

 (12) 

 

and by developing ATE further using Eq. (11), we finally get the result in (10). 

 

Proposition 2. Formula of ATE(xi) with neighbourhood interactions. Given assumptions 2 and 3 

and the result in proposition 1, we have that: 

 

1 0ATE( ) = E( | ) ATE + ( ) ( )i i i i i iy y    x x x x δ v v λ  (13) 

 

where it is now easy to see that ATE =Ex{ATE(x)}. The proof is in Appendix. See A2. 

 

Proposition 3. Baseline random-coefficient regression. By substitution of equations (7) into the 

POM of Eq. (6), we obtain the following random-coefficient regression model (Wooldridge, 1997):  

 

0ATE + ( ) ( )i i i i i i i iy w w w e       x β x x δ v v λ  

 

(14) 
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where: 
1

1

N

i ij j

j




v x , 
1

1 1

1
NN

ij j

i jN


 

 
  

 
 v x , λ=γβ1, 0 1    , and 

1 0 δ β β . The proof is in 

Appendix. See A3. 

 

Proposition 4. Ordinary Least Squares (OLS) consistency. Under assumption 1 (CMI), 2 and 3, the 

error tem of regression (14) has zero mean conditional on (wi, xi), i.e.:  

 

 
1 1

1 0 1 0 1

1 1

E , E ( ) , 0
N N

i i i ij j i i i i i ij j i i

j j

e w e e w e e w e w   
 

 
      

 
 x x  (15) 

 

thus implying that Eq. (14) is a regression model whose parameters can be consistently estimated by 

Ordinary Least Squares (OLS). The proof is in Appendix. See A4. 

 

Once a consistent estimation of the parameters of (14) is obtained, we can estimate ATE 

directly from the regression, and ATE(xi) by plugging the estimated parameters into formula (11). 

This is because ATE(xi) becomes a function of consistent estimates, and thus consistent itself: 

 

plim ATE( ) ATE( )i ix x   

 

where ATE( )ix  is the plug-in estimator of ATE(xi). Observe, however, that the (exogenous) 

weighting matrix Ω=[ωij] needs to be provided in advance.  

Once the formulas for ATE and ATE(xi) are available, it is also possible to recover the 

Average Treatment Effect on Treated (ATET) and on non-Treated (ATENT) as:   

 

 
1

1

1
ATET ATE ( ) ( )

N

i i iN
i

i

i

w

w 



    


x x δ v v λ  
(16) 

 

and: 

 

 
1

1

1
ATENT ATE (1 ) ( ) ( )

(1 )

N

i i iN
i

i

i

w

w 



     





x x δ v v λ  

(17) 
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These quantities are functions of observable components and parameters consistently estimated by 

OLS (see next section). Once these estimates are available, standard errors for ATET and ATENT 

can be correctly obtained via bootstrapping (see Wooldridge, 2010, pp. 911-919). 

 

4. Estimation 

Starting from previous section’s results, a simple protocol for estimating ATEs can be suggested. 

Given an i.i.d. sample of observed variables for each individual i: 

 

{yi, wi, xi} with i = 1, …, N 

 

1. provide a weighting matrix Ω=[ωij] measuring some type of distance between the generic 

unit i (untreated) and unit j (treated);  

 

2. estimate by an OLS a regression model of: 

 

    on   1,   ,   ,   ( ),   ( )i i i i i i iy w w w x x x v v  

 

3. obtain 0 1
ˆ ˆ ˆˆ,  ,  ,  β δ β  and put them into the formulas of ATEs. 

 

By comparing for instance the formula of ATE with (γ ≠ 0) and without (γ = 0) neighbourhood 

effect, we get the neighbourhood-bias defined as: 

 

1 1

no-neigh with-neigh

1 1 1

Bias = ATE - ATE | = |( )

1
  

i

N NN

ij j ij j

i j jN
 

  

 

  
  

   
  

v v λ

x x λ
 

 

(18) 

 

This can also be seen as the externality effect produced by the evaluated policy: it depends on the 

weights employed, on the average of the observable confounders considered into x, and on the 

magnitude of the coefficients γ and β1. Observe that such bias may be positive as well as negative. 

Furthermore, by defining:  

 

1 β λ  (19) 
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it is also possible to test whether this bias is or is not statistically significant by simply testing the 

following null-hypothesis:  

 

0 1 2H :   ... 0M       

 

If this hypothesis is rejected, we cannot exclude that neighbourhood effects are pervasive, thus 

affecting significantly the estimation of the causal parameters ATEs. Finally, in a similar way, we 

can also get an estimation of the neighbourhood-bias for ATET and ATENT.    

 

5. Stata implementation via ntreatreg 

The previous model can be easily estimated by using the author-written Stata routine ntreatreg. 

The syntax of  ntreatreg is a very common one for a Stata command and takes on this form: 

  

 

ntreatreg outcome treatment varlist , hetero(varlist_h) 

spill(matrix) graphic 

 

where: 

outcome: is the y of the previous model, i.e. the target variable of the policy considered. 

treatment: is the w of the previous model, i.e. the binary policy (treatment) indicator. 

varlist: is the x of the previous model, i.e. the vector of observable unit characteristics. 

hetero(varlist_h): is an optional subset of x to allow for observable heterogeneity.  

spill(matrix): is the weighting-matrix Ω, to be provided by the user. 

graphic: returns a graph of the distribution of ATE(x), ATET(x) and ATENT(x).  

 

In the next two sub-sections we provide two instructional applications of the model presented in this 

paper and of its Stata implementation: the first one on the effect of housing location on crime; the 

second one on the effect of education on fertility. Results are also compared with a no-interaction 

setting. 

 

5.1 A simulation exercise 

In order to check the reliability of ntreatreg and better understand the statistical setting of the 

model, we perform a simulation exercise providing the data generating process (DGP) underlying 
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the model fitted by ntreatreg. The Stata code is reported below where, for illustrative purposes, 

we consider a random treatment:     

 

*************************************** 

* 1. Generate the matrix “omega” 

*************************************** 

* Generate the matrix “omega” 

. clear 

. set matsize 1000 , permanently 

. set obs 200 

. set seed 10101 

. gen w=rbinomial(1,0.5) 

. gsort - w 

. count if w==1 

. global N1=r(N) 

. global N0=_N-$N1 

. mat def M=J(_N,_N,0)  

. global N=_N 

 

* Generate a matrix M from a Uniform distribution   

forvalues i=1/$N{ 

forvalues j=1/$N1{ 

mat M[`i',`j']=runiform() 

} 

} 

 

* Generate a vector SUM containing the column sum of M  

mat def SUM=J(_N,1,0) 

forvalues i=1/$N{ 

forvalues j=1/$N1{ 

mat SUM[`i',1] = SUM[`i',1] + M[`i',`j'] 

} 

} 

 

* Generate the matrix omega as defined in figure # 

forvalues i=1/$N{ 

forvalues j=1/$N1{ 

mat M[`i',`j']=M[`i',`j']/SUM[`i',1] 

} 

} 

mat omega=M 

 

***************************************************** 

* 2. Define the model’s data generating process (DGP) 

***************************************************** 

* Declare a series of parameters 

scalar mu1=2 

scalar b11=5 

scalar b12=3 

scalar e1=rnormal() 

scalar mu0=5 

scalar b01=7 

scalar b02=1 

scalar e0=rnormal()  

gen x1=rnormal() 

gen x2=rnormal() 

scalar gamma=0.8 

 

* Sort the treatment so to have the “ones” first 

gsort - w 
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* Generate “y1” 

gen y1 = mu1 + x1*b11 + x2*b12 + e1 

gen y1_obs=w*y1 

mkmat y1_obs , mat(y1_obs) 

 

* Generate “s” 

mat s = omega*y1_obs 

mat list s 

svmat s 

 

* Generate “y0” and finally “y” 

gen y0 = mu0 + x1*b01 + x2*b02 + gamma*s1 + e0 

gen y = y0 + w*(y1-y0) 

   

* Generate the treatment effect “te” 

gen te=y1-y0 

sum te 

 

* Put the ATE into a scalar    

scalar ATE=r(mean) 

di ATE 

 

*************************************** 

* 3. Estimate the model using ntreatreg 

*************************************** 

* y: dependent variable  

* w: treatment 

* x: [x1; x2] are the covariates 

* Matrix of spillovers: OMEGA 

 

* Estimate the model using "NTREATREG" /// 

set more off 

xi: ntreatreg y w x1 x2  , /// 

hetero(x1 x2) spill(omega) graphic  

scalar ate_neigh = _b[w]  // put ATE into a scalar 

di ate_neigh 

 

* END OF THE SIMULATION 

 

 

Previous Stata code: (i) starts by providing the matrix Ω; (ii) form the model DGP as defined in (7); 

(iii) estimate the model by ntreatreg using the DGP simulated data.   

 By running this code, we get a value of ATE as predicted by ntreatreg equal to -

1.553163, which is very close to the DGP value of the ATE, that is -1.5643281. We can run many 

simulations getting a similar result. This implies that ntreatreg correctly estimates the model as 

defined in (7).      

 

6. Conclusion 

This paper has presented a possible solution to incorporate externality (or neighbourhood) effects 

within the traditional Rubin’s potential outcome model under conditional mean independence. As 

such, it generalizes the traditional parametric models of program evaluation when SUTVA is 

relaxed. As by-product, this work has also put forward ntreatreg, a Stata routine for estimating 
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Average Treatments Effects (ATEs) when social interactions are present. In order to check the 

reliability of ntreatreg, we perform a simulation experiment providing the data generating 

process (DGP) underlying the model fitted by ntreatreg. We show that ntreatreg correctly 

estimates the model as defined in (7).   

Of course, this approach presents also some limitations, and in what follows we list some of 

its potential developments. Indeed, the model might be improved by: 

 

 allowing also for treated units to be affected by other treated units’ outcome;  

 

 extending the model to “multiple” or “continuous” treatment, when treatment may be multi-

valued or fractional for instance, by still holding CMI; 

 

 identifying ATEs with neighbourhood interactions when w may be endogenous (i.e., 

relaxing CMI) by implementing GMM-IV estimation; 

 

 trying to go beyond the potential outcomes’ parametric form, by relying on a semi-

parametric specification; 

 

Finally, an interesting issue deserving further inquiry regards the assumption of exogeneity 

concerning the weighting matrix Ω. Indeed, a challenging question might be: what happens if 

individuals strategically modify their weighting weights to better profit of others’ treatment 

outcome? It is clear that weights do become endogenous, thus yielding severe identification 

problems for previous causal effects. Future studies should tackle situations in which this possibility 

may occur. 
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Appendix A 
 

In this appendix, we show how to obtain the formulas of ATE and ATE(x) set out in (12) and (13). 

Then, we show how regression (14) can be obtained and, finally, we prove that Assumption 1 is 

sufficient for consistently estimating the parameters of regression (14) by OLS. 

 

A1. Formula of ATE with neighbourhood interactions.  

Given assumptions 2 and 3, and the implied equations in (7), we get that: 
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This implies that 1 0 1ATE = E( ) E( ) E( )i i i iy y     x δ v β  whose sample equivalent is: 
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where 
1 0 = (1 )     , and 

1 0 δ β β .          ■ 

 

 

As an example, consider the case in which N=4, and N1=N0=2. Suppose that the matrix Ω is 

organized as follows: 
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This means that, by assuming that the externality effect only comes from treated to untreated units 

thus excluding other types of feedbacks, is equivalent to consider only the first two columns of Ω in 

the calculation of the externality component, those refereeing to the treated units, i.e.:    

 

 

 

where no use of the two columns referring to the control group occurs. 

 

A2. Formula of ATE(xi) with neighbourhood interactions.  

Given assumptions 2 and 3, and the result in A1, we get: 
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. where λ=γβ1. 

    ■ 

 

A3. Obtaining regression (14).  

By substitution of the potential outcome as in (7) into the potential outcome model, we get that: 
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Therefore, we can conclude that: 
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A4. Ordinary Least Squares (OLS) consistency.  

Under Assumption 1 (CMI), the parameters of regression (14) can be consistently estimated by 

OLS. Indeed, it is immediate to see that the mean of ei conditional on (wi; xi) is equal to zero: 
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where 
0 1    .                ■ 

 

 


