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1 Introduction

The objective of this paper is to present the implementation in Stata of Robinson’s
(1988) double residual semiparametric regression estimator. Also, to check if the non-
parametric part of the relation may be approximated by a polynomial functional form,
we introduce Hardle and Mammen’s (1993) specification test as an option in the pro-
grammed estimator. We also briefly describe this test.

The structure of the paper is the following: in Section 2, Robinson’s (1988) semi-
parametric regression estimator and Hardle and Mammen’s (1993) specification test are
described. In Section 3, the implemented Stata command (semipar) is presented. Some
simple simulations assessing the performance of the estimator and of the test are per-
formed in Section 4. In Section 5, we illustrate the use of the semipar command with
an empirical application. Section 6 concludes.
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2 Robinson’s semiparametric regression in Stata

2 Estimation method

2.1 Robinson’s (1988) semiparametric regression estimator

Consider a general model of the type

yi = θ0 + xiθ + f(zi) + εi, i = 1, ..., N (1)

where yi is the value taken by the dependent variable for individual i, xi is the row
vector of characteristics of individual i, θ0 is a constant term and εi is the disturbance
assumed to have zero mean and constant variance σ2

ε . Variable z is an explanatory
variable that enters the equation nonlinearly according to a non-binding function f .
This model can be estimated using Robinson’s (1988) double residual methodology that
starts by applying a conditional expectation to both sides of (1). This leads to

E (yi|zi) = θ0 + E (xi|zi) θ + f(zi) i = 1, ..., N (2)

By subtracting (2) from (1), we have

yi − E (yi|zi) = (xi − E (xi|zi)) θ + εi i = 1, ..., N (3)

If the conditional expectations are known, parameter vector θ can easily be estimated
by fitting (3) by ordinary least squares. If they are unknown, they have to be estimated
by calling on some consistent estimators yi = my(zi) + ε1i and xki = mxk

(zi) + ε2ki,
where k = 1, ...,K is the index of the explanatory variables entering the model para-
metrically. Robinson’s (1988) double residual estimator is hence the OLS estimation of
model

yi − m̂y(zi) = (xi − m̂x(zi)) θ + εi i = 1, ..., N (4)

where xi − m̂x(zi) is the row-vector of the differences between each explanatory
variable xki and the fitted conditional expectation of xki given zi.

The estimated coefficients vector is therefore

θ̂ =

(

∑

i

(xi − m̂x(zi))
′

(xi − m̂x(zi))

)

−1
∑

i

(xi − m̂x(zi))
′

(yi − m̂y(zi)) (5)

with variance (if errors are i.i.d)

V ar
(

θ̂
)

= σ2

ε

(

∑

i

(xi − m̂x(zi))
′

(xi − m̂x(zi))

)

−1

(6)
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where σ2

ε is the variance of the error term. If errors are non i.i.d., standard sandwich
and cluster variance formulas can be used.

Having estimated parameter vector θ, it is now possible to fit the nonlinear relation
between zi and yi by simply estimating equation (7) presented below nonparametrically.

yi − xiθ̂ = θ0 + f(zi) + εi, i = 1, ..., N (7)

2.2 Hardle and Mammen’s (1993) test

It is sometimes suggested that nonparametric functions may be approximated by some
parametric polynomial alternative. To test for the appropriateness of such an approx-
imation, Hardle and Mammen (1993) develop a statistic which compares the nonpara-
metric and parametric regression fits using squared deviations between them. The
test-statistic is:

Tn = N
√
h

N
∑

i=1

(

f̂(zi)− f̂(zi, θ)
)2

π(·) (8)

where f̂(zi) is the nonparametric function estimated in (7), f̂(zi, θ) is an estimated
parametric function, h is the bandwidth used and π(·) is a weighting function for the
squared deviations between fits. To obtain critical values for the test, Hardle and Mam-
men (1993) suggest to call on simulated values obtained by wild bootstrap. Obviously,
an absence of rejection of the null (i.e. “accepting” the parametric model) means that
the polynomial adjustment is at least of the degree that has been tested.

We implemented this estimator and the specification test in Stata under the com-
mand semipar which is described below.

3 The semipar command

The semipar command fits Robinson’s double residual estimator in the case of a unique
variable entering the model nonparametrically. The default kernel regression used for
all stages is a gaussian kernel weighted local polynomial fit.1 The optimal bandwidth
used minimizes the conditional weighted mean integrated squared error.

The general syntax for the command is:

semipar varlist
[

if
] [

in
] [

weight
]

, nonpar(varname)
[

generate(string)

partial(string) kernel(string) degree(#) trim(#) nograph ci level(#)

title(string) ytitle(string) xtitle(string) robust cluster(varname)

test(#) nsim(#) weight test(varname)
]

The first option, nonpar, is compulsory and necessary to declare which variable

1. The kernel is of order 2.
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enters the model nonparametrically. All other choices are optional. The first one,
generate, reproduces the “nonparametrically” fitted dependent variable. The user
chooses the name of this new variable by defining it in parentheses. Similarly, the
partial option is needed to generate a new variable that contains the parametric resid-
uals (i.e. the left-hand side of equation (7)). The kernel allows to change the kernel
function. The degree option allows the user to specify the degree of the local polyno-
mial fit used to nonparametrically estimate the regressions. By default, it is set to 1.
The trim option allows to trim the data relying on a value of the probability distribu-
tion function of the nonpar variable. The default value is set to 0 (no trimming). The
option nograph should be used if the user does not want the graph of the nonparamet-
ric fit of the variable set in nonpar to appear. The ci option allows to visualize the
confidence interval around the nonparametric fit2, while the level option sets the level
of confidence for inference (by default set to 95%). The options title, ytitle and
xtitle are used to indicate respectively the title and the labels of the axes of the graph
illustrating the nonparametric relation between the dependent variable and the variable
defined in the nonpar option. The robust and cluster options call for standard errors
of the estimated parameters that are respectively resistant to heteroskedasticity and
clustered errors. The test option implements Hardle and Mammen’s (1993) statistic
to test whether the nonparametric fit could be approximated by a polynomial fit, the
order of which must be set by the user. For the sake of clarity, we rescaled the statistic
in such a way that it can be compared with the quantile of a Normal distribution. Note
however that the test is not normally distributed. The nsim option defines the number
of bootstrap replicates used to get inference. Its default value is set to 100. Finally, the
weight test option allows to give different weights to the squared deviation between
the nonparametric fit and the polynomial adjustment in the computation of the test
(i.e. introducing π(·) in equation (8)). By default, this weighting vector is set to ιN/N
with ιN a unit vector of dimension N . To assess the performance of the programmed
estimator, in the next section we present some simple simulations in which we com-
pare this estimator with the already available plreg command. The latter implements
Yatchew’s (1998) difference estimator where the nonparametric part in (1) is partialled
out by differencing rather than by removing the conditional expectations. Since the
highest efficiency of Yatchew’s (1998) estimator is attained by a differencing of order
10, we will use this differencing order as a benchmark.

4 Simulations

The simulation setup is the following. To begin, we generate (for a sample of 300 observa-
tions) two explanatory variables x2 and x3 from two independent N(0, 1). An additional
random variable x1 is generated from a discrete Uniform distribution on [−10, 10]. This
sample design remains unchanged for all simulations. Then, for each replication, we
generate an error term e from a standard normal and create variable y according to
DGP y = x1 + x2

1
+ x2 + x3 + e. We run the semipar and plreg estimators for each

replication and Table 1 reports both the bias and MSE of the coefficients associated

2. Further information about confidence intervals can be found in the help of lpoly.
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Table 1: Comparison between semipar and plreg

Bias x2 Bias x3 MSE x2 MSE x3

plreg -0.4695 -0.1039 0.2208 0.0112
semipar -0.0435 -0.0183 0.0022 0.0007

with x2 and x3. We carry out 1000 simulations. The variable that enters the equa-
tion nonparametrically is generated from a discrete Uniform distribution on purpose to
illustrate the fragility of plreg with respect to this kind of data. Robinson’s (1988)
estimator, that is based on partialling out the nonparametric part removing conditional
expectations rather than by differencing, behaves much better.

In this setup, Robinson’s (1988) estimator leads to smaller biases than Yatchew’s
(1998) differencing estimator. From equation (7), this also implies that the nonpara-
metric fit is better estimated by semipar than by plreg.

To illustrate the fitting performance of the proposed estimation procedure, we gen-
erate four samples according to the following DGPs:

a) y = x2 + x3 + e

b) y = x1 + x2 + x3 + e

c) y = x1 + x2

1
+ x2 + x3 + e

d) y = x1 − x2

1
− x3

1
+ x2 + x3 + e.

In Figure 1, we present the scatter plots, the non-parametric fit (thick plain line)
and the true DGP (red dashed line) related to the four DGPs described above. As
expected, the results are unambiguous.

In the absence of any relation between x1 and y (panel a), no clear pattern emerges
and the non-parametric curve lies close to the horizontal line (the true DGP). In the
three other cases (panels b, c and d), the nonparametric estimation of the relation
matches the true functional form quite well.

As mentioned in the previous section, the Tn statistic assesses the adequacy of a
polynomial adjustment compared to a nonparametric fit. Table 2 presents the perfor-
mance of the test for the DGPs described above. The rows indicate the order of the
generated polynomial while the columns specify the order of the polynomial that has
been tested. Thus, the diagonal (and the upper triangle) elements are the simulated
sizes of the test while elements below the main diagonal are some measure of power. To
construct this table we replicated the DGPs 1000 times. Each time a new error term is
randomly drawn and a new dependent variable is generated (the design space remains
unchanged). Inference for the test is based on 100 bootstrap replications. We observe
that the test has good rejection rates when the order of the polynomial adjustment
tested is lower than the generated one. Besides, the size of the test (whose theoretical
value is set at 5%), is very close to its nominal value.
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Figure 1: Non-parametric fit of the four DGPs

Table 2: Performance of the comparison Test Tn

Order tested
0 1 2 3

0 0.053 0.06 0.055 0.039
True 1 1 0.064 0.055 0.021
Order 2 1 1 0.06 0.062

3 1 1 1 0.066
Figures correspond to rejection rates of the test.



V. Verardi, N. Debarsy 7

5 Example

To illustrate the usefulness of this semiparametric model in empirical applications, we
call on a dataset used by Wooldridge (2002) that studies the effects of an incinerator
location on housing prices. The data are for houses that were sold during the year 1981
in North Andover, MA; 1981 was the year construction began on a local garbage incin-
erator. The dependent variable is the log of price of houses (lprice) and the variable of
interest is the distance from the house to the incinerator measured in feet and expressed
in logs (ldist). To control for confounding effects, the author suggests to include the
log of interstate distance (linst), the log of the square footage of the house (larea), the
log of the lot size in square feet (lland), the number of rooms (rooms), the number of
bathrooms (baths), and the age of the house (age) as additional covariate. However, he
also asserts that the effect of the log of the interstate distance is not linear and proposes
to consider it squared. In this application we carry out this exercise again but do not
impose any functional form to the log of interstate distance and estimate the model
semiparametrically. We then check if the square approximation is appropriate. More
precisely, we run the following command lines:

. use http://fmwww.bc.edu/ec-p/data/wooldridge/HPRICE3

. semipar lprice ldist larea lland rooms baths age, nonpar(linst) xtitle(linst) ci

Number of obs = 321
R-squared = 0.4437
Adj R-squared = 0.4331
Root MSE = 0.2646

lprice Coef. Std. Err. t P>|t| [95% Conf. Interval]

ldist .1083941 .0640184 1.69 0.091 -.0175636 .2343519
larea .4887243 .0668208 7.31 0.000 .3572527 .6201959
lland .0866459 .036037 2.40 0.017 .0157423 .1575495
rooms .0436451 .0221781 1.97 0.050 9.12e-06 .087281
baths .0806555 .0335251 2.41 0.017 .014694 .146617

age -.003481 .0005436 -6.40 0.000 -.0045506 -.0024114

The results of the parametric part (see Stata output above) show that the distance from
the incinerator does not seem to be significant (the t-stat associated with the coefficient
is smaller than the critical value of 1.96).

As far as the effect of the log of the interstate distance is concerned, Figure (2) shows
that it is clearly nonlinear.

Indeed, when the interstate distance increases, the effect of house prices first in-
creases and then decreases. When we check if the quadratic approximation proposed by
Wooldridge (2002) is appropriate, it turns out that this assumption is clearly rejected
by Hardle and Mammen’s (1993) test (see below). However, when we compare it with
a polynomial adjustment of degree 3, the null is no longer rejected which means that
instead of a semiparametric model, a pure parametric model with a polynomial fit of
degree 3 of linst could be used.
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Figure 2: Nonlinear link between the price and interstate distance (in logs)

The two Stata outputs below summarize results of the Hardle and Mammen (1993)
test when the polynomial adjustment tested is of order 2 or 3 respectively. These outputs
do not present the results concerning the parametric part since they are the same as in
the output presented above.

. use http://fmwww.bc.edu/ec-p/data/wooldridge/HPRICE3

. semipar lprice ldist larea lland rooms baths age, nonpar(linst) nograph test(2)

Simulation the distribution of the test statistic

bootstrap replicates (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

H0: Parametric and non-parametric fits are not different
-------------------------------------------------------
Test statistic T: 2.6499135
Critical value (95%): 1.959964
P-value: .02
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. use http://fmwww.bc.edu/ec-p/data/wooldridge/HPRICE3

. semipar lprice ldist larea lland rooms baths age, nonpar(linst) nograph test(3)

Simulation the distribution of the test statistic

bootstrap replicates (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

H0: Parametric and non-parametric fits are not different
-------------------------------------------------------
Test statistic T: 1.067547
Critical value (95%): 1.959964
P-value: .27

6 Conclusion

In econometrics, semiparametric regression estimators have become standard tools for
applied researchers. In this paper, we present Robinson’s (1988) double residual semi-
parametric regression estimator and Hardle and Mammen’s (1993) specification test.
We then present the Stata codes we created to implement them in practice. Some sim-
ple simulations and an empirical application to illustrate the usefulness of the procedure
are also shown.
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