Potential outcome parameter estimation
poparms (treatvar gpsvars) (depvar cvars) [if] [in] [, options]
options Description ------------------------------------------------------------------------- quantiles(numlist) estimate specified quantiles
vce(vcetype [, vceoptions]) vcetype may be bootstrap, analytic, or none. analytic is the default when quantiles() is not specified. bootstrap is the default when quantiles() is specified. vceoptions vary over vcetype and are discussed below.
ipw use inverse-probability-weighted (IPW) estimator instead of default efficient-influence-function (EIF) estimator
INCLUDE help shortdes-coeflegend
------------------------------------------------------------------------- gpsvars and cvars may contain time-series operators; see fvvarlist.
poparms estimates parameters of the potential-outcome distributions in causal inference.
The estimators implemented in poparms were derived in Cattaneo(2010). Cattaneo, Drukker, and Holland (2012) provides an introduction to this command.
quantiles() specifies the quantiles of the potential outcome distributions that are to be estimated jointly with the means. By default, only the means are estimated. By default, method vce(bootstrap) is used when quantiles() is specified. We strongly recommend not using vce(analytic) when quantiles() is specified.
vce() specifies the method used to estimate the variance-covariance of the estimator.
vce:(vcetype [, vceoptions])} specifies the vcetype and the type specific options.
When specifying vce(bootstrap), the vceoption is reps(#) which specifies the number of bootstrap repetitions which must be integer that is at least 50.
With method analytic, the vceoptions are bwscale(#)), bwidths(matname), and densities(matname). These suboptions are mutually exclusive.
By default, poparms uses an analytic estimator when only means are estimated and it uses a bootstrap estimator when quantiles are estimated. We recommend not using the analytic method when quantiles are specified because this method performed poorly in Monte Carlo simulations.
With method bootstrap, you may change the number of repetitions from the default 2000 by specifying vce(bootstrap , reps(#)). The specified number of repetitions must an integer greater than 49.
With method analytic, you may rescale the bandwidths used to estimate the densities by specifying vce(analytic, bwscale(#)). The specified number must be in the interval [.1, 10].
With method analytic, you may specify the bandwidths used to estimate the densities by specifying vce(analytic, bwidths(matname)), where matname specifies a Stata row vector with the number of columns equal to the number of quantiles times the number of treatment levels.
With method analytic, you may specify the densities used vce(analytic, densities(matname)), where matname specifies a Stata row vector with the number of columns equal to the number of quantiles times the number of treatment levels.
ipw specifies that poparms use the IPW estimator instead of the default EIF estimator. The methods and differences are described in Cattaneo, Drukker, and Holland (2012).
coeflegend; see [R] estimation options.
--------------------------------------------------------------------------- Setup . use spmdata
Mean estimation . poparms (w pindex eindex) (spmeasure pindex eindex)
Mean estimation with polynomial for conditional mean . poparms (w pindex eindex) (spmeasure c.(pindex eindex)#c.(pindex eindex))
Mean and quantile estimation with polynomial for conditional mean This example limits the number of of bootstrap repetitions to 50 so that the example runs relatively quickly. We recommend using at least the default of 2000 repetitions in practice.
. poparms (w pindex eindex) (spmeasure c.(pindex eindex)#c.(pindex eindex)), quantiles(.25 .75) vce(bootstrap, reps(50))
poparms saves the following in e():
Scalars e(N) number of observations e(k) number of variables in conditional mean e(bwscale) scale for bandwidths, if specified e(reps) number of requested bootstrap repetitions, if specified} e(bsreps) number of successful bootstrap repetitions, if specified}
Macros e(cmd) poparms e(cmdline) command as typed e(depvar) name of dependent variable e(title) title in estimation output e(title2) second title in estimation output e(vce) vcetype specified in vce() e(vcetype) title used to label Std. Err. e(quantiles) specified quantiles e(properties) b V or b if vce(none) e(predict) program used to implement predict
Matrices e(b) coefficient vector e(V) variance-covariance matrix of the estimators e(V1) outer product Psi functions used in variance
Functions e(sample) marks estimation sample
References
Cattaneo, M. D. 2010. Efficient Semiparametric Estimation of Multi-valued Treatment Effects under Ignorability. Journal of Econometrics 155(2): 138-154. http://www.sciencedirect.com/science/article/pii/S030440760900236X
Cattaneo, M. D., D. M. Drukker, and A. Holland. 2012. Estimation of multivalued treatment effects under conditional independence. Working paper, University of Michigan, Department of Economics, http://www-personal.umich.edu/~cattaneo/papers/Cattaneo-Drukker-Holla > nd_2012_STATA.pdf.
Authors
Matias D. Cattaneo, University of Michigan, Ann Arbor, MI. cattaneo@umich.edu.
David M. Drukker, StataCorp, College Station, TX. ddrukker@stata.com.