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Summary.

Hotdeck imputation replaces missing lines of data by sampled complete data records. The the-
ory underpinning this method was published over a decade ago (Rubin and Schenker1986),
and since its conception has remained predominantly unchanged. Most of the research involv-
ing hotdeck imputation has been in the area of constructing strata, which are used to impute
within (independently), notably the propensity score (Rosenbaum and Rubin1984). This paper
extends these ideas by using the actual propensity score in a weighted hotdeck imputation
procedure. The weighted hotdeck is compared to the original hotdeck using simulated data
examples and a real data example previously covered in (Pickles et al.1995). The real data
example demonstrates an application of multiple imputation when the missing data is by de-
sign.

Keywords: missing data, Multiple Imputation, multi-phase designs, hotdeck imputation, ap-
proximate bayesian bootstrap

1. Introduction

An imputation method is one that replaces missing data by imputed values to create a
complete dataset. Standard methods are then used to analyse the complete dataset avoid-
ing the use of complex missing data likelihoods. The imputation method is applied to a
dataset several times creating several complete datasets, as part of a multiple imputation
scheme. Each dataset is analysed using the same statistical method and the parameters
of interest can be combined, according to the formulae specified in (Rubinl1987). Hotdeck
imputation is simple with very few distributional assumptions, but its application within
mainstream statistics is not widespread although the theoretical basis was developed over
a decade ago (Rubin and Schenker1986). Hotdeck imputation assumes that the missing
data are ignorable, either missing at random (MAR) or missing completely at random
(MCAR) (Little and Rubin1987). Several statistical packages treat missing data as MCAR
by default and use case-only analysis, this can lead to bias when the missing data are not
MCAR(Wang-clow et al.1995).

Hotdeck imputation is a semi-parametric method which only uses the observed empir-
ical distribution of the data and makes no other distributional assumptions. Other impu-
tation methods for both univariate and multivariate missing can be found in (Rubinl987;
Schafer1997).

Hotdeck imputation can be used to handle monotone patterns of missingness (Lavori et al.1995)
and when dealing with large datasets a more efficient implementation is discussed in (Reilly1993).
The hotdeck estimator has the same asymptotic distribution as the mean score estimator
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(Reilly and Pepel996) and has strong links to weighted likelihood (Reilly and Pepel997).
Hotdeck imputation has been implemented for the statistical package STATA (Mander and Clayton1999).

This paper investigates a version of hotdeck called the Approximate Bayesian Bootstrap
(ABB) (Rubin and Schenker1986; Rubin1987). ABB imputes missing data by sampling
from the observed data, the detailed method is in section 2. To improve accuracy sam-
pling can be stratified by variables that predict whether the data are missing. Selection of
strata to impute within can be made using a model-based measure such as the propensity
score (Rosenbaum and Rubinl1983). Stratification based on the propensity of missing has
been used with hotdeck imputation (Rosenbaum and Rubin1984). The propensity score is
constructed using logistic regression, the fitted probabilities are categorised into strata and
imputation is performed within strata independently.

Weighted hotdeck imputation uses the actual propensity score, rather than the “discrete”
strata, to weight the sampling of observed data. Therefore, the weighted hotdeck uses more
information from the missing data mechanism, assuming that this model is accurate, and
should be closer to the true complete dataset.

The weighted hotdeck will be illustrated by using data taken from a multi-phase study
design (Pickles et al.1995). This type of design is not usually analysed using multiple im-
putation. Simulation models are also used to compare the weighted hotdeck to the original
hotdeck and to check the coverage of the confidence intervals.

2. Weighted Hotdeck Imputation

Hotdeck imputation has been used as a method for imputing values in a single variable.
Applying the method when missing data are univariate but analysis has been multivari-
ate has led to biased results (Allison2000). The example in (Allison2000) is a regression
analysis of Y against X, where X has missing values. Sampling from observed values of
X leads to regression dilution bias. This is due to the imputing mechanism destroying the
relationship between X and Y. A possible solution is by making a parametric assumption
about the distribution X|Y. However the hotdeck imputation model can be applied by
imputing (X,Y") pairs of data which contain at least one missing datum. Some information
is lost when observed values in the lines with missing data are replaced, but the observed
relationships among the variables remain unchanged.

Describing hotdeck imputation more formally; let a dataset Z consist of i variables
(Zy,Za, ..., Z;) each with n elements. The complete rows of data can be represented by
Zcom and let there be ni(< n) observed rows. Similarly, the incomplete data Z;,. are the
ng (where n = ny 4+ np) rows of data that contain missing values for the variables Z, where
k =j,...,1, for some 7 > 1. This dataset is represented in figure 1 where the rectangles
represent observed data. To incorporate other patterns of missing into the same framework
let Z;,. be the rows of data that contain at least one missing value for the variables Zj
where k = j,...,i. In the imputation the variables Zy (k = j,...,i) are considered missing
for the first ng elements.

An imputation model creates a full dataset by drawing from the posterior distribution
of Z;n.. With the same model m draws are made as part of a multiple imputation scheme,
these m complete datasets are analysed separately to give a series of parameter estimates,
é(l), é(2), e ,é(m). These parameter vectors are combined to give an overall estimate.

A basic imputation model is Simple Random Imputation (SRI); where the ny rows
of Z;,. are randomly sampled with replacement, from Z.,,; (Rubin and Schenker1986).
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The resulting confidence intervals of @ are too narrow (Rubinl987) because the param-
eters of the empirical distribution Z.,,, are assumed to be the population parameters.
Hence there is a need to sample the parameters of the empirical distribution of Z.,,, be-
fore drawing from the posterior of Z;,.. This methodology applied to the SRI model
led to the Bayesian Bootstrap (BB) and the Approximate Bayesian Bootstrap (ABB)
(Rubin and Schenker1986; Rubin1987). The ABB is represented in figure 1. The first
step is the sampling with replacement of Z., to create Z,,,, note Z_,, has the same
dimensions as Zcep,. Secondly ng rows are sampled with replacement from Z},,, to create
the imputed dataset Z;y,p.

The methods can be adapted if the missing data mechanism is known to vary between
various strata. For example, take two equal sized stratum: in one the probability of missing
data is 0.5; and in the second stratum the probability of missing data is 0.1. This example
could arise from missing by design studies, such as multi-phase studies. By ignoring the
strata missing data are more likely to be replaced by data in the second stratum using hot-
deck imputation. The solution is to use hotdeck imputation within each stratum separately.
A major flaw of this method is that as the number of strata increase, imputation within
stratum becomes impractical. In the extreme case imputation will fail when one stratum
arises that contains only missing data and no observed data.

Identification of a reasonable number of strata can be made using the propensity score
(Rosenbaum1998). Consider a study comparing two treatments where V' = 1 or 0 is the
treatment assignment. The propensity score, e, is the estimated conditional probabil-
ity that a unit with vector W of observed covariates will be assigned to treatment 1,
e(W) = P(V = 1|W), with the property that W and V are conditionally independent
given e(IW). The propensity score is estimated via logistic regression with W as the co-
variates (Rosenbaum and Rubin1984), (interaction terms may be needed). The propensity
score is categorised into as few as 5 classes (Rosenbaum and Rubin1984). Using the hotdeck
within these subclassifications is intuitively appealing, as missing data will be replaced by
data that are close, as measured by the propensity score (Lavori et al.1995). Here the treat-
ment variable V' is replaced by a variable indicating missing data. The different patterns of
missing data need to be included within the set of covariates.

2.1. Sampling weights
An indicator variable A is constructed where A = 1 if a row of Z contains missing data and
0 otherwise.

Using Bayes theorem,

[Zinc] = [le"ijfl‘A:].],

[A=1]Zy,...,Z;1] [A = 0]
[A=0|Z1,...,2] [A=1]
[A:1|Z1,...,Zj_1]
[A=0071,...,2]
[A = 1|Z1,. . .,Zj,l] (1)
[A:0|Z1,...,Zj_1]’

= [Z1,...,Zi|A =0]

X [Zl,,Zl‘AZO]

= [Z1,...,Z:|A =0

where [ | indicates a probability distribution or density function. The Zj, ..., Z; variables

are removed from the right-hand side condition in the last line because the missing data

mechanism is assumed to be ignorable. The term % is the odds of missing
= yeeyLj—
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given Zi,...,Z;_1. These can be estimated by logistic regression and provide the sampling
weights of the joint distribution of the complete rows of data (Z.om). The constant term
in this regression is % but, as the weights are constrained to sum to 1, this term is not
required.

In the ABB the parameters are sampled before drawing from the posterior. In the
weighted hotdeck the parameters are the odds ratio of missing and the empirical distribution
of the complete lines of data. Firstly, one could perturb the vector of regression coefficients
(in the logistic regression to predict missing) using the estimated covariance-variance matrix.
However, an alternative method suggested by the ABB is illustrated in figure 2. Zj,. is

sampled with replacement to form Z7,. and Z.,, is sampled with replacement to form

Z},,.. The conditional sampling means that the probability of missing data is unaffected.
. . . . . . . A=1ZE,.0Z0 ]
Z{,...,Z;_y is used in the logistic regression to predict the odds ratio (m)

Using Z7,...,Z7_, in predicting the odds ratio rather than Zi,...,Z;_; is equivalent to
resampling the odds ratio. The final step of the weighted hotdeck is to do a weighted
sampling with replacement of Z},, . using the perturbed odds ratio to form Z;,,.

With the imputation model a series of complete datasets are constructed and used
as part of a multiple imputation framework. Results from the analysis of the completed
dataset are combined using the rules described by (Schafer1997; Rubin1987). The number
of imputations needed is indicated by the relative efficiency (1 + \/m)~!, where X is the
fraction of missing information and m the number of imputations. Unlike Gibbs Sampling
very few imputations are actually needed (= 20). More imputations, than obtained by the
formula, may be needed when the between imputation variance is larger than the within
variance and in non-standard datasets.

3. Simulation Study

Data will be generated using three simulation models. The first two models share the
following in common.

The dependent variable Y and exposure X are both binary (1/0). The distribution of
X is

X — { 1 W.p. Pzl
0 0.W.

In our simulations p,1 is 0.5. The Y variable is constructed using a logistic regression model.
Given the two regression coefficients are « and 3 ,

exp(a + SX)
1+ exp(a+ BX)’

P(Y =1/X) =

for our simulations a = log(0.5) and 3 = log(2). Y is constructed by taking observations
u; from a uniform(0,1) distribution such that

Y;—{l ifu; < P(Y =1|X)

0 0.W.

3.1. Missing Data Mechanism: Model 1
Model 1 will generate MAR data so that ignoring the missing data will lead to biased
results. This is achieved by using differential probabilities of missing in each stratum of X.
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Typically the distribution of missing data takes the following form.

oo p i X=1
P(Y is missing) = { v if X=0
If pn1 = Pmo then the missing data mechanism is MCAR. If these differ then the missing
data mechanism depends on X but not Y.

3.2. Missing Data Mechanism: Model 2
Here the missing data mechanism depends on a variable that is not used in the analysis.
Taking the artificial example of a variable with distribution

G = { 1 if X=1and Y=1

0 o.mw.

If the missing data depended on G, but G was unobserved, then the missing data
mechanism would be non-ignorable, since it depends on the outcome Y. In reality this is
a trick to construct data that displays missing data that on the surface is non-ignorable
however a variable observed on everyone allows the assumption of MAR data. For the
simulations a surrogate of G, G will be used. The surrogate is constructed stochastically
with sensitivity, P(G = 1|G = 1), and specificity, P(G = 0|G = 0) equal to ps; and psy
respectively. In our simulations the surrogate is very good, ps; and ps, are both 0.9. The
missing data mechanism is,

P(Y is missing) = { oo i G = 0
m0 -

3.3. Missing Data Mechanism: Model 3
The simulation model described below has been used in several papers (Robins et al.1994;
Pepe and Fleming1991; Reilly1993).

To obtain a generated dataset; the following are simulated for each of n subjects, a
normally distributed exposure X ~ N(0,1), a dichotomous surrogate G = I[X + v > 0],
where v ~ N(0,0?), v is independent of X and I[A] = 1 if A is true and 0 otherwise.
The binary outcome is generated from the logistic probability function P(Y = 1|X = z) =
%. The simulation study will investigate estimates of Var(B) when X has missing
data that is MCAR. The probability of a missing value in X is 0.2, to allow comparison to
the results of the following papers (Robins et al.1994; Pepe and Fleming1991; Reilly1993).
The question of whether the surrogate improves variance estimates can be investigated by
varying the o parameter. As the variance of v increases the informativeness of the surrogate
of G decreases.

3.4. Investigation of bias in Models 1 and 2

Simulation model 1 and 2 are used to generate a dataset of size 20000, with p,,0 = 0.4,
Pm1 = 0.1 and the specificity and sensitivity equal to 0.9 for model 2. The results using
both hotdeck methods with 30 imputations are displayed in Table 1. From the table it is
clear that the estimates’ confidence intervals all contain the true values (o« = —log(2) and
B = log(2)). There is a suggestion that the weighted hotdeck results have slightly larger
standard errors for the constant parameter.
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3.5. Assessing Coverage

It is possible to investigate any bias in the imputation variance estimate using simulation

models. In the simulated datasets the true population parameter of interest, # say, is known.
To help with the terminology in this section, the formula for combining m estimates of

0 (60,0 ... (™)) from the m imputed datasets is outlined below (Rubin1987). Let

gm = ié(m)/m,
=1

be the average of the m complete-data estimates,
U, = Z Var(@™)/m,
1=1

be the average of the m complete-data variances, and

m

Bm = Z(é(m) —0m)*/(m — 1),

=1

be the variance between the m complete-data estimates. The total variance is defined as
U+ (L+m™HB,,. (2)

In order to obtain the bias in the coverage, take W as the complete data variance
estimate of @ and B to be the estimate of the variance between imputations. Assuming that
an infinite number of imputations are used to estimate the variance of €, then this estimate
is V =W + B (from equation 2). Let V be the true estimate of this variance. Then take
S as the variance of a single imputation estimate about ¢ (if ¢ is unknown then S is also
unknown), then S = B 4 V. It follows that the bias in Vis V —V =W — S 4 2B.

Estimates for these variances are found by the following steps; the imputation model
is used with 2 imputations, this is the minimum to obtain an estimate of the between
variance estimate. From the two complete datasets two estimates of 6 are obtained, 6, and
0, with the corresponding variance estimates 62 and 3. Pairs of imputations are repeated
N times to obtain estimates of the various variance components. From the imputations the
estimates for S , B, W are given below, using ¢ as the subscript for the number of iterations
(i=1,2,...,N):

S = 1/2N> (61— 0)* + (02 — 0)*,

B = 1/2N) (61 — 02)?,

S
I

1/2N Y (61 + 63:)-

V-V

From these the bias and the relative bias can be obtained.

Data are simulated from model 1 and 2 of sizes 2000, 4000 and 8000. The probabilities of
missing data p,,,1 and p,,¢ have been arbitrarily been selected with the condition p,,1 > Pmo,
this is missing by design, where exposed subjects are more likely to enter the analysis
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for power reasons. This design is usually advantageous when exposure is rare. Here the
parameter of interest is the log odds ratio of being a case comparing exposed and unexposed
subjects. The number of times the process has been repeated is 2000 (= N). The relative
bias, (V — V)/V and the average of the Vs are given in table 2.

The average of the V’s for hotdeck imputation are nearly identical to the weighted
hotdeck estimates. For model 1 the range of estimates of the relative bias is (—6.5% to
3.2%) for hotdeck and (—4.2% to 6.3%) for the weighted hotdeck. The relative bias is
indicating that both methods appear to be unbiased although there are some fluctuations
due to simulation error. For model 2 the range of the relative bias is (—10.2% to 7.4%)
for hotdeck and (—10.1% to 16.1%) for the weighted hotdeck. Again the relative bias
is indicating that both methods give correct coverage. The simulation error appears to
be larger in model 2 than in model 1 but this is mainly due to the uncertainty of the
surrogate. It is clear that the models can handle quite extreme probabilities of missing and
give reasonable estimates of the variance. The relative bias does not seem to depend on the
probabilities of missingness or the sample size of the dataset.

3.6. Do surrogates give extra information when data are MCAR

When the missing data mechanism is MCAR a complete-case analysis will give unbiased
(inefficient) estimates of the parameters of interest. Hotdeck imputation is an ideal method
for this situation, when the full dataset is not large. Simulation model 3 is used to investigate
small datasets when the missing data are MCAR and a surrogate of the missing variable is
available.

Hotdeck imputation was used to analyse this simulation model in (Reilly1993), here the
variance of (3 is estimated using an adaptive hotdeck. In addition to the adaptive hotdeck
the simulation study has a balanced design of missing data, in other words there are equal
numbers of complete data in each of the stratum defined by G and Y, this improves the
variance estimates. Using the same study design and the parameters used in (Reilly1993)
weighted hotdeck and hotdeck are used to obtain estimates of this model and are displayed
in tables 3 and 4. The variance estimates are based on a sample size of 4000, as the between
variance estimate requires 2 simulations and is based on a sample size of 2000.

The weighted hotdeck relative efficiencies are close to 1 when o2 = 2 but when o? is
closer to 0 the relative efficiency is reduced to about 0.6. This reduction of efficiency is
not observed in hotdeck imputation, see table 4. When the missing data are MCAR the
logistic regression to predict the probability of missing should have coefficients that are, in
expectation, 0. In reality there are some gains in the efficiency due to capturing some of
the sampling variation in the estimates. The hotdeck imputation uses the information of
the surrogate directly by sampling within strata of the surrogate and is unaffected by the
missing data mechanism. It is interesting to note that the relative efficiency of the weighted
hotdeck is not lost when the surrogate deteriorates.

The second set of results shown in tables 5 and 6 use the same parameters and design
as the paper (Pepe and Fleming1991). The missing data are not balanced and hence the
variance estimates will be larger. The estimator in (Pepe and Fleming1991) is extremely
efficient and its asymptotic relative efficiency comparing it to the most efficient estimator for
this study design is given in (Robins et al.1994). As the results in (Robins et al.1994) are
displayed in terms of asymptotic relative efficiencies and the variances are not reported it
is difficult to compare the hotdeck and weighted hotdeck estimators with the most efficient
estimator. However, the Pepe-Flemming estimator (Pepe and Fleming1991) achieves an
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ARE of 1 when 8 = 0 in the simulation model and this degrades as [ increases.

As can be seen from table 5 the weighted hotdeck achieves around 0.3 relative efficiency
when the sample size is 200 and 0.1 when the sample size is 100. The results in table 6
for hotdeck are slightly better with relative efficiencies of around 0.45 and 0.2, respectively.
Table 5 shows that when the surrogate is good efliciency is lost using the weighted hotdeck.
The hotdeck methods would be more viable when the sample size of the complete dataset
was larger. Also estimation would be improved by reducing the probability of missingness.

4. Two-Phase Study Example

When missing data are by design there are definable strata to include in the imputation
models. This does assume that the missing data only resulted from the design, it is pos-
sible to have more than one missing data mechanisms present. Missing by design is one
area that imputation methods can greatly simplify analysis, these designs are becoming in-
creasingly used in epidemiological circles, for example, the multi-phase design (White1982).
This design involves collecting data on the whole study population, this could be demo-
graphics or surrogate measures of covariates (or outcome variables if the covariates have
missing data). The next stage involves collection of detailed data on a subsample of the
first phase population, for example, using more expensive laboratory tests. An example
of this type of design is covered in (Pickles et al.1995). Here patients’ mental health was
initially assessed by a general practitioner (GP) and the Spanish version of the 28-item
general health questionnaire (GHQ). A patient was classified as a case (SCREEN=1) if one
of the tests were positive (GP=1 or GHQ=1), and a control (SCREEN=0) if both tests
were negative (GP=0 and GHQ=0). This first phase was a cross-sectional survey. From
the screening phase half the patients with a positive screen were sampled into the second
phase and 10% from the negative screens. The majority of screens were negative hence
the smaller sampling fraction (maximising information). The second phase sample were
assessed by a senior psychiatrist using the Spanish version of the Schedules for Clinical
Assessment in Neuropsychiatry (SCAN), this is considered the gold standard. The paper
analyses this data using conditional probabilities, bayesian estimation using Gibbs sampling
(Spiegelhalter et al.1994), estimation using expansion weights, weighted logistic regression,
an independence working model, generalised linear mixed models and EM approaches for
log-linear models. The results from these methods can be compared to the multiple imputa-
tion results using the same data, the analysis is displayed in table 7. One distinct advantage
of multiple imputation over the other methods is that since the imputed datasets contain no
missing data complete data methods are used to obtain prevalence estimates. The robust
standard errors and Taylor series expansions to obtain estimates of the standard errors are
not needed.

For each of the imputation models the prevalence is estimated by sex (7, for males and
wy for females). These probabilities will have binomial variance using Ny,,,Ny and N as the
sample sizes of males, females and total, respectively. The data are MAR as the sampling
scheme varied between the two levels of SCREEN. The missing data mechanism is predicted
by using SCREEN as a predictor in the weighted hotdeck model and as strata in hotdeck.
There is some sampling variation between SEX, GP and GHQ and the model could contain
all these variables in the model to predict missingness. A table in (Pickles et al.1995)
investigates the various strata using three sets of expansion weights: weights varying within
SCREEN (2 strata); weights varying by SEX and SCREEN (4 strata) and; weights varying
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by GP,GHQ and sex (8 strata, SCREEN is defined by GP and GHQ). The same strata are
used for the hotdeck and in the weighted hotdeck.

The number of imputations needed is based on the calculations disclosed in (Rubin1987),
for 97% efficiency around 20 imputations are needed. The dataset contains 75% missing
data and the between imputation variance was greater than the within imputation variance.
The number of imputations are therefore taken as a nominal 100 imputations.

From table 7 the strata do not change the estimates of the prevalences’ standard er-
rors or point estimates. The point estimates are essentially the same as the analysis in
(Pickles et al.1995). However, there is a slight reduction of the standard error in the preva-
lence of female psychopathy when compared to the expansion weight analysis and the condi-
tional probability method. The results have slightly higher standard errors than the Gibbs
sampling method, this is the gain due to complexity of the modelling. When using an ex-
pansion weights analysis for the various strata the method can be improved by allowing the
smoothing of the weights using a technique called ‘raking’ (Deming and Stephan1940). Es-
sentially this is achieved by using a model based estimate of the weights, this is the method
used by weighted hotdeck imputation.

5. Discussion

This paper highlights the need to collect covariates that may predict missingness. Identifi-
cation of these variables are straightforward when the missing data are by design. However,
there are gains in efficiency when including variables that are not really related to missing-
ness (Robins et al.1994). Additionally there may be missing data by design in conjunction
with other missing data mechanisms which suggests that understanding the missing data
mechanism is a necessity before using the imputation methods.

Given an understanding of the missing data which hotdeck method is preferable? From
the simulation models the hotdeck imputation gave lower standard errors. Both methods
are fairly easy to implement in any statistical package. Weighted hotdeck imputation is
more flexible than hotdeck imputation and in cases where numerous strata are needed to
explain the missing data mechanism hotdeck imputation may be impossible to implement.

In light of the increase use of the multi phase study design in epidemiological stud-
ies the analyst should remember that imputation has a role in estimating the param-
eters of interest. For many multi phase designs inverse probability weights are gener-
ally the method of choice an example is illustrated in the genetic epidemiology literature
(Whittemore and Halpern1997; Whittemorel1997). The drawback of the weighted analy-
sis is that in non-standard analyses analysis requires specialist software or skills in pro-
gramming. Multiple imputation uses complete data methods and can be used in standard
statistical packages and the standard errors are estimated with relative ease.

The results have been illustrated using simulation models that have univariate missing
patterns. The methods can be used when missing data are present in multiple variables.
When using weighted hotdeck the various multivariate missing patterns should be included
as indicator variables in the logistic regression to predict missingness. Application of hotdeck
and weighted hotdeck imputation should be used with caution to tackle multivariate missing
data situations, as the efficiency of the methods can drop considerably. These methods
replace missing lines of data to preserve the inter-relationships of variables in the dataset,
however when there is multivariate missing this will lead to the deletion of some information
when the lines of data are not completely missing. As the imputation models do not make



10 Adrian Mander et al.

multivariate distributional assumptions these methods will be more robust.
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Table 1. Investigating potential bias in the logistic regression
parameters of the simulated case-control study.

Method & (SE) B (SE)
model  Weighted Hotdeck | .724 (.036) -.699 (.022)
1 Hotdeck 723 (.032)  -.698 (.022)
model  Weighted Hotdeck | .659 (.032) -.683 (.023)
2 Hotdeck 656 (.031) -.681 (.024)

Table 2. Relative bias in the estimated variance of the log odds ratio

Model 1:Relative bias (V') Model 2: Relative bias (V)
Dataset size m0 ml hotdeck weighted hotdeck hotdeck weighted hotdeck

2000 1 4 | .032 (.006) .05 (.006) .02 (.006) -.015 (.006)
2000 2 4 | .005 (.006) .063 (.006) .06 (.006) .051 (.007)
2000 1 .6 | -.032 (.008) -.003 (.008) -.047 (.009) .045 (.009)
2000 4 .6 | -.006 (.009) -.04 (.009) .062 (.009) .161 (.01)
2000 .6 .6 -.007 (.01) .009 (.011) -.026 (.009) .08 (.011)
2000 1 .9 | -.011 (.026) -.042 (.025) -.079 (.03) -.093 (.031)
2000 2 9 0 (.027) .018 (.027) -.102 (.03) -.101 (.031)
2000 4 .9 | -.065 (.026) -.015 (.027) .063 (.032) .005 (.033)
2000 .6 9 | .015 (.029) -.018 (.028) .036 (.031) -.036 (.031)
4000 .6 9 .05 (.014) -.018 (.014) -.078 (.015) -.034 (.016)
8000 .6 .9 | .011 (.007) .004 (.007) .074 (.008) -.052 (.008)

Table 3. Relative efficiencies comparing weighted hotdeck imputation to the adaptive hotdeck
imputation

Sample Size | a B o2 \% V from paper (Reilly1993) | Relative Efficiency
100 0 | 0.000 | 0.25 | 0.275 0.166 0.604
100 1 | 0.000 | 0.25 | 0.310 0.165 0.532
100 0 | 1.000 | 0.25 | 0.419 0.217 0.518
100 1 | 1.000 | 0.25 | 0.504 0.302 0.599
100 0 | 0.000 | 2.00 | 0.390 0.419 1.074
100 1 | 0.000 | 2.00 | 0.417 0.382 0.916
100 0 | 1.000 | 2.00 | 0.916 0.987 1.078
100 1 | 1.000 | 2.00 | 0.959 0.730 0.761

Table 4. Relative efficiencies comparing hotdeck imputation to the adaptive hotdeck imputation

Sample Size | a B o2 \% V from paper (Reilly1993) | Relative Efficiency
100 0 | 0.000 | 0.25 | 0.174 0.166 0.954
100 1 | 0.000 | 0.25 | 0.195 0.165 0.846
100 0 | 1.000 | 0.25 | 0.312 0.217 0.696
100 1 | 1.000 | 0.25 | 0.346 0.302 0.873
100 0 | 0.000 | 2.00 | 0.323 0.419 1.297
100 1 | 0.000 | 2.00 | 0.309 0.382 1.236
100 0 | 1.000 | 2.00 | 0.823 0.987 1.199
100 1 | 1.000 | 2.00 | 0.672 0.730 1.086
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Table 5. Relative efficiencies comparing weighted hotdeck imputation to the Pepe-Flemming

estimator
Sample Size | « 8 o’ \%4 V from paper Relative Efficiency
(Pepe and Fleming1991)
200 0 | 0.000 | 0.25 | 0.113 0.033 0.292
200 0 | 0.693 | 0.25 | 0.192 0.051 0.266
200 0 | 0.000 | 1.00 | 0.133 0.053 0.398
200 0 | 0.693 | 1.00 | 0.225 0.088 0.391
100 0 | 0.000 | 0.25 | 0.766 0.072 0.094
100 0 | 0.693 | 0.25 1.084 0.118 0.109
100 -1 | 0.000 | 0.25 | 3.447 0.099 0.029
100 -1 | 0.693 | 0.25 2.782 0.225 0.081
100 0 | 0.000 | 1.00 | 0.712 0.087 0.122
100 0 | 0.693 | 1.00 | 22.137 0.211 0.010
100 -1 | 0.000 | 1.00 1.277 0.145 0.114
100 -1 | 0.693 | 1.00 1.834 0.240 0.131

Table 6. Relative efficiencies comparing hotdeck imputation to the Pepe-Flemming estimator

Sample Size | « 8 o’ \% V from paper Relative Efficiency
(Pepe and Fleming1991)
200 0 | 0.000 | 0.25 | 0.077 0.033 0.429
200 0 | 0.693 | 0.25 | 0.112 0.051 0.455
200 0 | 0.000 | 1.00 | 0.113 0.053 0.469
200 0 | 0.693 | 1.00 | 0.173 0.088 0.509
100 0 | 0.000 | 0.25 | 0.273 0.072 0.264
100 0 | 0.693 | 0.25 | 0.570 0.118 0.207
100 -1 | 0.000 | 0.25 | 4.147 0.099 0.024
100 -1 ] 0.693 | 0.25 | 1.159 0.225 0.194
100 0 | 0.000 | 1.00 | 0.395 0.087 0.220
100 0 | 0.693 | 1.00 | 20.427 0.211 0.010
100 -1 | 0.000 | 1.00 | 0.602 0.145 0.241
100 -1 | 0.693 | 1.00 1.497 0.240 0.160

Table 7. Prevalence estimates using Multiple Imputation

Prevalence Estimates
w5 (SE) mm (SE)
Hotdeck 2 strata | 0.3645 (0.053)  0.2268 (0.065)
4 strata | 0.3687 (0.056) 0.2365 (0.057)
8 strata | 0.3563 (0.055) 0.2234 (0.053)
Weighted 2 strata | 0.3651 (0.055) 0.2229 (0.065)
Hotdeck 4 strata | 0.3769 (0.056) 0.2198 (0.063)
8 strata | 0.3783 (0.049)  0.2229 (0.067)




