/*** Title ----- {phang}{cmd:persuasio4yz} {hline 2} Conduct causal inference on persuasive effects for binary outcomes _y_ and binary instruments _z_ Syntax ------ > {cmd:persuasio4yz} _depvar_ _instrvar_ [_covariates_] [_if_] [_in_] [, {cmd:level}(#) {cmd:model}(_string_) {cmd:method}(_string_) {cmd:nboot}(#) {cmd:title}(_string_)] ### Options | _option_ | _Description_ | |-------------------|-------------------------| | {cmd:level}(#) | Set confidence level; default is {cmd:level}(95) | | {cmd:model}(_string_) | Regression model when _covariates_ are present | | {cmd:method}(_string_) | Inference method; default is {cmd:method}("normal") | | {cmd:nboot}(#) | Perform # bootstrap replications | | {cmd:title}(_string_) | Title | Description ----------- {cmd:persuasio4yz} conducts causal inference on persuasive effects. It is assumed that binary outcomes _y_ and binary instruments _z_ are observed. This command is for the case when persuasive treatment (_t_) is unobserved, using an estimate of the lower bound on the average persuasion rate (APR) via this package's command {cmd:aprlb}. _varlist_ should include _depvar_ _instrvar_ _covariates_ in order. Here, _depvar_ is binary outcomes (_y_), _instrvar_ is binary instruments (_z_), and _covariates_ (_x_) are optional. When treatment _t_ is unobserved, the upper bound on the APR is simply 1. There are two cases: (i) _covariates_ are absent and (ii) _covariates_ are present. - Without _x_, the lower bound ({cmd:theta_L}) on the APR is defined by {cmd:theta_L} = {Pr({it:y}=1|{it:z}=1) - Pr({it:y}=1|{it:z}=0)}/{1 - Pr({it:y}=1|{it:z}=0)}. The estimate and confidence interval are obtained by the following procedure: 1. Pr({it:y}=1|{it:z}=1) and Pr({it:y}=1|{it:z}=0) are estimated by regressing _y_ on _z_. 2. {cmd:theta_L} is computed using the estimates obtained above. 3. The standard error is computed via STATA command __nlcom__. 4. Then, a confidence interval for the APR is set by {p 8 8 2} [ _est_ - _cv_ * _se_ , 1 ], where _est_ is the estimate, _se_ is the standard error, and _cv_ is the one-sided standard normal critical value (e.g., _cv_ = 1.645 for {cmd:level}(95)). - With _x_, the lower bound ({cmd:theta_L}) on the APR is defined by {cmd:theta_L} = E[{cmd:theta_L}(x)], where {cmd:theta_L}(x) = {Pr({it:y}=1|{it:z}=1,{it:x}) - Pr({it:y}=1|{it:z}=0,{it:x})}/{1 - Pr({it:y}=1|{it:z}=0,{it:x})}. The estimate is obtained by the following procedure. If {cmd:model}("no_interaction") is selected (default choice), 1. Pr({it:y}=1|{it:z},{it:x}) is estimated by regressing _y_ on _z_ and _x_. Alternatively, if {cmd:model}("interaction") is selected, 1a. Pr({it:y}=1|{it:z}=1,{it:x}) is estimated by regressing _y_ on _x_ given _z_ = 1. 1b. Pr({it:y}=1|{it:z}=0,{it:x}) is estimated by regressing _y_ on _x_ given _z_ = 0. Ater step 1, both options are followed by: {p 4 8 2}2. For each _x_ in the estimation sample, {cmd:theta_L_num}({it:x}) and {cmd:theta_L_den}({it:x}) are evaluated. {p 4 8 2}3. The estimates of {cmd:theta_L_num}({it:x}) and {cmd:theta_L_den}({it:x}) are averaged to estimate {cmd:theta_L}. 4. A bootstrap confidence interval for the APR is set by {p 8 8 2} [ bs_est(_alpha_) , 1 ], where bs_est(_alpha_) is the _alpha_ quantile of the bootstrap estimates of {cmd:theta_L} and 1 - _alpha_ is the confidence level. The bootstrap procedure is implemented via STATA command {cmd:bootstrap}. Options ------- {cmd:model}(_string_) specifies a regression model of _y_ on _z_ and _x_. This option is only relevant when _x_ is present. The default option is "no_interaction" between _z_ and _x_. When "interaction" is selected, full interactions between _z_ and _x_ are allowed; this is accomplished by estimating Pr({it:y}=1|{it:z}=1,{it:x}) and Pr({it:y}=1|{it:z}=0,{it:x}), separately. {cmd:level}(#) sets confidence level; default is {cmd:level}(95). {cmd:method}(_string_) refers the method for inference. The default option is {cmd:method}("normal"). By the naure of identification, one-sided confidence intervals are produced. {p 4 8 2}1. When _x_ is present, it needs to be set as {cmd:method}("bootstrap"); otherwise, the confidence interval will be missing. {p 4 8 2}2. When _x_ is absent, both options yield non-missing confidence intervals. {cmd:nboot}(#) chooses the number of bootstrap replications. The default option is {cmd:nboot}(50). It is only relevant when {cmd:method}("bootstrap") is selected. {cmd:title}(_string_) specifies a title. Remarks ------- It is recommended to use {cmd:nboot}(#) with # at least 1000. A default choice of 50 is meant to check the code initially because it may take a long time to run the bootstrap part. The bootstrap confidence interval is based on percentile bootstrap. Normality-based bootstrap confidence interval is not recommended because bootstrap standard errors can be unreasonably large in applications. Examples -------- We first call the dataset included in the package. . use GKB_persuasio, clear The first example conducts inference on the APR without covariates, using normal approximation. . persuasio4yz voteddem_all post, level(80) method("normal") The second example conducts bootstrap inference on the APR. . persuasio4yz voteddem_all post, level(80) method("bootstrap") nboot(1000) The third example conducts bootstrap inference on the APR with a covariate, MZwave2, interacting with the instrument, post. . persuasio4yz voteddem_all post MZwave2, level(80) model("interaction") method("bootstrap") nboot(1000) Stored results -------------- ### Matrices > __e(apr_est)__: (1*2 matrix) bounds on the average persuasion rate in the form of [lb, 1] > __e(apr_ci)__: (1*2 matrix) confidence interval for the average persuasion rate in the form of [lb_ci, 1] ### Macros > __e(cilevel)__: confidence level > __e(inference_method)__: inference method: "normal" or "bootstrap" Authors ------- Sung Jae Jun, Penn State University, Sokbae Lee, Columbia University, License ------- GPL-3 References ---------- Sung Jae Jun and Sokbae Lee (2022), Identifying the Effect of Persuasion, [arXiv:1812.02276 [econ.EM]](https://arxiv.org/abs/1812.02276) Version ------- 0.2.1 20 November 2022 ***/ capture program drop persuasio4yz program persuasio4yz, eclass sortpreserve byable(recall) version 16.1 syntax varlist (min=2) [if] [in] [, level(cilevel) model(string) method(string) nboot(numlist >0 integer) title(string)] marksample touse quietly aprlb `varlist' if `touse', model("`model'") * displaying results if "`title'" != "" { display "`title':" } tempname lb_coef scalar `lb_coef' = e(lb_coef) * inference based on normal approximation if "`method'" == "" | "`method'" == "normal" { if "`level'" != "" { local alpha_level = `level'/100 } if "`level'" == "" { local alpha_level = 0.95 } tempname cv_cns lower_bound_ci scalar `cv_cns' = invnormal(`alpha_level') /* one-sided critical value */ scalar `lower_bound_ci' = e(lb_coef) - `cv_cns'*e(lb_se) * Displaying results display " " display as text "{hline 65}" display "{bf:persuasio4yz:} Causal inference on the average persuasion rate" display " when binary outcomes and binary instruments are observed" display as text "{hline 65}" display " " if "`title'" != "" { display "Title: `title'" } display " - Binary outcome: `e(outcome)'" display " - Binary instrument: `e(instrument)'" display " " display as text "{hline 13}{c TT}{hline 40}" display as text %12s "Parameter" " {c |}" /* */ _col(16) " Estimate " /* */ _col(30) "[`level'% Conf. Interval]" display as text "{hline 13}{c +}{hline 40}" display as text %12s "Lower Bound" " {c |}" /* */ as result /* */ _col(17) %8.0g `lb_coef' " " /* */ _col(32) %8.0g `lower_bound_ci' " " /* */ %8.0g 1 " " display as text "{hline 13}{c BT}{hline 40}" display " " display "Note: `level'% one-sided conf. interval is based on normal approximation." display " " } * inference based on bootstrap if "`method'" == "bootstrap" { * Displaying results display " " display as text "{hline 65}" display "{bf:persuasio4yz:} Causal inference on the average persuasion rate" display " when binary outcomes and binary instruments are observed" display " along with covariates" display as text "{hline 65}" display " " if "`title'" != "" { display "Title: `title'" } display " - Binary outcome: `e(outcome)'" display " - Binary instrument: `e(instrument)'" display " - Covariates (if exist): `e(covariates)'" display " - Regression model (if specified): `e(model)'" display " " if "`level'" != "" { local alpha_level = `level'/100 } if "`level'" == "" { local alpha_level = 0.95 } local cv_cns = invnormal(`alpha_level') /* one-sided critical value */ local bs_level = round(10000*(1-(1-`alpha_level')*2))/100 /* level for bootstrap */ if "`nboot'" != "" { bootstrap coef=e(lb_coef), reps(`nboot') level(`bs_level') notable nowarn: aprlb `varlist' if `touse', model("`model'") } if "`nboot'" == "" { bootstrap coef=e(lb_coef), reps(50) level(`bs_level') notable nowarn: aprlb `varlist' if `touse', model("`model'") } tempname bs_ci_percentile lower_bound_ci matrix `bs_ci_percentile' = e(ci_percentile) scalar `lower_bound_ci' = `bs_ci_percentile'[1,1] * Displaying results further display " " display as text "{hline 13}{c TT}{hline 40}" display as text %12s "Parameter" " {c |}" /* */ _col(16) " Estimate " /* */ _col(30) "[`level'% Conf. Interval]" display as text "{hline 13}{c +}{hline 40}" display as text %12s "Lower Bound" " {c |}" /* */ as result /* */ _col(17) %8.0g `lb_coef' " " /* */ _col(32) %8.0g `lower_bound_ci' " " /* */ %8.0g 1 " " display as text "{hline 13}{c BT}{hline 40}" display " " display "Note: `level'% one-sided conf. interval is based on percentile bootstrap." display " " } tempname lb_coef_matrix lb_ci_matrix matrix `lb_coef_matrix' = (`lb_coef',1) matrix `lb_ci_matrix' = (`lower_bound_ci',1) ereturn clear ereturn matrix apr_est = `lb_coef_matrix' ereturn matrix apr_ci = `lb_ci_matrix' ereturn local cilevel = `alpha_level'*100 ereturn local inference_method "`method'" display "Reference: Jun and Lee (2022), arXiv:1812.02276 [econ.EM]" end