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1 Introduction
A new estimator for qualitative response models is proposed, including binary, multino-
mial, ordered response, and other discrete choice models. The distribution of the latent
variable error is unknown and may be related to the regressors, e.g., the model can suffer
from conditional heteroscedasticity of unknown form. An instrumental variables version
of the estimator can deal with some forms of endogeneous or mismeasured regressors. The
estimator does not require numerical searches, even for multinomial choice models. For
binary and ordered choice the estimator is root N consistent and asymptotically normal. A
consistent estimator of the conditional error distribution is also provided.
This paper�s estimator treats one regressor as special. Let � denote the special regres-

sor, and let x be a J vector of other regressors. Assume that the coefÞcient of � is positive
(otherwise replace � with �� . An estimator of the sign of � is provided). Without loss
of generality normalize this coefÞcient to equal one. With this normalization, the stan-
dard latent variable binary choice or binomial response model (see, e.g., Maddala 1983 or
McFadden 1984 for surveys) is

�1�1� yi � I ��i � xi T� � ei � 0�
where i indexes observations, y is the dependent variable, e is the unobserved latent variable
error, � is a J vector of coefÞcients, T denotes transpose, and I ��� is the indicator function
that equals one if � is true and zero otherwise. The data are N observations of y� � , and x .
Let f �� �x� denote the conditional probability density function of � given an observation

x , which can be estimated from the data. This paper�s main result is that, under fairly
general conditions,

� � E�xxT ��1E
�
x
y � I �� � 0�
f ���x�

�
so � can be estimated by an ordinary least squares linear regression of �y on x , where�yi � [yi � I ��i � 0�]� f ��i �xi �.
If x is correlated with e, as in a model with mismeasured regressors, � can be estimated

by an analogous two stage least squares linear regression based on

E�zxT �� � E
�
z
y � I �� � 0�
f ���z�

�
where z is a vector of instruments that are uncorrelated with e�
Let Fe�e��� denote the conditional distribution of an observation of e given data �. The

minimal uncorrelated error assumption for linear models,

�1�2� E�ex� � 0
(or equation 1.4) is not generally sufÞcient to identify � in the binary choice model (1.1).
An additional assumption that is made for identiÞcation and estimation here is that the
distribution of e be conditionally independent of the one regressor � , or equivalently,

�1�3� Fe�e��� x� � Fe�e�x��
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The distribution of � will also be assumed to have a large support. Equations (1.2) and
(1.3) require that the error distribution Fe not depend on � , but permit virtually any form
of heteroscedasticity with respect to the vector of other regressors x .
The goal is estimation of the entire model, both the vector � and the conditional error

distribution Fe�e�x�. Linearly regressing an estimate of �y on x yields a root N consis-
tent and asymptotically normal estimator for � . A uniformly consistent estimator of the
distribution function Fe�e�x�, and of its density function fe�e�x� is also provided.
Lewbel (1998) uses similar assumptions to those here to identify general latent variable

models of the form y � L�� � xT� � e� for some functions L, but the two papers differ
in some fundamental ways. The identiÞcation in Lewbel (1998) comes from the change of
variables argument

�
�	�y�d� � �

�	[L���xi T��e�]d� � �
�
�xT��e�	 [L�
�]d
 ��


	 [L�
�]d
� �xT� � e� � 	 [L�
�]d
, which is linear in xT� � e, and hence permits
estimation of � from the conditional expectation of the above object. This estimator works
for many L functions but not for binary choice, and requires selection of a �tuning� function
	 that possesses special properties.
The present paper�s identiÞcation method is quite different, resulting in a simpler es-

timator. This paper�s estimator is based on the observation that y � I �� � �xT� � e�
and that

� K
L I �� � �xT� � e� � I �� � 0�d� � xT� � e (as long as L and K are large

enough). Equation (1.3) makes E��y�x� equal the expection of this integral given x , and the
least squares estimator then follows directly.
A perhaps more intuitive estimator can be derived by observing that, given equation

(1.3), E�y��� x� equals the conditional distribution function of �xT� � e, evaluated at ��
From this distribution a direct estimate of the conditional mean of �xT� � e given x can
be constructed, and � could then be estimated by regressing that conditional mean estimate
on x . An integration by parts argument is later used to show that this alternative estimator
is equivalent in expectation to regressing�y on x .
Many estimators exist for binary choice models. Standard maximum likelihood esti-

mation requires a Þnitely parameterized conditional distribution Fe�e�x�. Semiparamet-
ric and quasimaximum likelihood estimators of linear latent variable qualitative response
models include Cosslett (1983), Ruud (1983), Powell, Stock and Stoker (1989), Ichimura
(1993), Klein and Spady (1993), Newey and Ruud (1994), and Härdle and Horowitz
(1996). To estimate (1.1), these estimators require either that Fe�e��� x� � Fe�e� or that
Fe�e��� x� � Fe�e�� � xT��, and hence they impose far more restrictions on e than does
equation (1.3) or (1.5). The present paper shares a feature with the Ruud papers of density
weighting, though instead of making all of the regressors appear normal as Ruud requires,
the present paper�s weighting makes the single regressor � appear uniform.
Other semiparametric estimators of binary choice models assume the conditional me-

dian or other known quantile of e given x is zero. Examples are Manski �1975�� �1985�,
and Horowitz �1992�� �1993�. Like the present paper�s estimator, these quantile estimators
permit quite general forms of conditional heteroscedasticity, but they converge at slower
than root N rates. Let Q� �e��� denote the 	 �th quantile of e, conditional on the data �. The
quantile estimators assume Q� �e��� x� � Q��e� for some known 	 . In contrast, by equa-
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tion (1.3) this paper assumes that Q� �e��� x� � Q� �e�x� holds for all quantiles 	 . Instead
of assuming that one of the quantiles does not depend on all of the regressors, this paper
assumes that all of the quantiles do not depend on one of the regressors.
The estimator proposed here includes estimation of the constant term in the latent vari-

able, unlike some other estimators like Powell, Stock and Stoker (1989) or Klein and Spady
(1993), which fail to estimate the constant term.
The present paper�s estimator can be extended to handle certain types of endogeneous

or mismeasured regressor models. For this extension, equations (1.2) and (1.3) are replaced
with

�1�4� E�ez� � 0
�1�5� Fex�e� x��� z� � Fex�e� x�z�

where z is a vector of instruments and Fex�e� x��� denotes the distribution of an observation
of �e� x� conditional on data �. Equation (1.5) limits the range of applications of this exten-
sion (see section 3 for details), but very few semiparametric estimators exist for any kind
of endogeneous or mismeasured regressor binary choice models. One example is Newey
(1985).
Section 2 below provides general examples of models that satisfy the identiÞcation

equations (1.2) and (1.3), and describes the basic ordinary least squares identiÞcation re-
sult. Section 3 gives example models that satisfy the instrumental variables identiÞcation
equations (1.4) and (1.5), and provides the corresponding two stage least squares identiÞ-
cation of �. An alternative estimator that gives some intuition behind the identiÞcation is
also provided.
When the distribution of � is unknown, the estimation of � employs a Þrst stage non-

parametric density estimator. Section 4 gives the limiting root N distribution of��� taking
into account the estimation error in the required density estimate. A simpler estimator that
does not require a nonparametric Þrst stage is also provided in section 4, though more
stringent conditions are needed for its consistency. The only computations this alternative,
ordered data based estimator uses are a sorting of the data and two linear regressions.
Section 5 describes estimation of the distribution of the errors, including conditional

and unconditional moments of e, and the sign of the coefÞcient of � .
Section 6 provides extensions of the estimator, including estimation of ordered choice,

multinomial choice, partly linear latent variable, threshold, and censored regression mod-
els.
Section 7 discusses selection of the kernel and bandwidth for the required nonparamet-

ric density estimation, and provides the results of a Monte Carlo analysis of the estimator.
The Monte Carlo includes an analysis of the behavior of estimated asymptotic standard
errors, which is always relevant for empirical applications but is often ignored in Monte
Carlo studies of estimators. Section 8 provides concluding remarks.
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2 The Basic Model and Estimator

2.1 Example Models
Each of the following conditions and models is sufÞcient to make the identifying equations
(1.2) and (1.3) hold. Example models that satisfy the instrumental variables assumptions
(1.4) and (1.5) are discussed later.
1. Equations (1.2) and (1.3) hold when the errors e are mean zero and independent of

the regressors ��� x�. This is the traditional latent variable error assumption satisÞed by
standard models like logit and probit.
2. Equation (1.3) holds when e � ��e�� x� for any function � and any random vector

e�, where the distribution of e� is independent of ��� x�. The function �, the vector e� and
its distribution do not need to be known, observed, or estimated. This permits virtually any
form of conditional heteroscedasticity involving x� but not � . For example, the standard
random coefÞcients model y � I [��xT ���e���e�0 � 0] with E�e�� � 0 and E�e�0� � 0
equals equation (1.1) with e � xT e� � e�0, and satisÞes equations (1.2) and (1.3). Every
regressor except � could have a random coefÞcient.
3. Equation (1.3) holds when � is independent of �e� x�. This case is most likely

to occur when � is determined by experimental design, such as the �Willingness-to-Pay�
models used to determine the perceived value of a public good. In these models each agent
i is asked if he or she would be willing to pay some randomly drawn (log) price ��i for
a public good like a road or a park. Then yi is one for a yes answer and zero for no, and
xi consists of observables that affect agent i�s decision. See McFadden (1993) and Lewbel
and McFadden (1997), who study this application in detail. In cases like these where
the density of � is known, the proposed estimator of � has no nonparametric estimation
component.
A common application of discrete choice models is where yi denotes whether a con-

sumer i purchases a particular good or service. In these applications, as in the willingness
to pay models, the error e is interpreted as preference heterogeneity, and hence may de-
pend on demographic and taste attributes of the consumer. The error e will therefore be
independent of prices when these prices are determined solely from the supply side of the
economy (e.g., prices that equal the marginal cost of production under perfect competition
and constant returns to scale). This makes equation (1.2) hold with � equaling the negative
logged price.
The estimator requires that the latent variable �i � xi T� � ei be linear in �i . This

too will be generally satisÞed in purchase decision applications, because such models are
identical to willingness-to-pay models, except that the price is determined by the market
instead of by experimental design. The consumer is assumed to buy if the (log) actual price
charged, ��i , is less than the consumer�s (log) reservation price, xi T� � ei , resulting in
a latent variable linear in v. However, unless purchases are observed over many regimes
(or are determined by experimental design, as in the willingness to pay applications), the
large support assumption may not hold when � is a price. Of course, other variables may
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be suitable choices for � as well.

2.2 IdentiÞcation
The ordinary least squares identiÞcation of � is described here. The extension to instru-
mental variables is provided in the next section.

ASSUMPTION A.1: Equation (1.1) holds. The conditional distribution of � given x
is absolutely continuous with respect to a Lebesgue measure with nondegenerate Radon-
Nikodym conditional density f �� �x�.
ASSUMPTION A.2: Let � denote the support of the distribution of an observation of

��� x�. Let Fe�e��� x� denote the conditional distribution of an observation of e given an
observation of ��� x�, with support denoted �e��� x�. Assume Fe�e��� x� � Fe�e�x� and
�e��� x� � �e�x� for all ��� x� � �.

ASSUMPTION A.3: The conditional distribution of � given x has support [L � K ] for
some constants L and K � �� � L 
 0 
 K � �. The support of �xT� � e is a subset
of the interval [L� K ].

ASSUMPTION A.4: E�ex� � 0� E�xxT � exists and is nonsingular.
These assumptions do not require independent observations, though the root N estima-

tor provided later will assume independence. The identiÞcation result in Theorem 1 below
only requires that the expectation of a certain function of f be identiÞed.
Assumption A.1 says that y is given by the binary choice model (1.1) and that � has a

continuous distribution. Assumptions A.2 and A.4 were discussed in sections 1 and 2.1 in
terms of equations (1.2) and (1.3).
For estimation of � , the distribution of e is not required to be continuous, e.g., it can be

discrete or contain mass points. However, later estimation of the error distribution function
Fe will assume continuity.
The vector of regressors x can include dummy variables. Squares and interaction terms,

e.g., x3i � x22i , are also permitted. In addition, x can be related to (e.g., correlated with) � ,
though Assumption A.1 rules out having elements of x be deterministic functions of � .
Assumption A.3 requires � to have a large support. Standard models like logit or probit

have errors that can take on any value, which would by Assumption A.3 require � to have
support equal to the whole real line. This assumption implies that the estimator is likely to
perform best when the spread of observations of � is large relative to the spread of xT�� e
(since if the observed spread of � values were not large, then the observed data would
resemble data drawn from a process that violated A.3). Assumption A.3 assumes zero is in
the support of � . To make this hold, for any constant � in the support of � (e.g., the mean
or median of �) we can redeÞne � as � � � and correspondingly add � to the estimated
constant in xT�.
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Theorem 1: DeÞne�y by
�2�1� �y � y � I �� � 0�

f �� �x�
If Assumptions A.1, A.2, and A.3 hold then E��y�x� � xT� � E�e�x�. If Assumption A.4
also holds then

�2�2� � � E�xxT ��1E�x�y�
Theorem 1 shows that � is identiÞed, and can be estimated by an ordinary least squares

regression of�y on x . Theorem 1 is proved in Appendix A.
3 Instrumental Variables
This section describes models in which E�ex� 	� 0, including endogeneous regressors and
measurement error models, that can be estimated using an instrumental variables extension
of Theorem 1. These models satisfy equations (1.4) and (1.5) instead of (1.2) and (1.3).
It should be recalled throughout this section that x and z can overlap, that is, one or more
elements of the vector of regressors x can also be in the vector of instruments z.

3.1 Example Instrumental Variables Models
One way equation (1.5) arises is in structural models of the form �e� x� � �� 
e� z� where

e is a random vector that is independent of ��� z� and � is some vector valued function.
The function � , the variables 
e, and the distribution function of 
e do not need to be known,
observed, or estimated. This structure has the empirically testable implication that the con-
ditional distribution of x given � and z is independent of � . As with many semiparametric
estimators, the distribution of the regressors is not ancillary, and hence restrictions like this
one on � can arise.
A system of equations that satisÞes (1.1), (1.4) and (1.5) is, for any function � ,

�3�1� y � I �� � xT� � e � 0�
�3�2� x � ��z�� �

where e and � are unconditionally mean zero and the distribution of �e� �� is independent of
��� z�. Here e and � can be correlated, and hence e can be correlated with x . Dependence of
�e� �� on z would also be permitted in this model, provided that �e� �� is conditionally inde-
pendent of � , conditioning on z. The proposed estimator for � does not require specifying
or estimating the function � .
Equations (3.1) and (3.2) are a standard example of a system of equations that would

be recursive, except for the fact that the errors are correlated across equations. More fully
endogeneous systems, in which x depends on � or y, are ruled out by equation (1.5).
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Equations (3.1) and (3.2) can arise in a standard mismeasured regressors framework.
Consider the model

�3�3� y � I �� � x�T� � e� � 0�
�3�4� x � x� � 
�
�3�5� x� � ��z�� ��

with E�e�� ��� 
�� � 0. Here � is a regressor that is observed without error, x is a mis-
measured observation of the unobserved x�, e� is the latent model error and 
� is a vector
of measurement errors. Each regressor x j that is not mismeasured has z j � x�j � x j
and ��j � 
� j � 0. Equations (3.3), (3.4), and (3.5) are equivalent to (3.1) and (3.2) with
e � �
�T� � e� and � � �� � 
�. Once again, estimation of � will not require speciÞcation
or estimation of the function � �
Let 
 � � � x�T� � e�. If the latent variable 
 were observed instead of y, then �

would be estimated in this measurement error model by a two stage least squares regression
of
 on x , assuming that �e�� ��� 
�� is uncorrelated with ��� z�. When y is observed instead
of 
, equation (1.5) will hold and the estimator described in the next two sections can be
used to estimate � , as long as �e�� ��� 
�� is independent of ��� z�, or more generally if
�e�� ��� 
�� is uncorrelated with z and its conditional distribution given � and z does not
depend on � . Having these errors be independent of � and z is stronger than necessary.
The only way equations (3.3), (3.4), and (3.5) differ from standard linear mismeasured

regressors models (other than y being observed instead of the latent 
) is that standard
models would permit x� to depend on �� That is possible in the current framework only if
we let x� � ���� u� � �� for some instruments u� and deÞne z � ���� u�, which makes
(3.5) hold with ��z� � z� The drawback of permitting x� to depend on � in this way is that
the estimation of � would then Þrst require estimation of z � ���� u� � E�x��� u� (as the
Þts from parametrically or nonparametrically regressing the observed x on � and u)�
Equation (1.5) says that e and � are conditionally independent, conditioned on x and z,

but does not rule out correlations of � with x and z. For example, the structure x � az��1�
� � bz � �2, and e � c�1 � �3 for any mutually independent variables z� �1� �2, and �3
(with �1 and �3 being mean zero) and any constants a� b, and c, makes (1.4) and (1.5) hold
while making � correlate with x and z, and x correlate with e. This structure will be used
later in a Monte Carlo design.

3.2 IdentiÞcation With Instrumental Variables
Theorem 1� below describes the instrumental variables identiÞcation of �, as would be
used for the models described in the previous section, that is, where equations (1.2) and
(1.3) are replaced with (1.4) and (1.5). Note that Assumption A.4� below is the standard
assumption about instruments in two stage least squares regressions.
ASSUMPTION A.1�: Equation (1.1) holds. The conditional distribution of � given z

is absolutely continuous with respect to a Lebesgue measure with nondegenerate Radon-
Nikodym conditional density f �� �z�.
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ASSUMPTION A.2�: Let � denote the support of the distribution of an observation
of ��� z�. Let Fex�e� x��� z� denote the conditional distribution of an observation of �e� x�
given an observation of ��� z�, with support denoted �ex��� z�. Assume Fex�e� x��� z� �
Fex�e� x�z� and �ex��� z� � �ex�z� for all ��� z� � �.

ASSUMPTION A.3�: The conditional distribution of � given z has support [L � K ] for
some constants L and K � �� � L 
 0 
 K � �. The support of �xT� � e is a subset
of the interval [L� K ].

ASSUMPTION A.4�: E�ez� � 0� E�zzT � exists and is nonsingular, and the rank of
E�xzT � is J (the dimension of x).

DeÞne �xz� �zz , �, and 
y� by �xz � E�xzT �� �zz � E�zzT ��

�3�6� � � ��xz�
�1
zz �

T
xz�

�1�xz�
�1
zz

�3�7� 
y� � y � I �� � 0�
f ���z�

Theorem 1�: If Assumptions A.1�, A.2�, and A.3� hold then E� 
y��z� � E�x�z�T� �
E�e�z�. If Assumption A.4� also hold then

�3�8� � � �E�z 
y��

The earlier Theorem 1 is the special case of Theorem 1� in which z � x � Theorem 1�
shows that � is identiÞed, and can be estimated by an ordinary linear two stage least squares
regression of 
y� on x , using instruments z. The proof of Theorem 1� is in Appendix A.
Corollary 1: If Assumptions A.1�, A.2�, A.3� and A.4� hold then

�3�9� � � �E�z
� K

L
E[y � I �� � 0���� z]d��

The two stage least squares estimator for � based on equation (3.8) entails averaging
z 
y�, where 
y� has the conditional density of � in the denominator, and hence may be
adversely affected by extreme observations of � . Corollary 1 suggests an alternative based
on numerically integrating an estimate of the conditional expectation E[y� I �� � 0���� z].
While more complicated, this alternative might be more robust to outliers in � .

3.3 Another Estimator and a Little Intuition
This section describes an alternative estimator closely related to Theorem 1�, which pro-
vides some insight into the identiÞcation. This alternative will later be extended to yield an
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estimator for multinomial choice models. Here again one can take z � x for applications
that don�t require separate instruments.
Let G���� z� � E�y��� z�� s � s�x� e� � �xT� � e and let Fs�s��� z� and fs�s��� z�

denote the conditional distribution and probability density functions of s� assuming that e
(and hence s) conditional on x and z is continuously distributed. It follows from equation
(1.5) that Fs�s��� z� � Fs�s�z�� so E[I �s 
 ����� x� z] � E[I �s 
 ���x� z]. Therefore

�3�10� Fs���z� � E[I �s 
 ���z] � E�y��� z� � G���� z�

If s were observed, then � could be estimated by a two stage least squares regression of
�s on x using instruments z. This regression would depend on s only through E�zs�� The
key insight is that this regression does not require that s be observed. Only an estimate of
E�zs� is needed, and that can be obtained because, by equation (3.10), the distribution of s
is available. In particular,

�3�11� � � �E[�zE�s�z�] � �E[�z
� K

L
s fs�s�x� z�ds � �E[�z

� K

L
�
�G���� z�

��
d�]

�3�12� � � �E[�z
� K

L
�
�G���� z����

f �� �z� f ���z�d�] � �E
�
�zE[� �G

���� z����
f ���z� �z]

�
� �E[�z� �G

���� z����
f �� �z� ] � �E��zy���

where y�� is deÞned by

�3�13� y�� � �� �G
���� z����
f ���z�

Equations (3.12) and (3.13) show that Theorem 1� holds using y�� in place of 
y�, so � can
be estimated as a linear two stage least squares regression of y�� on x using instruments z.
Unlike Theorem 1�, this estimator would require a preliminary estimate of G� as well as
f . Kernel estimators could be used for both.
The above analysis also provides an alternative derivation (and hence interpretation) of

Theorem 1�. Applying an integration by parts to the last integral in equation (3.11) yields
� � �E[z

� K
L G

���� z�� I �� � 0�d�]. Proceeding as in equation (3.12) with this expres-
sion then yields � � �E �z[G���� z�� I �� � 0�]� f ���z�� � �E �z[y � I �� � 0�]� f �� �z��,
which is Theorem 1�.

4 Root N Consistent Estimation
This section gives the root N consistent, asymptotically normal limiting distribution for a
two stage least squares estimator based on Theorem 1�, using instruments z. All of the
equations here simplify to the ordinary least squares estimator in Theorem 1 when z � x �
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Let u � u�z� be any vector of variables such that the conditional density of � given z
equals the conditional density of � given u, that is, f �� �u� � f ���z�, where no element of
u equals a deterministic function of other elements of u. For example, if z � �1��z��z2�, we
could take u ��z. This construction of u is employed because f ��i �zi � will be estimated
as f ��i �ui � using a kernel density estimator (see Appendix B for details). Also, if � were
known to be independent of some elements of z, then u could exclude those elements. For
example, in the willingness to pay application discussed earlier, � is determined by experi-
mental design and so could by construction be independent of some or all the elements of
z.
DeÞne y�i and � by

�4�1� y�i � yi � I ��i � 0�
f ��i �ui �

�4�2� � � E�zy��

Given the deÞnition of u, y�i � 
y�i from equation (3.7), and if x � z then y�i � 
yi from
equation (2.1). The estimator is based on the expression � � ��, which holds by Theorem
1�.
Assume we have an estimator �f ���u� of the conditional density f ���u�� One choice is

a kernel estimate of the joint density of � and u divided by a kernel estimate of the density
of u (Equation B.3 in Appendix B). A simpler alternative is given in the next section.
DeÞne ��xz� ��zz��y�i � ��� and ��� by

�4�3� ��xz � N�1�Ni�1xi z
T
i

�4�4� ��zz � N�1�Ni�1zi z
T
i

�4�5� �� � � ��xz ���1
zz ��Txz��1 ��xz ���1

zz

�4�6� �y�i � [yi � I ��i � 0�]� �f ��i �ui �
�4�7� �� � �Ni�1zi�y�i �N
�4�8� �� � �� ��

The �� in equation (4.7) is a two step estimator with a nonparametric Þrst step. The
limiting distribution of estimators of these forms has been studied by many authors. See
e.g. Newey and McFadden (1994) and references therein. Appendix B provides one set
of regularity conditions that do not violate Assumptions A.1� to A.4� and are sufÞcient for
root N consistent, asymptotically normal convergence of �� and hence of ��. To summarize
the result, deÞne qi by

�4�9� qi � zi y�i � E�zi y�i �ui �� E�zi y�i ��i � ui �

Note that
�4�10� E�q� � E�zy�� � �
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Appendix B then provides conditions such that

�4�11�
�
N �� � N�1�2�Ni�1qi � op�1�

so qi is the inßuence function for ��. It follows from (4.8) and (4.11) that
�
N �� � �

N �� �� �
N�1�2 ���Ni�1[zi xTi ���qi�zi xTi ��]�op�1� �

�
N��N�1�2 ���Ni�1�qi�zi xTi ���op�1�,

and therefore

�4�12�
�
N � �� � �� 
 N

�
0� ��ar�q � zxT���T �

The variance of �� can be estimated as ��	�ar� �q � zxT ��� ��T �N , where 	�ar� �q � zxT ��� is
the sample variance of �qi � zi xTi �� for i � 1� ���� N , and �qi is constructed by replacing y�i
with �y�i in equation (4.9) and replacing the conditional expectations in that equation with
nonparametric regressions.
If E�z�u� � z (as will often be the case given the deÞnition of u) then qi � zi [y�i �

E�y�i �ui � � E�y�i ��i � ui �], and, the limiting distribution of �� becomes identical to the lim-
iting distribution of a two stage least squares regression of [y�i � E�y�i �ui �� E�y�i ��i � ui �]
on x using instruments z. When f is a known function that does not need to be estimated,
the above expressions simplify further to qi � zi y�i , a two stage least squares regression of
y�i on x using instruments z�
Theorem 1� can be generalized to permit nonindependent and nonidentically distributed

observations, essentially by adding i subscripts to�� F��ex , and the expectation operator.
Only the conditional density function f �� �u� must be assumed to be constant (or its varia-
tion Þnitely parameterized) across observations, so f and hence � can be estimated. Many
results exist providing limiting distribution theory for semiparametric estimators when ob-
servations are not independently or identically distributed. See, e.g., Andrews (1995).
In place of kernel estimators, a consistent �� could be obtained using a series expansion

based density estimator of f in equation (4.6), as in Gallant and Nychka (1987). Alter-
natively, parametric speciÞcations of f may be used in some applications, e.g., when � is
income, which is known to be well approximated by a lognormal distribution with a Pareto
tail. A consistent �� could also be obtained from Corollary 1, using either kernel or series
based estimators of the conditional expectation in equation (3.9). The next section provides
another estimator, one that is computationally extremely simple.

4.1 A Very Simple Ordered Data Estimator
This section describes an alternative two stage least squares estimator based on Theorem
1� that does not require a Þrst stage kernel estimator.

ASSUMPTION A.5�: Assume that for some vector � , equation (4.13) holds, where 
i
is continuously distributed with bounded support, has mean zero, and is independent of zi .

�4�13� �i � zTi � � 
i

12



Let f� denote the unconditional density function of 
. If Assumption A.5� holds then
f��
i � � f ��i �zi �. DeÞne �
 as the residuals from linearly regressing � on z, so

�4�14� �
i � �i � zi ��Ni�1zi zTi ��1�Ni�1zi�i
Let 
�

i denote the smallest element of � �
1� ���� �
N � that is greater than �
i , and let 
�
i

denote the largest element of � �
1� ���� �
N � that is less than �
i . In other words, if the data
�
1� ���� �
N were sorted in ascending order, the number immediately preceeding �
i would
be 
�

i , and the number immediately following �
i would be 
�
i . Now i�N is an estimate

of the distribution of
 evaluated at �
i , so 2�[�
�
i �
�

i �N ] � f�� �
i � � f ��i �zi �. DeÞne��y�i by
�4�15� ��y�i � [yi � I ��i � 0�]�
�

i � 
�
i �N�2

It follows from Theorem 3 of Lewbel and McFadden (1997) that N�1�Ni�1zi ��y�i is a
consistent estimator of E �z[y � I �� � 0�]� f��
��. Therefore, if Assumptions A.1� to
A.5� hold, then

�4�16� �� � ���Ni�1zi��y�i �N
is a consistent estimator of �.
To summarize, the ordered data estimator (4.16) consists of 1. deÞne �
 as the residuals

from regressing � on z using ordinary least squares, 2. sort the �
 data from smallest to
largest, to Þnd 
�

i and 

�
i for each observation i , 3. construct��y�i in equation (4.15) for

i � 1� � � � � N , and 4. let �� be the estimated coefÞcients from regressing this��y�i on xi using
two stage least squares, with instruments zi . As with the other estimators, (4.16) reduces
to an ordinary least squares regression when z � x �
This estimator is convenient for its numerical simplicity, but it requires the extra As-

sumption A.5� for consistency. This assumption limits the permitted dependence of � on
z. White�s test for homoscedasticity or more general tests of independence of errors from
regressors can be applied to �
 versus z to test Assumption A.5�.

5 Other Model Components

5.1 The Sign of the CoefÞcient of v
Without loss of generality, the linear latent variable binary choice model can be written as

�5�1� yi � I ��i� � xi T� � ei � 0�
where � � �1� 0, or �1. The estimator of � assumed � � 1. If � is not known a priori,
then an estimator of � is required. Let G��� x� z� � E�y��� x� z�. Assume Fe�e��� x� z� �
Fe�e�x� z�� which is a little stronger than Assumption A.2� when x 	� z� Then

�5�2� E�y��� x� z� � G��� x� z� � 1� Fe���� � xT��x� z�
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Let fe�e�x� z� � �Fe�e�x� z���e denote the probability density function of e, assuming
e has a continuous distribution. Then G will be differentiable in � , so let g��� x� z� �
�G��� x� z���� . It then follows from (5.2) that.

�5�3� �E�y��� x� z���� � g��� x� z� � � fe���� � xT��x� z�

Let �� denote the density weighted average of g��� x� z�, and let ��� equal Powell, Stock, and
Stoker�s (1989) estimator of the weighted average derivative �� . By (5.3) and the deÞnition
of �� � � � sign����. This suggests the estimator �� � sign�����. Since ��� converges at rate
root N, sign����� will converge at a rate faster than root N , so estimating � Þrst in this way
will not affect the limiting root N distribution of ��.
More generally, � � sign[g��� x� z�] for all �� x , and z. Therefore a test of the hy-

pothesis g��� x� z� � 0 is a test of whether � � 0. Applicable nonparametric consistent
tests of g��� x� z� � 0 include Lewbel (1995) and Ait-Sahalia, Bickel, and Stoker (1997).
Also, G��� x� z� must be nondecreasing in � if � � 1, nonincreasing in � if � � �1,
and is independent of � if � � 0. The function G can be estimated as a nonparametric
regression of y on �� x , and � . This �G could also be used as a check on the model spec-
iÞcation, in that nonmonotonicity of G as a function of � would indicate that the model
is misspeciÞed. Equivalently, having the nonparametric regression derivative �g��� x� z�
be signiÞcantly positive for some values of ��� x� z� and signiÞcantly negative for others
would indicate model misspeciÞcation.
Suppose we failed to check �� as above, and erroneously applied the estimator of The-

orem 1 assuming � � 1, when in fact � � �1? It is straightforward to verify, fol-
lowing the steps of the proof of Theorem 1, that if � � �1 then E� 
y��z� will equal
E�xT� � e � L � K �z�� so p lim �� will equal � � �E�z��L � K �, where � is given
by equation (3.6) and L and K are the lower and upper bounds of the support of � . If the
support of � is symmetric, so L � �K , then �� will consistently estimate � regardless of
whether � is plus one or minus one. However, this dependence on the support of � im-
plies that the estimate �� is likely to be quite erratic (i.e., very sensitive to the few largest
observations of ���) if � � �1�

5.2 The Distribution of the Latent Error
Let �G��� x� z� be a kernel or other nonparametric regression of y on �� x� and z, and let
�g��� x� z� � � �G��� x� z����� so �g is a nonparametric regression derivative. Assuming
again that � � 1, it follows from equation (5.2) that

�5�4� Fe�e�x� z� � 1� G��e � xT�� x� z�

and therefore �Fe�e�x� z� � 1� �G��e� xT ��� x� z� and �fe�e�x� z� � �g��e� xT ��� x� z� are
consistent estimators of Fe and fe. The limiting distributions of these functions will be the
same as if �� were replaced by the true �, because �� converges to its limit at rate root N.
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Attributes of F of interest include moments such as E[��e��x� z] and E[��e�] for
given functions � . For example, ��e� � e and ��e� � e2 provide conditional and un-
conditional means and variances of e. Estimates of such moments could be recovered
from �g since E[��e��x� z] � �

��e�g��e � xT�� x� z�de. The following theorem, which
is closely related to McFadden (1993) and Lewbel (1997), provides a simpler expression
for E[��e��x� z]� which can be estimated without Þrst nonparametrically estimating the
derivative g.

Theorem 2: Let Assumptions A.1�, A.2�, and A.3� hold. Assume e has a contin-
uous conditional distribution with density function fe�e�x� z� � fe�e��� x� z� and sup-
port equal to the whole real line. Assume that ��e� is differentiable, ��0� � 0, and
lime����e�[Fe�e�x� z� � 1] � lime�����e�Fe�e�x� z� � 0. Let � ��e� � ���e���e.
Then equation (5.5) holds.

�5�5� E[��e��x� z] � E[� ���� � xT�� y � I �� � x
T� 
 0�� 1

f ���x� z� �x� z]

The assumption that ��0� � 0 is made without loss of generality, since if it does not
hold then � could be replaced with ��e�� ��0�. DeÞne

�5�6� �H�i � � ����i � xTi ���[yi � I ��i � xTi �� 
 0�� 1]� �f ��i �xi � zi �

By Theorem 2, E[��e��x� z] can be estimated by a nonparametric regression of �H�i on
xi and zi , and unconditional moments E[��e�] can be estimated as the sample average of
�H�i . In particular, � 2e , the unconditional variance of e, has

�5�7� �� 2e � N�1�Ni�12��i � xTi ���[1� yi � I ��i � xTi ���]� �f ��i �xi � zi �

Given this estimator we can, if desired, let 
� � 1�� e and 
� � ��� e to rewrite the model
as yi � I � 
��i � xTi 
� � 
ei � 0� where, as in the standard probit form, 
ei has unconditional
mean zero and variance one.

6 Extensions

6.1 Ordered Choice
Ordered response models are summarized in, e.g., Maddala (1983), pp 46-49. The ordered
choice model with K choices is deÞned as

�6�1� yi � �K�1k�0 k I ��k 
 �i � xi T� � ei � �k�1�

where �0 � �� and �K � �. The choices are yi � 0� 1� 2� � � � K � 1, and yi � k is
chosen if the latent variable �i � xi T� � ei lies between �k and �k�1. Let x1i � 1 (the
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constant) and let �1 � 0. This assumption is made without loss of generality, since if
�1 	� 0 then each �k could be redeÞned as �k � �1.
Let yki � I �yi � k� for k � 1� � � � � K � 1, and let � j equal the j�th row of � from

equation (3.6). Then

�6�2� �k � ��1E
�
z
yk � I �� � 0�

f �� �z�
�

k � 1� � � � � K � 1

�6�3� � j � � j E



z
[�K�1k�1 yk��K � 1�]� I �� � 0�

f ���z�

�
j � 2� � � � � J

To prove this result let �k equal the expectation in (6.2). Now yki � I ��i � �k x1i �
� J
j�2� j x j i � ei � 0� is in the form of equation (1.1), so by Theorem 1� equation (6.2)

holds and � j � � j�k for j � 2� � � � � J� k � 1� � � � � K � 1. It then follows that � j �
� j�

K�1
k�1 �k��K � 1�, which equals equation (6.3).
Equations (6.2) and (6.3) are in the form of the two stage least squares estimator, and so

have the corresponding root N consistent, asymptotically normal distribution. In particular,
each ��k equals ���1 in equations (4.1) to (4.12), replacing yi with yki in equations (4.1)
and (4.6), and each �� j based on (6.3) equals the corresponding �� j in (4.12), replacing yi
with �K�1k�1 yk��K � 1� in equations (4.1) to (4.6).

6.2 Multinomial Choice
The estimator given by equations (3.10) to (3.13) is here extended to multinomial choice
model estimation. Multinomial (also called polychotomous) response model estimators
are discussed in, e.g., Maddala (1983) and McFadden (1984). A convenient feature of the
multinomial choice estimator described below is that it requires no numerical integrations,
simulations, or searches.
Let the latent variable 
�

ki , sometimes interpreted as the utility associated with choice
k, be given by 
�

ki � ���ki � ��T
k xi � e�ki for k � 0� � � � K . It is assumed that the special

regressors ��ki are all distinct, so �
�
ki does not equal a deterministic function of the other

��mi �s, and that the special regressors have a joint continuous distribution, conditional on
xi and a vector of instruments zi . It is also assumed here that �, the coefÞcient of ��ki �
is negative and is the same for every choice k� The coefÞcient � is then without loss of
generality normalized to equal -1. This change in normalization simpliÞes the multinomial
estimator.
DeÞne �ki � ��ki � ��0i � �k � ���

k � ��
0�� eki � �e�ki � e�0i �, and

�6�4� 
ki � ��ki � xTi �k � eki k � 0� � � � K �
Equation (6.4) makes 
0i � 0. The multinomial choice model with K � 1 choices is
deÞned as yki � I �
�

ki � maxm ��k 

�
mi �, which is equivalent to

�6�5� yki � I �
ki � max
m ��k


mi � k � 0� � � � � K �
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An estimator of �k � ���
k � ��

0� for k � 1� � � � � K will be provided, using data on
y0i � xi and (if necessary) a vector of instruments zi . The estimator can be repeated K
additional times, renumbering the choices so that each time a different choice is designated
by 0, to yield estimates of ��

k � ��
m for all pairs of choices k and m. Let ski � xTi �k � eki ,

and let ei � si and �i be the K vectors of elements eki � ski , and �ki , for k � 1� � � � � K .
Assume as before that Fex�e� x ��� z� � Fex�e� x �z� and E�ze� � 0, where Fex is now the
conditional distribution of the vector of errors e and the vector of regressors x . It follows
that Fs�s��� z� � Fs�s�z� where Fs is the conditional distribution of the vector s, and

�6�6� E�y0��� z� � E[I �sk 
 �k� k � 1� � � � � K ���� z] � Fs�� �z�
Assume that e, and hence s, has a continuous conditional distribution. Let fs�s�z�

denote the conditional probability density function of s� Let �� denote the support of � ,
a compact subset RK , and assume that the support of s is a compact subset of �� . Then,
using (6.6) and paralleling the derivation of (3.10 to 3.12),

�6�7� E�x�z�T�k � E�ek�z� � E�sk�z� �
�
��

�k fs�� �z�d�

� E[�k fs�� �z�� f �� �z� � z] � E[�k
�K E�y0��� z�
��1��2�����K

� f �� �z� � z]

�6�8� �k � �E[z�k
�K E�y0��� z�
��1��2�����K

� f ���z�] k � 1� � � � � K

Equation (6.8) shows the identiÞcation of �k for k � 1� � � � � K . Letting �G���� z� be a
nonparametric regression of y0i on �i and zi , and �f ���z� be a kernel estimator of the con-
ditional density f �� �z�, the estimator corresponding to equation (6.8) is

�6�9� ��k � ��N�1�Ni�1zi�ki
�K �G��i � zi �

��1i��2i �����Ki
� �f ���z� k � 1� � � � � K

For K � 1, equation (6.8) reduces (after sign changes) to equation (3.12). We could
apply integration by parts K times to the integral in (6.7) in an attempt to simplify the
estimator analogous to obtaining Theorem 1� from equation (3.11). Unfortunately, apply-
ing integration by parts to the derivatives of E�y0��� z� with respect to �m for each m 	� k
yields expressions involving E�y0��� z� evaluated at the boundary of the support of �m� and
hence the corresponding estimator would require evaluating a nonparametric regression at
the boundary of the support of the data. A similar transformation is required to derive the
inßuence function for equation (6.9) (see, e.g., Stoker 1991 for an analogous calculation),
and hence equation (6.9), while consistent, will in general converge at a slower than root N
rate.

6.3 Partly Linear Latent Variable Choice Models
Theorem 1� can be extended to estimate m�x� in the model

�6�10� yi � I [�i � m�xi �� ei � 0]
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where m�x� is an unknown smooth function. An example is where yi is a purchase de-
cision, ��i is a log price (or a willingness to pay bid), and m�xi � � ei is agent i �s log
reservation price (or willingness to pay) function. Let Assumptions A.1, A.2, and A.3 hold
with equation (6.10) instead of equation (1.1), and assume E�e�x� � 0. The proof of The-
orem 1 will then yield E�y��x� � m�x� � E�e�x� � m�x�, so a consistent estimator of
m�x� is any nonparametric regression (e.g., a kernel regression) of y � I �� � 0���f �� �x�
on x .
Under weaker conditions regarding the error, one can estimate the vector � in models

of the partly linear form

�6�11� yi � I [�i � ��x� ��� ei � 0]

where ��x� �� is a known function of the unknown parameter vector �. Let Assumptions
A.1�, A.2�, A.3� and A.4� hold with equation (6.11) instead of equation (1.1). The proof of
Theorem 1� will then yield E� 
y��z� � E[��x� ��� e�z], so

�6�12� E
�
z[
y � I �� � 0�
f �� �z� � ��x� ��]

�
� 0

Therefore, � can be consistenly estimated if it can be identiÞed from the moments (6.12).
Given the limiting distributions derived in section 4, the resulting estimator will have the
same limiting distribution as GMM using the moment conditions E �z[q � ��x� ��]� � 0�
where q is deÞned in equation (4.9).

6.4 Threshold and Censored Regression Models
For any scalar � , deÞne yi ��� by

�6�13� yi ��� � I ��i� � xi T� � ei � ��

so yi ��� is one when the latent variable exceeds the threshold � , and zero otherwise. Con-
tinue to assume that ei satisÞes either (1.2) and (1.3) or (1.4) and (1.5). The binary choice
model (1.1) is equivalent to this model when only yi � yi �0� is observed. Assume now that
yi ��� is observed for at least two values of � . Without loss of generality, let the observed
data be yi �0� and yi ��� for some known � � 0. This will be sufÞcient to identify both �
and the scale parameter �.
Let x1i � 1 for all i , so �1 is the constant term in the latent variable. Maintaining the

assumption � � 0� (6.13) can be written as

�6�14� yi ��� � I [�i � xi T����� ei ��� � 0]

where �1��� � ��1 � ����� � j ��� � � j�� for j � 2� � � � � J , and ei ��� � ei��. Since
equation (6.14) is in the form of equation (1.1), for each observed threshold � we can apply
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Theorem 1� to estimate the vector ���� by linearly regressing y���� on x using instruments
z, where

�6�15� y�i ��� � [yi ���� I ��i � 0�]� f ��i �ui �
The limiting root N distribution of the resulting����� is given by equations (4.1) to (4.12)
with yi ��� in place of yi � Given ���0� and ����� for some � 	� 0, root N consistent, as-
ymptotically normal estimates of the original � and � in equation (6.13) are then given by�� � ��[��1�0� � ��1���] and, for all �� �� � �������. If yi ��� is observed for more val-
ues of � , then additional estimates of � and � are obtained, and these estimates could be
efÞciently combined using a minimum chi squared procedure.
This same estimator can also be used for censored regression models. Suppose �
i is

observed, where
�6�16� �
i � max��i� � xi T� � ei � 0�

This is the standard Þxed censoring point censored regression model. In particular, if e
were normal and independent of � and x then this would be a tobit model. Assume that the
distribution of ei is unknown, but satisÞes (1.2) and (1.3), or (1.4) and (1.5). Then for any
� � 0, we can construct yi ��� � I �
i � ��, and so the threshold model estimator of the
previous paragraph can be used to estimate � and �.
Some more efÞcient, related estimators of censored and truncated regression models

based on weighting by f are given in Khan and Lewbel (1999).

7 A Simulation Study

7.1 Kernel and Bandwidth Selection
When equations (B.1), (B.2) and (B.3) are used to estimate f �� �u�� a kernel and bandwidth
must be selected. While Theorem 3 in the appendix calls for higher order kernels to elim-
inate asymptotic bias, it is commonly recognized that the greater variance of high order
kernels makes them inferior to low order kernels unless the sample size is very large. For
equation (B.1), the simulations here use the quartic product kernel

�7�1� Kc�c� � �k��1 �9375I ��c��� �� 
 1�[1� �c��� ��
2]2�� �

where � � is the estimated standard deviation of the component c�. The analogous quartic
product kernel is also used for K�c in (B.2). This kernel is chosen because it is computa-
tionally quick, it is generally well behaved (see Härdle 1990), and is optimal in a related
kernel averaging context (see Härdle, Hart, Marron, and Tsybakov 1992).
Ordinary cross validation methods are not suitable for choosing the bandwidth because,

typical of root N semiparametrics, Theorem 3 requires undersmoothing relative to optimal
pointwise convergence. Härdle, Hart, Marron, and Tsybakov (1992) and Powell and Stoker
(1996) calculate optimal bandwidths for some root N estimators of density functionals.
While it is probably possible to adapt methods similar to theirs to the present context, a
simpler procedure was used here.
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If yi equaled I ��i � � � 0� for any scalar constant �, then by Theorem 1

�7�2� � � E�
I �� � ���� I �� � 0�

f ���u�

So, analogous to �� in (4.6), deÞne �� by

�7�3� �� � N�1�Ni�1[I ��i � ���� I ��i � 0�]� �f ��i �ui �

The functional in equation (7.3) is very similar to the one deÞning �� , and by Theorem 3
the rate at which the bandwidth must shrink for root N convergence of �� to � is comparable
to that required for ��. This suggests choosing the bandwidth that maximizes the accuracy
of ��.
This procedure is used in the Monte Carlo�s. In each replication, the following steps

are performed. First, �f in equation (B.3) is estimated using each of the bandwidths .5� 1�
1�5� 2� 2�5� 3� 3�5� and 4� resulting in eight different estimates of �f . Next, letting � equal
twice the estimated standard deviation of � , �� in equation (7.3) is estimated using each of
the eight estimates of �f � and ��� � ��2 is calculated for each. Among these eight, the �f
that minimizes ��� � ��2 is then used for that replication to estimate �� and its asymptotic
variance.
No optimality properties for this method of bandwidth selection are claimed here. It is

proposed only as a simple, reasonable procedure that seems to work moderately well in the
Monte Carlo�s.

7.2 Monte Carlo Analysis
The simulated model is

�7�4� yi � I ��i � �1 � �2x2i � ei � 0�

for scalar random variables yi � �i � x2i , and ei (x1i � 1 is the constant). Let �i1� �i2� �i3� and
�i4 be independent random variables, each having mean zero and variance one, where �i1
is uniformly distributed, �i2 and �i3 are standard normals, and �i4 is a mixture of normals
deÞned below.
The �clean probit� design deÞnes regressors, errors, and instruments by

�7�5� x2i � �i1� �i � 2�i2� ei � �i3� ui � x2i � zi � �1� ui �T

making �i and ei be independent normals, and x2i be an independent uniformly distributed
regressor. In this clean design zi � xi , so the two stage least squares estimator reduces to
ordinary least squares.
Let �i4 be N ���3� �91� with probability .75 and N ��9� �19� with probability .25. This

mixture of normals is designed to yield a distribution that is both skewed and bimodal, but
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still has mean zero and variance one. The �messy� design deÞnes regressors, errors, and
instruments by

�7�6� x2i � �i1 � �i4� �i � 2�i2 � �i4� ei � �i1 � �i3� ui � �i4� zi � �1� ui �T

The result is that this messy design has regressors and instruments that are all skewed, mul-
timodal, and cross correlated with each other, and further has errors ei that are correlated
with xi with correlation .5.
The true values of the coefÞcients are �1 � �2 � 1. The models are estimated with

sample size N � 100. The number of Monte Carlo replications is 10,000. The results are
in Tables 1 and 2.
The two rows in each block of numbers in the tables correspond to the estimates ��1 and��2, respectively. The summary statistics reported for the Monte Carlo distribution of each�� j are the mean (MEAN), the standard deviation (SD), the lower quartile (LQ), the median

(M), the upper quartile (UQ), the root mean squared error (RMSE) the mean absolute error
(MAE), and the median absolute error (MDAE).
The replications include calculation of the estimated standard errors of the � �s, as de-

scribed after equation (4.12). The mean of these estimated standard error estimates (MESE)
is reported, as is the percent of replications in which each �� j is within two estimated stan-
dard errors of the true � j (%2SE).
Four different estimators are compared. The Þrst is maximum likelihood probit. This is

the efÞcient estimator in the clean probit design (Table 1). This ML probit is inconsistent
in the messy design, but is still provided there to serve as a benchmark.
The second estimator is the proposed semiparametric estimator in equations (4.3) to

(4.8), but using the true conditional density f �� �u� that the �i observations are drawn from.
The third estimator is the same as the second, except that it uses the kernel estimated

density �f ���u� instead of the true f �� �u�. There are two sources of error in ��. One source
is the least squares estimation error from regressing y�i on xi , and the other source of error
is the use of the estimated conditional density function �f in place of the true density f in
constructing�y�i . The second and third blocks of numbers in the tables can be compared to
assess the separate contributions of these sources of error. The estimated density �f in the
third estimator is given by equations (B.1), (B.2), and (B.3) with di empty and ci � ui . The
kernels and bandwidths are chosen as described in the previous section. Although �i and
ei have supports equal to the whole real line, no trimming is done, so � N � 0 in equation
(B.3).
The fourth reported estimator is the simple ordered data estimator, equation (4.16).
As would be hoped, the semiparametric estimator using the true f appears close to

mean unbiased in both the clean and messy designs. The semiparametric estimator using �f
has a 12% to 14% mean and median bias in the clean design, and a more substantial 20%
to 57% bias in the messy design. For comparison, ML probit appears unbiased in the clean
design, but is much worse than the semiparametric estimator in the messy design (where it
is inconsistent), having a 46% to 91% bias. The observation that the semiparametric esti-
mator using the true f is virtually mean unbiased in both designs implies that the estimator
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will be unbiased even in small samples when the density f is known, and should be close
to unbiased whenever samples are large enough to accurately estimate f .
The simple ordered data estimator performed comparably to the kernel based estimator,

having greater variance and less mean bias, leading overall to a modestly higher root mean
squared error.
Variances and other measures of error magnitudes are similar across the estimators,

with differences being primarily due to the above mean and median biases. The exceptions
are that the root mean squared errors of ML are about 30% smaller than the semiparametric
estimator in the clean probit design (where ML is efÞcient), and the variance of �� is quite
large using the true f in the messy design. This latter result is likely due to a few outliers
arising from very tiny f values, and might be mitigated with trimming. A similar result is
found in Lewbel (1997). It is also possible that the asymptotic variance using �f is smaller
than the asymptotic variance using the true f� This would be consistent with the density f
being ancillary to ���
In applications, conÞdence intervals and test statistics are often as important as point

estimates, yet many Monte Carlo analyses fail to evaluate the quality of standard error
estimates. Standard errors are estimated here exactly as they would be with real data. In
each replication, qi is estimated by replacing y�i with �y�i in equation (4.9) and replacing
each conditional expectation in that equation with a kernel regression. Standard errors are
then given by the square root of the diagonal of �� � �ar� �qi � zi xTi ��� ��T ]�N . For the probit
model, White corrected standard errors are reported. In keeping with the spirit of the simple
ordered data estimator, for that estimator ordinary two stage least squares White corrected
standard errors (which ignore estimation error in the construction of��y�i ) are reported.
Standard errors are of course intended to estimate the standard deviations of �� . In

almost all of the estimators, the mean estimated standard errors of the estimators are close
to the Monte Carlo standard deviations, as desired. The exception is the estimator using the
true f in the messy design, which as discussed above suffers from outliers. The coverage
probabilities of�2 standard error conÞdence intervals are close to (but a little smaller than)
95%, except for ��2 in the messy design which suffered from substantial mean bias.
As discussed earlier, based on the support assumptions it is expected that the larger the

observed spread of � , the better the performance of the estimator. This is demonstrated
in Table 3. In Tables 1 and 2, � was constructed to have the same standard deviation as
xT�� e. The design in Table 3 is identical to the messy design in Table 2, except that each
� was doubled, so in Table 3 the standard deviation of � is twice the standard deviation of
xT��e. Comparing Tables 2 and 3 shows that this increased spread in � reduces the mean
and median bias considerably.
These results are encouraging. Limited experiments with other sample sizes indicate

that the mean and median biases, where present, do diminish as N increases, though rather
slowly.
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8 Conclusions
This paper used instruments (or regressors) uncorrelated with latent variable errors and a
�special regressor� to obtain semiparametric identiÞcation of discrete choice model coef-
Þcients in the presence of conditional heteroscedasticity of unknown form, and for some
endogeneous and mismeasured regressor models. Simple root N consistent, asymptotically
normal estimators for the binary choice model were constructed based on this identiÞca-
tion. The estimators closely resemble ordinary least squares and two stage least squares
regressions. A Monte Carlo analysis shows that the estimators work reasonably well.
The Monte Carlo also indicates that the asymptotic standard error estimates perform

well. It should be possible to construct bootstrap conÞdence intervals instead (though the
consistency of doing so is not proved here). The estimator requires at most order N 2
calculations, so bootstrapping would be computationally practical.
Successful application of the estimator hinges crucially on appropriate selection and

construction of the special regressor � . Theoretical and simulation results suggest some
guidelines, for example, the regressor � should be demeaned or otherwise centered close to
zero, �ar�� �x� should be large relative to �ar�xT��� and � should have a strong positive
effect on y�
Further study is called for on ways to improve the Þnite sample properties of the esti-

mator. For example, accuracy might be improved by replacing � and xT� with � � � and
xT�� � for one or more values of � , or more generally replacing � and xT� with � � xT 	
and xT ���	� for some vector 	� Different values of � or 	 will result in different numbers
of observations in which yi � I ��i � 0�� and hence y�i � is nonzero. Possibilities might
include letting � be the sample mean or median of � , or letting 	 be the coefÞcients from
regressing � on x , analogous to the ordered data estimator. Note that � or 	 would need
to be chosen in some way that does not violate the assumed conditional independence of e
with the transformed � .
It would also be useful to study the more complicated estimators based on equations

(3.9), (3.12), and (4.16), to see if they perform better in Þnite samples. Estimation accuracy
might also be improved by better bandwidth choice procedures.
The estimators in this paper can be applied and extended in a variety of ways. Hon-

oré and Lewbel (1999) extend them to derive binary choice panel estimators with weakly
exogeneous regressors. Khan and Lewbel (1999) construct related estimators for censored
regression models. Lewbel and McFadden (1997) apply the present paper�s estimator as
the Þrst stage in the estimation of features of the distribution of the latent variable in appli-
cations where � is determined by experimental design.
EfÞciency of this paper�s estimator might be increased by use of some weighted least

squares procedure, or by estimating � and the density of � jointly instead of in two stages.
Lewbel and McFadden (1997) report comparisons of the ordinary least squares (z � x)
estimator derived here to Klein and Spady (1993). They Þnd that this paper�s least squares
estimator is very inefÞcient relative to Klein and Spady when the errors are independent of
the regressors (i.e., when Klein and Spady is consistent and semiparametrically efÞcient.).
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It is not known what the efÞciency bound is under the present paper�s assumptions, where
general forms of heteroscedasticity are permitted.

9 Appendix A: Proofs
Proof of Theorem 1�: Let s � s�x� e� � �xT� � e. Then

E� 
y� � z� � E
�
E[y � I �� � 0� � �� z]

f �� � z� � z
�

�
� K

L

E[y � I �� � 0� � �� z]
f �� � z� f �� � z�d�

�
� K

L
E[I �� � xT� � e � 0�� I �� � 0� � �� z]d�

�
� K

L

�
�ex

I �� � xT� � e � 0�� I �� � 0�dFex�e� x � �� z�d�

�
�
�ex

� K

L
I �� � s�� I �� � 0�d� dFex�e� x � z�

�
�
�ex

� K

L
I �s � � 
 0�I �s � 0�� I �0 
 � � s�I �s � 0�d� dFex�e� x � z�

�
�
�ex

�
I �s � 0�

� 0

s
1d� � I �s � 0�

� s

0
1d�

�
dFex�e� x � z�

�
�
�ex

�s dFex�e� x � z� �
�
�ex

�xT� � e�dFex�e� x � z� � E�x � z�T� � E�e � z�

Equation (3.8) then follows from the law of iterated expectations.

Proof of Theorem 2: Let F��e� x� z� � Fe�e�x� z�� I �e � 0�. Then

E[��e��x� z] �
� �

��

��e� fe�e�x� z�de

�
� 0

��

��e�[�Fe�e�x� z���e]de �
� �

0
��e���[Fe�e�x� z�� 1]��e�de

�
� �

��

��e�[�F��e� x� z���e]de � �
� �

��

� ��e�F��e� x� z�de

Note that ��e� � 0 at e � 0, and that the last equality above is an integration by parts,
which uses the assumption that [��e�F��e� x� z�]���� � 0. By the above equation, the
deÞnition of F�, and equation (5.4),

E[��e��x� z] �
� �

��

� ��e�[G��e � xT�� x� z�� I �e � 0�� 1]de
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Next do the change of variables � � �e � xT� to get

E[��e��x� z] �
� �

��

� ���� � xT��[G��� x� z�� I �� � xT� 
 0�� 1]d�

�
� �

��

� ���� � xT��[E�y��� x� z�� I �� � xT� 
 0�� 1]d�

� E[� ���� � xT��[E�y��� x� z�� I �� � xT� 
 0�� 1]� f ���x� z� � x� z]

Equation (5.5) then follows from the law of iterated expectations.

10 Appendix B: Root N Convergence
A set of regularity conditions that are sufÞcient for root N consistent, asymptotically normal
convergence of ��, and hence of ��, is provided here as Theorem 3 below. Theorem 3 is a
special case of a two step estimator with a kernel estimated nonparametric Þrst step. The
general theory of such estimators is described in Newey and McFadden (1994) and Newey
(1994). The proof of Theorem 3 is omitted, because the result is a special case of the
theorems provided in Appendix B of Lewbel (1998), and is little more than an application
of Theorem 8.11 in Newey and McFadden (1994). See also Robinson (1988), Powell,
Stock, and Stoker (1989), Lewbel (1995), and Andrews (1995).
As discussed in section 4, deÞne u to be the vector of variables such that f �� �u� �

f ���z� and no element of u equals a function of other elements of u. In theorem 3, f �� �u�
is used for estimating �. The vector u below is divided into a vector of continuously
distributed elements c and a vector of discretely distributed elements d , to permit regressors
and instruments of both types.
Theorem 3 gives the limiting distribution for an estimate of E[
� f ���u�] for arbitrary


�

ASSUMPTION B.1: Each �i � �
i � �i � ui � is an independently, identically distributed
draw from some joint data generating process, for i � 1� � � � � N . Let � be the support of
the distribution each �i is drawn from.
ASSUMPTION B.2: Let ui � �ci � di � for some vectors ci and di . The support of the

distribution of ci is a compact subset of Rk . The support of the distribution of d is a Þnite
number of real points. The support of the distribution of �i is some interval [L � K ] on the
real line R, for some constants L and K � �� � L 
 K � �. The underlying measure
� can be written in product form as � � �� � �� � �c � �d , where �c is Lebesgue mea-
sure on Rk � Each ci is drawn from an absolutely continuous distribution (with respect to
a Lebesgue measure with k elements)� DeÞne fu�ui � to be the (Radon-Nikodym) condi-
tional density of ui given di � multiplied by the marginal probability mass function of di ,
and deÞne f�u��i � ui � to be the (Radon-Nikodym) conditional density of ��i � ui � given di �
multiplied by the marginal probability mass function of di .
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ASSUMPTION B.3: Let f �� �u� � f�u��� u�� fu�u� and let hi � 
i� f ��i �ui �. Assume
f ���u� is bounded away from zero except possibly on the boundary of the support of � , and
assume that for any positive constant � , sup�	� I ���� � ��1��
�� f �� �u� exists. Assume
there exists a positive constant � such that 
 � 0 whenever c is within a distance � of the
boundary of the support of c.
ASSUMPTIONB.4: Let I	 i � I ���i � � ��1��  u�ui � � �E�I	 i hi �ui � and  �u��i � ui � �

�E�I	 i hi ��i � ui �. Assume E�I	 i h2i �ui � and E�I	 i h2i ��i � ui � exist and are continuous in ci
and �i . For some !c and �!� � !c� in an open neighborhood of zero there exist some func-
tions mu�ci � di � and m�u��i � ci � di � such that the following local Lipschitz conditions hold:

�� f�u�� � !� � c � !c� d�� f�u��� c� d��� � m�u��i � ci � di ����!� � !c���
�� �u�� � !� � c � !c� d��  �u��� c� d��� � m�u��i � ci � di ����!� � !c���
�� fu�c � !c� d�� fu�c� d��� � mu�ci � di ���!c��
�� u�c � !c� d��  u�c� d��� � mu�ci � di ���!c��
Also, E�[m�u��� c� d��1� �I	h��]2 � d� and E�[mu�c� d��1� �I	h��]2 � d� exist for all

d in the support of di .
ASSUMPTION B.5: The kernel functions Kc�c� and K�c��� c� have supports that are

convex, possibly unbounded subsets of Rk and Rk�1� respectively, with nonempty interi-
ors, with the origin as an interior point. The kernel functions are bounded differentiable
functions having absolutely integrable fourier transforms. Kc�c� satisÞes

�
Kc�c�dc �

1�
�
cKc�c�dc � 0, and Kc�c� � Kc��c� for all c, and similarly for K�c��� c�.
ASSUMPTION B.6: The kernel Kc�c� has order p, that is,�
cl11 � � � c

lk
k Kc�c�dc � 0 for 0 
 l1 � � � �� lk 
 p,�

cl11 � � � c
lk
k Kc�c�dc 	� 0 for l1 � � � �� lk � p and

All partial derivatives of ft �c� d� with respect to c of order p exist, and for all 0 � � �
p and all d on the support of di , for l1 � � � �� lk � �,�

 u�c� d�[�
 ft �c� d���l1c1 � � � �lk ck]dc exists, where the integral is over the support
of c. All of the conditions in this assumption also hold for K�c and f�c, replacing c with
��� c� everywhere above.
ASSUMPTION B.7: There exists a positive constant � � such that L 
 �1�� �� 1�� � 


K , and y � I �� � 0� � 0 for all �� � � 1�� �. For all N greater than some constant, � N
satisÞes � N 
 � �.

DeÞne the kernel density estimators:

�B�1� �fu�c� d� � �NbkN �
�1�Ni�1Kc[�c � ci ��bN ]I �d � di �

�B�2� �f�u��� c� d� � �Nbk�1N ��1�Ni�1K�c[�� � �i ��bN � �c � ci ��bN ]I �d � di �
�B�3� �f ���u� � I ��� � � ��1N � �f�u��� c� d�� �fu�c� d�

where bN is the bandwidth and � N is a trimming parameter.
Equations (B.1) and (B.2) construct �fu and �f�u separately for each value of di � and

then averages the results. Theorem 3 below also holds if I �d � di � in equations (B.1)
and (B.2) is replaced by Kd[�d � di ��bN ] for some kernel function Kd , which results in
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smoothing data across discrete d �cells� at small sample sizes, and at large sample sizes
becomes equal to (B.1) and (B.2).
With hi � 
i� f ��i �ui � in Assumption B.3, deÞne qi � �� and �� by

�B�4� qi � hi � E�hi �ui �� E�hi ��i � ui �
�B�5� � � E�h� � E�q�
�B�6� �� � N�1�Ni�1
i�

�f ��i �ui �

Theorem 3: Assume equations (B.1) to (B.6) and Assumptions B.1 to B.7 hold. If
Nb2k�2N � � and Nb2pN � 0 then

�
N � �� � �� � [N�1�2�Ni�1qi � E�q�]� op�1�.

Theorem 3 implies that
�
N � �� � �� 
 N [0� �ar�q�]. Equations (4.9) to (4.11) follow

from Theorem 3 by taking 
i � zi [yi � I ��i � 0�] in Assumptions B.1 and B.3, and
equation (B.6).
In general, kernel plug-in estimators employ some form of trimming to deal with

boundary issues that otherwise interfere with root N convergence. Assumption B.3 as-
sumes 
i � 0 when ci is a near a boundary, which automatically trims out those observa-
tions. Let I� equal zero when c is within � of the boundary of the support of c, otherwise
I� � 1. The assumption that
 � 0 when c is near a boundary can be satisÞed by replacing
instruments z with z I� , however, this can conßict with Assumption A.4, i.e., if instruments
z satisfy A.4, instruments z I� might not.
This is not likely to be serious problem in practice, for a variety of reasons. By taking

� to be arbitrarily small, the difference between moments in assumption A.4 using z I�
in place of z� and hence the biases introduced by using z I� in place of z� can be made
arbitrarily small. These biases could be made asymptotically negligible by asymptotic
trimming, which would send � to zero as N goes to inÞnity. Finally, this trimming is only
needed to deal with the effects on �� of bias in the estimates of the conditional density of �
resulting from observations ci that lie in a neighborhood of the boundary of the support of
c� As long as the probability of observing a c near the boundary of the support is small, the
effect that such terms have on the estimate �� will be small. On the other hand, trimming
based on c will reduce variation in xT� � e relative to variation in �� which could improve
the small sample behavior of the estimator given the earlier discussion of Assumption A.3.
Next consider trimming of � . The estimator in Theorem 3 is asymptotically equivalent

to a Þxed �trimming� of all observations having �� � � 1�� �, which is inside the support
of v. By Assumption B.7, hi � 0 for all ��i � � 1�� �, so the estimand is unaffected by
this trimming. Given equation (1.1), this assumption requires that xT� � e have bounded
support, and hence rules out normal or logistic errors. This is not as serious a limitation
as it might seem, since for example an e distribution that was a normal, truncated at plus
and minus 100 standard deviations would not be ruled out, and would be indistinguishable
from a normal at any feasible sample size.
Alternatively, from Lewbel (1997) (based on Robinson 1988), Theorem 3 will hold re-

placing Assumption B.7 with the following asymptotic trimming assumption B.7�, which
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permits both e and � to have support equal to the whole real line, but requires the distribu-
tion of � to have relatively thick tails.
ASSUMPTIONB.7�: For all �u� �� on their support, E �[�h� � E��h��� E��h��u�� E��h��u� ��]��

exists for some � � 2. The support of c is compact. Let f���� be the marginal density of an
observation of � and let " ��� � E[h f������]. There exist constants � � 0 and �� � 0 such
that as �� � � �� " ��� � O�����1�
� and E[��q��2 f������� � O�����1�
��� N� 2
N � 0 as
N � �.
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TABLE 1: CLEAN PROBIT DESIGN
j MEAN SD LQ MED UQ RMSE MAE MDAE MESE %2SE

Probit 1 1.00 0.21 0.86 0.99 1.14 0.21 0.17 0.14 0.20 0.94
ML 2 1.01 0.22 0.86 1.00 1.15 0.22 0.17 0.15 0.21 0.94
Semipar 1 1.00 0.28 0.81 0.99 1.17 0.28 0.22 0.18 0.27 0.94
true f 2 1.00 0.30 0.80 0.98 1.19 0.30 0.24 0.20 0.28 0.94
Semipar 1 1.13 0.27 0.95 1.13 1.31 0.30 0.24 0.20 0.29 0.94
kernel �f 2 1.14 0.32 0.92 1.12 1.33 0.35 0.27 0.21 0.32 0.92
Simple 1 1.00 0.30 0.80 0.98 1.19 0.30 0.24 0.19 0.34 0.97
ordered 2 1.00 0.36 0.76 0.98 1.20 0.36 0.28 0.23 0.36 0.94

The two rows in each block correspond to ��1 and ��2, respectively. Each block is a
different estimator: probit maximum likelihood, equations (4.3) to (4.8) using the true den-
sity f , equations (4.3) to (4.8) using the kernel estimated �f , and the ordered data estimator
(4.16). The reported summary statistics are the mean (MEAN), the standard deviation (SD),
the lower quartile (LQ), the median (M), the upper quartile (UQ), the root mean squared er-
ror (RMSE) the mean absolute error (MAE), the median absolute error (MDAE), the mean
estimated standard error estimate (MESE) and the percent of replications in which �� j is
within two estimated standard errors of the true � j (%2SE).

TABLE 2: MESSY DESIGN
j MEAN SD LQ MED UQ RMSE MAE MDAE MESE %2SE

Probit 1 1.46 0.35 1.22 1.43 1.67 0.57 0.48 0.44 0.33 0.76
ML 2 1.91 0.39 1.64 1.85 2.13 0.99 0.91 0.85 0.37 0.24
Semipar 1 1.01 2.10 0.53 0.85 1.23 2.10 0.55 0.38 0.60 0.90
true f 2 0.99 2.64 0.38 0.73 1.20 2.64 0.70 0.49 0.69 0.80
Semipar 1 0.80 0.38 0.55 0.81 1.06 0.43 0.34 0.29 0.37 0.92
kernel �f 2 0.43 0.40 0.18 0.44 0.69 0.69 0.59 0.57 0.34 0.59
Simple 1 0.87 0.60 0.47 0.82 1.19 0.61 0.47 0.39 0.57 0.91
ordered 2 0.77 0.69 0.32 0.67 1.09 0.73 0.57 0.49 0.60 0.80

TABLE 3: MESSY DESIGN, V DOUBLED
j MEAN SD LQ MED UQ RMSE MAE MDAE MESE %2SE

Probit 1 1.34 0.36 1.10 1.33 1.57 0.49 0.40 0.35 0.33 0.81
ML 2 1.73 0.32 1.51 1.71 1.93 0.80 0.73 0.71 0.31 0.33
Semipar 1 1.00 0.69 0.55 0.95 1.37 0.69 0.51 0.42 0.60 0.93
true f 2 0.97 0.87 0.42 0.85 1.38 0.87 0.63 0.50 0.68 0.88
Semipar 1 0.99 0.58 0.61 1.00 1.38 0.58 0.46 0.38 0.56 0.94
kernel �f 2 0.71 0.59 0.32 0.70 1.09 0.66 0.53 0.45 0.53 0.87
Simple 1 0.98 0.79 0.47 0.90 1.40 0.79 0.59 0.47 0.71 0.92
ordered 2 0.94 0.96 0.35 0.81 1.36 0.96 0.68 0.53 0.77 0.86
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