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CTREATREG Stata module for estimating
dose-response models under exogenous
and endogenous treatment

Giovanni Cerulli
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ABSTRACT. This paper presentd r eat r eg, a Stata module for estimating a dose-response
function when: (i) treatment is continuous, (ii) individuals may react heterogeneously to
observable confounders, and (iii) selection-into-treatment may be endogenous. Two estimation
procedures are implemented: OLS under Conditional Mean Independence, and Instrumental-
Variables (IV) under selection endogeneity. A Monte Carlo experiment to test the reliability of
the proposed command is finally set out.

Keywords:Stata commands; treatment effects, dose-response function, continuous treatment,
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1. INTRODUCTION

his paper presents a Stata routine,

ctreatreg, for estimating a

dose-response function through a
regression approach when: (i) treatment is
continuous, (i) individuals may react
heterogeneously to observable confounders,
and (iii) selection-into-treatment may be
potentially endogenousn this context, the
dose-response function is equal to the
“Average Treatment Effect, given the level
of treatment” (i.e. ATE(t)). But also other
causal parameters of interest, such as the
unconditional Average Treatment Effect
(ATE), the Average Treatment Effect on
Treated (ATET), the Average Treatment
Effect on Non-Treated (ATENT) are
estimated byctreatreg, along with
those effects conditional on the vectort),
where x is a vector of pre-determined
variables.

Such a routine seems of worth, as in
many socio-economic and epidemiological
contexts, interventions take the form of a
continuous exposure to a certain type of
treatment. Indeed, from a program
evaluation perspective, what is relevant in
many settings is not only the binary
treatment status, but also the level of
exposure (or “dose”) provided by a public
agency.

This is also in tune with the language of
epidemiology, where dose-response
functions are usually estimated in order to
check patients’ resilience to different levels
of drug administration (Robertson et al.,
1994; Royston and Sauerbrei, 2008).

To fix ideas, consider a policy program
where the treatment is assigned not
randomly (i.e., according to some

“structural” rule), and where — after setting
who is treated and who is not — the program
provides a different “level” or “exposure”
to treatment ranging from O (no treatment)
to 100 (maximum treatment level). Two
groups of wunits are thus formed: (i)
untreated, whose level of treatment (or
dose) is zero, and (ifreated, whose level
of treatment is greater than zero.

We are interested in estimating the causal
effect of the treatment variable on an
outcomey within the observed sample, by
assuming that treated and untreated units
may respond differently both to specific
observable confounders (that we collect in a
vector x), and to the “intensity” of the
treatmentt. We wish to estimate a dose-
response function of ont, either when the
treatment is assumed to be exogenous (i.e.,
selection-into-treatment depends only on
observable-to-analyst factors) or
endogenous (i.e., selection-into-treatment
depends both on observable and
unobservable-to-analyst factors).

Compared with similar models - and in
particular the one proposed by Hirano and
Imbens (2004) implemented in Stata by Bia
and Mattei (2008)- this model does not
need a full normality assumption, and it is
well-suited when many individuals have a
zero-level of treatment (“spike” or no-nil
probability mass at zero as in Royston et al.
(2010)). Additionally, it may account for
treatment “endogeneity” by exploiting an

! See also Bia, Flores and Mattei (2011) generalizing
the Hirano-Imbens (2004) model by allowing for a

nonparametric estimation of the Dose-Response
Function. Furthermore, see Guardabascio and
Ventura (2013) for an extension of the Hirano-

Imbens model allowing for various non-normal

distributions of the continuous-treatment variable.
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Instrumental-Variables (IV) estimation in a
continuous treatment context.

The reliability of the model and of its
Stata implementation vigtreatreg is
then checked by a Monte Carlo experiment,
proving that the model and the routine lead
to expected theoretical results.

The routine provides also an interesting
graphical representation of results by
optionally plotting both the conditional
effects’ distribution and the dose-response
function along with its confidence intervals.

The paper is organized as follows: section
2 and 3 present the model, its assumptions
and formulas, as well as the related
estimation techniques (section 3); section 4
presents and explains the use of the Stata
routine ct r eat r eg; then, the paper goes
on by showing, in section 5, an application
of ctreatreg on real data; section 6 sets
out the results from a related Monte Carlo
experiment to test the routine’s reliability;
section 7, finally, concludes the paper. At
the end of the paper, TablelA reports
ctreatreg’s help-file.

2. THE MODEL

We set out with some notation. Consider
two different and exclusive outcomes: one
referring to a unit when she is treategl;
and one referring to the same unit when she
is untreatedyy.

Define w; as the treatment indicator,
taking value 1 for treated and O for
untreated units, and = Xy, Xoi, Xai, --- » Xmi)
as a row vector ofM exogenous and
observable characteristics (confounders) for
uniti = 1, ... ,N. Let N be the number of
units involved in the experimen; be the

number of treated units, am) the number
of untreated units witil = N; + N.

Define two distinct functionsg,(x;) and
0o(Xi), as the unit’s responses to the vector
of confounding variables; when the unit is
treated and untreated respectively. Assume
11 and o to be two scalars, angl and g
two random variables having zero
unconditional mean and constant variance.
Finally, definet; — taking values within the
continuous range [0;100] - as the
continuous-treatment indicator, ah(;) as
a general derivable function tf

In what follows, in order to simplify
notation, we’ll get rid of the subscript
when defining population quantities and
relations.

Given previous notation, we assume a
specific population generating process for
the two exclusive potential outcomes

{W=l: Y, =+ g (x)+ h()+ g
wW=0:Y, =L+ gy(X)+ g

1)
where theh(t) function is different from
zero only in the treated status. Given this,
we can also define the causal parameters of
interests.
Indeed, by defining the treatment effect as
the difference TE =y —Yo), We define the
causal parameters of interests, as the
population Average Treatment Effects
(ATESs) conditional orx andt, that is:

2 Such a model is the representation dfeatment
random coefficient regressionas showed by
Wooldridge (1997; 2003). See also Wooldridge
(2010, Ch. 18). For the sake of simplicity, as wiere
to the population model, here we avoid to write the
subscript i referring to each single uniti's
relationships.
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ATE(Xt) = E(y, — Yo IX,1)
ATET(X;t>0)=E(y, — ¥, [x,t> 0)
ATENT(x;t=0)=E(y,— Y, IX,t= 0)

(2)

where ATE indicates the overall average
treatment effect, ATET the average
treatment effect on treated, and ATENT the
one on untreated units. By the law of
iterated expectation (LIE), we know that the
population unconditional ATEs are
obtained as:

ATE = E,, {ATE(X; 1)}
ATET = E,;.0 {ATE(X;t > 0)}
ATENT = E,_,, {ATE(x;t =0)}

®3)

where E(-) identifies the mean operator
taken over the support of a generic vector of
variables z. By assuming a linear-in-
parameters parametric form for
0, (X)=x8, and g,(X)=x08, the
Average  Treatment  Effect (ATE)
conditional orx andt becomes:

ATE(X,t,w) = wlJu+x8 + h(f)] +
(11— w [y +x9]
(4)

where u=(ui-10) and 6=(8:-8o) and the
unconditional Average Treatment Effect
(ATE) related to model (1) is equal to:

ATE = p(w= 1) + X 8 + Moo )+
p(w= 0)0u +X,.5)

wherep(-) is a probability, andi>0 is the
average of the response function taken

overt > 0. Since, by LIE, we have that
ATE = p(w=1yATET + p(w=0)yATENT,
we obtain from the previous formula that:

ATE = pW=1)(1+%. 5+ o)+ {W=0)(u+%_$)
ATET =p+% d+h.,
ATENT = p+%_6

where the doseesponse functiorns given
by averaging ATEX, t) overx:

t>0
if t=

ATET +(h(t)—h,,) if
ATENT

(6)

ATE(t) = {

that is a function of the treatment intensity
t. The estimation of equation (6) under
different identification hypothesises is the
main purpose of next sections.

3. THE REGRESSION APPROACH

In this section we consider the conditions
for a consistent estimation of the causal
parameters defined in (2) and (3) and thus
of the dose-response function in (6).

What it is firstly needed, however, is a
consistent estimation of the parameters of
the potential outcomes in (1) — we call here
“basic” parameters — as both ATEs and the
dose-response function are functions of
these parameters.

Under  previous  definitions  and
assumptions, and in particular the form of
the potential outcomes in model (1), to be
substituted into Rubin’s potential outcome
equation Y, =Yy, +WY —y), the
following Baseline random-coefficient
regressioncan be obtained (Wooldridge,
1997; 2003):
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Y, = to+ WIATE + X8, + WX —X)3+
wi - h+q
(7)

where
n=&+wle-g).

The equation sets out in (12), provides the
baseline regression for estimating the basic
parametersup, p1, 8o, 61, ATE) and then all
the remaining ATEs.

Both a semi-parametric or a parametric
approach can be employed as soon as a
parametric or a non-parametric form of the
functionh(t) is assumed.

In both cases, however, in order to get a
consistent estimation of basic parameters,
we need some additional hypotheses. We
start by assuming firsunconfoundedness
or Conditional Mean Independen¢€MI),
showing that it is sufficient to provide
parameters’ consistent estimation.

Then we remove this hypothesis and
introduce other identifying assumptions.

3.1 Estimation under
Unconfoundedness

Unconfoundedness states that, conditional
on the knowledge of the true exogenous
confounders x, the condition for
randomization are restored, and causal
parameters become identifiable.

Given the set of random variables
{Vi, Y, W , x} as defined above,
Unconfoundedness (or CMI) implies that:

E(y; |wi, x) = Efy; |x:) with j ={0,1}

CMI is a sufficient condition for
identifying ATEs and the dose-response
function in this context.

Indeed, this assumption entails that, given
the observable variables collectedkjrboth
w andt are exogenous in equation (7), so
that we can write the regression line of the
response simply as:

EQ; Wt X )=+ wOATE+X 8, +
wl —X)%+ wi(h(t)- h)
(8

and Ordinary Least Squares (OLS) can be
used to retrieve consistent estimation of all
parameters.

Once a consistent estimation of the
parameters in (8) is obtained, we can
estimate ATE directly from this regression,
and ATET, ATENT and the dose-response
function by plugging the estimated basic
parameters into formula (5) and (6).

This is possible because these parameters
are functions of consistent estimates, and
thus consistent themselves.

Observe that standard errors for ATET
and ATENT can be correctly obtained via
bootstrapping (see Wooldridge, 2010, pp.
911-919).

To complete the identification of ATEs
and the dose-response function, we finally
assume a parametric form fiaft):

h(t) =at + by + cf’

(9)

where a, b, and c are parameters to be
estimated in regression (8).
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Under CMI, an OLS estimation of

equation (8) produces consistent estimates
of the parameters, we indicate as
1,8, ATE,8,4,b,¢.

With these parameters at hand, we can
finally estimate consistently the dose-
response function as:

ATE(t) = WATET + &(t —%i;) '

df‘%z f) + dlﬁ__ltglta)] +
(1- WATENT
(10)

where:

A'ID'ET(ti) :A$E(l; )50

A simple plot of the curveb\'ID'E(ti )50
over the support of returns the pattern of
the dose-response function.

Moreover, for each level of the dogat
is also possible to calculate the-
confidence interval around the dose-
response curve. Indeed, by definiffig=t-
E(t), T=t>-E{t®) and T.= t-E@%), the
standard error of the dose-response function
is equal té&

6. =T62+T 0+ TO 2T,
ATE(t) ’

‘ Z-ETéa,c-'- 2 TZTé-b,t}llz

(11)

% This comes from the variance/covariance properties
whereT; T, T; are taken as constant amd andc as
random variables.

This means that the-confidence interval
of ATE(t) for eacht is then given by:

{ ATE(t)+Z,,6 , }

ATE(t)

that can be usefully plotted along the dose-
response curve for detecting visually the
statistical significance of the treatment
effect along the support of the ddse

3.2 Estimation under treatment
endogeneity

When w (and thust) are endogenous,
CMI hypothesis does not hold anymore,
and the OLS estimate of regression (8)
becomes biased.

This occurs because the orthogonality
condition implied by Unconfoundedness
fails, so that:

E(m[w.t.x)=E(e +wl
Te-g)wtx)#C
(12)

where it is clear that inequality depends on
the endogeneity ofv; (and t;), being x;
assumed to be pre-determined.

In such a case, however, an Instrumental-
Variables (IV) estimation may be
implemented to restore consistency.

To this aim, it is sufficient to express
previous model in a semi-structural form,
that is:
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Y =l + %0, + WATE+ W[x -X]6+wWT + bw] + qwJT+p

*

Vvi :XW,iBW +£Wi
r_
ti _Xt,ipt +£ti

where:Ty=t-E(t;), Tx=t*E(t% andTy = t*-
E(t®); w, represent the latent unobservable
counterpart of the binary variable (for
instance, w,’ might be seen as the net
benefit - cost minus return - of an agency
choosing to finance specific subjects)is
fully observed only whem=1 (andt=t’),
otherwise it is supposed to be unobserved
(although put equal to zerok,; andx; are
two sets of exogenous regressors, and;
andy; are error terms supposed to be freely
correlated one another with zero
unconditional mean.

Equation (13.2) — theelectionequation —
defines the regression explaining the net
benefit indicator w. The vector of
covariates«;; are the selection criteria used,
for instance, by an agency to set the treated
and untreated group. In turn, equation
(13.3) — thetreatment-level equation —
defines how the level of unit treatment is
decided, and it regards only units that were
considered eligible for treatment.

The vector of covariatex, are those
exogenous variables thought of
determining exactly the treatment level.

In equation (13.1)w; and Ty, Ty and Ty
are endogenous, being these latter ones
functions of the endogenous In general,
with two endogenous variables, the
identification of the linear system (13)
would require the availability of at least two
instrumental variableg,, andz, supposed
to be: () correlated withw and t',
respectively; i{) uncorrelated withe,,i, &,

as

1C

(13.1)
(13.2)
(13.3)

andy;. This leads naturally to the following
specification of the exogenous confounders
in system (13):

Xwi = [Xis Zu]
X = [Xi; Z]
(14)

Practical estimation of system (13) starts
from recognizing that the two last equations
- ie, (13.2) and (13.3) — represents a
bivariate sample-selection model or type-2
tobit model (Heckman, 1979). Generally,
such a model is estimated by invoking some
distributive assumptions regarding the error
terms. As usual, we assume that the error
terms in (13.2) and (13.3) are jointly
normally distributed and homoskedastic:

Ei N o/| 1 o,

2 Fele 7
where the normalizations,=1 is used
because only the sign of; is observed.
Given this additional assumption, all the
ingredients to provide a procedure for

estimating system (13) consistently are
available:

1. First: estimate equations (13.2)-(13.3)
jointly by a type-2 tobit model.

Comment As said, this can be achieved
by a Heckman two-step procedure
(Heckman, 1979). The Heckman two-step



Cerulli G., Working Paper Cnr-Ceris, N° 05/2014

=S

procedure performs a probit of on xy; in
the first step using only th&\; selected
observations, and an OLS regressiont/of
on X, augmented by the Mills’ ratio
obtained from the probit in the second step,
using all theN observations as predictions

are made also for the censored data.

However, because of the errors’ joint
normality, a maximum-likelihood (ML)
estimation can be also employed; ML leads
to more efficient estimates g§, andp..

2. Second compute the predicted values
of w (i.e.p,,) and t; (i.e. t) from
the previous type-2 tobit estimation,
and then perform a two-stage
least squares (2SLS) for equation
(13.1) using as instruments
the following exogenous variables

(X Pui» B X = X1, hmt'! i :EvAQi A-g)

Comment This 2SLS approach provides
consistent estimation of the basic
coefficients U, 8,, ATE,d,a,b,c
(Wooldridge, 2010, pp. 937-951)

3. Third: once previous procedure
estimates  consistently the  basic
parameters in system (13), the causal
parameters of interest - ATEs and the
dose-response function - can be
consistently estimated by the same plug-
in approach used for the OLS case.

4 Observe that instruments used in the 2SLS aralbase
on the orthogonal projection @ andt; on the vector

space generated by all the exogenous variables of

system (13).

3.3 Estimation of comparative dose-
response functions

Besides the dose-response function and
the other causal parameters of interest as
defined above, the previous model allows
also for calculating the average comparative
response at different level of treatment (as
in Hirano and Imbens, 2004). This quantity
takes this formula:

ATE(t,A) = E[y(t+A)-y(Y)] (15)

Equation (15) identifies the average
treatment effect between two states (or
levels of treatment)t and t+A. Given a
level of AZE, we can get a particular
ATE(t,A) that can be seen as the
“treatment function af\».

4. THE STATA ROUTINE
CTREATREG

The Stata routinet r eat r eg estimates
previous dose-response function both under
CMI and under treatment endogengity

The complete Stata help-file of the
routine showing the syntax along with the
options as set out in Table Al, at the end of
this paper.

Here, we just report the syntax and a
comment on the main options.

® For a Stata implementation when the treatment is
binary see Cerulli (2012).

11
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Syntax ofct r eat r eg

ctreatreg outcone treatnent [varlist]

[if]

[in] [weight],

nodel (nodel type) ct(treat _level) [hetero(varlist_h)
estype(nodel) iv_t(instrunment_t) iv_winstrunent_w)

del ta(nunber) ci (nunber) graphate graphdrf conf(nunber)
vce(robust) const(noconstant) head(noheader) beta]

This routine appears rather
straightforward to use and useful to provide
suitable graphical representations of results.
In particular, it provides a plot of the dose-
response function (along with its
confidence interval curves) and of the
density of ATE(x), ATET(xt) and
ATENT(x,t). The main ctreatreg’s
options with a comment of their function
are reported below:

nodel (nodel t ype) specifies  the
treatment model to be estimated, where
modeltypanust be one of the following two

models: ‘"ct-ols", "ct-iv'. It is always
required to specify one model.
ct(treat _|evel) specifies the

treatment level (or dose). This variable
takes values in the [0;100] interval, where 0
is the treatment level of non-treated units.
The maximum dose is thus 100.

het ero(varlist_h) specifies the
variables over which to calculate the
idiosyncratic Average Treatment Effect
ATE(x), ATET(x) and ATENT(X), where
x=varlist_h It is optional for all models.
When this option is not specified, the
command estimates the specified model
without heterogeneous average effect.
Observe thawvarlist_h should be the same
set or a subset of the variables specified in
varlist. Observe however that only
numerical variables may be considered.

12

est ype(nodel ) specifies which type of
estimation method has to be used for
estimating the type-2 tobit model in the
endogenous treatment case. Two choices
are available: "twostep" implements a
Heckman two-step procedure; "ml
implements a maximum-likelihood
estimation. This option is required only for
"ct-iv".

iv_t(instrument t) specifies the
variable to be used as instrument for the
continuous treatment variable t in the type-2
tobit model. This option is required only for
"ct-iv".

iv_winstrument_w) specifies the
variable to be used as instrument for the
binary treatment variable w in the type-2
tobit model. This option is required only for
"ct-iv".

del ta(nunber) identifies the average
treatment effect between two states: t and
t+delta. For any reliable delta, we can
obtain the response function
ATE(t;delta)=E[y(t)-y(t+delta)].

ci (nunber) sets the significant level for
the dose-response function, where number
may be 1, 5 or 10. This option is mandatory
when optiongr aphdr f is called.

graphate allows for a graphical
representation of the density distributions of
ATE(x;t) ATET(x;t) and ATENT(x;t). It is
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optional for all models and gives an
outcome only if variables inthet er o()
are specified.

graphdrf allows for a graphical
representation of the Dose Response
Function (DRF) and of its derivative. By
default, it plots also the 95% confidence
interval of the DRF over the dose levels.

Finally, ctreatreg generates some
useful variables for post-estimation analysis
and returns the estimated treatment effects
into scalars so to get, for instance,
bootstrapped standard errors for ATET and
ATENT that do not have a standard
analytical form (see Table Al).

sum tenure

Vari abl e |

_____________ o m e e e e e e e e e e ama
5.510331 0

tenure | 5.97785

count if tenure
51

The dataset description is set out below:

sysuse nl sw88. dta

descri be

5. AN INSTRUCTIONAL
APPLICATION

To see how to usectreatreg in
practice, we consider the Stata 13 example-
dataset “nlsw88.dta” collecting data from
the National Longitudinal Survey of Young
Women of 1988, containing information on
women’s labor conditions such as wages,
educational level, race, marital status, etc..
As an example, we aim at studying the
impact of the variable “tenure” (job tenure)
on “wage” (wages in dollars per hour)
conditional on a series of other covariates
(i.e., observable confounders) referring to
each single woman.

The variable tenure is a good candidate to
be exploited as continuous-treatment (i.e.,
dose) for such a model, having a (small)
spike at zero:

25. 91667

Contains data from C: \ Program Fi |l es\ St at al3\ ado\ base/ n/ nl sw88. dt a

obs: 2, 246

vars: 51

si ze: 345, 884

st or age di spl ay val ue

vari abl e nane type f or mat | abel
i dcode i nt %8. 0g
age byte %8. 0g
race byte %8. 0g racel bl

NLSW 1988 extract
1 May 2011 22:52
(_dta has notes)

NLS id
age in current year
race

13
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married byte %8. 0g marl b
never _narried byte %8. 0g

grade byte %8. 0g

coll grad byte %6. Og gr adl bl
sout h byte %8. 0g

snsa byte 99. 0g snsal bl
c_city byte %8. 0g

i ndustry byte %23. 0g i ndl bl
occupation byte %22. 0g occl b
uni on byte %8. 0g uni onl bl
wage fl oat 99. 0g

hour s byte %8. 0g

ttl_exp fl oat 99. 0g

tenure fl oat 99. 0g

married

never narried

current grade conpl eted
col |l ege graduate
lives in south
lives in SMSA
lives in centra
i ndustry
occupation

uni on wor ker
hourly wage
usual hours worked
total work experience
job tenure (years)

city

We consider a model where the outcome,
the treatment and the controls are defined as
follows:

e outcomey: “wage”

* treatmentw: “tenure”

e controls x: “age”, “race”, “married”,
“collgrad”, “south”, “industry”,

“occupation”, “union

Furthermore, we consider two (potential)
instrumental variables to use in the IV
estimation (when assuming endogenous
treatment):

e instrumentfor w: “c_city”
* instrumentfor t: ttl_exp

Notice, however, that the goodness of
these instruments is just assumed and
neither discussed, nor tested, being this just
an instructional example.

Before estimation, however, we first
generate the binary treatment variable, we
call “treatment”:

14

* Generate the binary treatnent

cap drop treatnment

gen treatnent=0 if tenure==0
. replace treatment=1 if tenure >0 &
tenure !=.

tab treatnment , ms

and then we generate the continuous-
treatment (dose), we call “tenure2”

* Cenerate the continuous-treatnment
(rangi ng between 0 and 100)
cap drop tenure2

qui sumtenure , detail
. gen tenure2=(tenure-0)/(r(max)-
0)*100

sum t enur e2

We have now all the ingredients to apply
ctreatr eg to this example. We start with
estimating the “ct-ols” model (by assuming
Unconfoundedness), and then the “ct-iv”
model (by assuming treatment
endogeneity).

Firstly, however, we put variables into
proper global macros:

. global xvars age i.race i.nmarried
i.collgrad i.south i.industry
i .occupation i.union

gl obal xvarh age married



Cerulli G., Working Paper Cnr-Ceris, N° 05/2014 (- { [ —

1. Applyingct r eat r eg using "ct-ols" (Unconfoundedness):

Xi: ctreatreg wage treatnent $xvars , graphrf 111
del ta(10) hetero($xvarh) nodel (ct-ols) ct(tenure2) ci(1)

Sour ce | SS df Ms Number of obs = 1851
------------- R F( 36, 1814) = 31.98
Model | 12500. 2091 36 347.228032 Prob > F = 0.0000
Residual | 19693.1797 1814 10.8562181 R- squar ed = 0.3883
------------- e Adj R-squared = 0.3761
Total | 32193.3889 1850 17.4018318 Root MBE = 3.2949
wage | Coef . Std. Err. t P>t [95% Conf. Interval]
_______________ ot e e e e e e e e e e e e eaaiaan
treatment | -.9830216 .5226014 -1.88 0.060 -2.007985 . 0419421
age | . 2534269 . 1523452 1.66 0.096 -. 0453635 . 5522173
_lrace_2 | -.2183432 .1938451 -1.13 0.260 -. 5985263 . 1618399
_lrace_3 | . 4435454 . 6846921 0.65 0.517 -. 8993225 1.786413
_Imarried_1 | 1. 673357 1.137141 1.47 0. 141 -. 5568866 3. 903602
_lcollgrad_1 | 2.897919 .2261756 12.81 0.000 2. 454327 3. 34151
_Isouth_1 | -.9020501 . 166936 -5.40 0.000 -1.229457  -.5746431
_lindustry_2 | . 8564371 2.577174 0.33 0. 740 -4.198104 5.910978
_lindustry_3 | 2.053313 1.322305 1.55 0.121 -. 540087 4. 646714
_lindustry_4 | . 7290251 1. 115645 0.65 0.514 - 1. 459059 2.917109
_lindustry_5 | 3.530271  1.152409 3.06 0.002 1. 270084 5. 790458
_lindustry_6 | -1.227708 1.106073 -1.11  0.267 -3.397019 . 9416029
_lindustry_7 | 1.205707 1.124255 1.07 0.284 -.9992633 3.410677
_lindustry_8 | . 0125544  1.173701 0.01 0.991 -2.289393 2. 314502
_lindustry_9 | -.5871449 1.212847 -0.48 0.628 -2.965868 1.791578
_lindustry_10 | . 6133445  1.407516 0.44 0.663 -2.147178 3. 373867
_lindustry_11 | -.6954708 1.102368 -0.63 0.528 -2.857514 1. 466572
_lindustry_12 | . 8412632  1.125167 0.75 0.455 -1. 365496 3. 048023
_loccupatio_2 | . 383661 .3211564 1.19 0.232 -.2462143 1. 013536
_loccupatio_3 | -2.338188 .2647344 -8.83 0.000 -2.857404 -1.818971
_loccupatio_4 | -1.239092 .4720051 -2.63 0.009 -2.164823  -.3133615
_loccupatio_5 | -2.120975 .5446508 -3.89 0.000 -3.189184  -1.052767
_loccupatio_6 | -3.692821 .3946061 -9.36 0.000 -4.466752  -2.918891
_loccupatio_7 | -3.825877 .9565287 -4.00 0.000 -5.70189  -1.949863
_loccupatio_8 | -2.814455 3311778 -8.50 0.000 -3.463985  -2.164925
_loccupatio_9 | -3.769752  3.483959 -1.08 0.279 -10. 60275 3. 063242
_loccupatio_10 | -4.184864 1.639078 -2.55 0.011 -7.399542  -.9701856
_loccupatio_11 | -3.131495 1.001367 -3.13 0.002 -5.095449  -1.167541
_loccupatio_12 | -4.126322 3.321699 -1.24 0.214 -10. 64108 2.388436
_loccupatio_13 | -2.298906 .3491133 -6.58 0.000 -2.983613 -1.6142
_lunion_1 | . 9275427 . 1960457 4.73 0.000 . 5430437 1.312042

15
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_ws_age | -.2517413 . 154501 -1.63 0.103  -.5547598 . 0512772
_ws_married | -1.875545  1.146583 -1.64  0.102 - 4. 124306 . 3732158
Tw| .0592733 .0282068 2.10 0.036 . 0039521 . 1145946
T2w | -.0002733 .0008544  -0.32 0.749 -. 001949 . 0014024
T3w | -1.23e-06 7.13e-06 -0.17 0.863  -.0000152 . 0000128
_cons | -1.19245 6.197508 -0.19  0.847 -13. 34745 10. 96255
Results show a good &guared with Response Function (Fig. 1), showing t
negative and significant ATE, equal the relation is first weakly increasing a
around -98. It means that, on average then decreasing with a maximum aroun
all values taken by jokehure, the effect ¢ dose level of 70.
tenure on wage is negative. Howe\ The relation is quite strongly significa
ctreatreg is able to plot the Dos (at 1%).

Dose Response Function

Outcome variable: wage

Response-function

| 1 1 | l 1 | | 1 | |
0 10 20 30 40 50 60 70 80 90 100

Dose (t)

ATE(t)
————— 1% significance

Model: ct-ols

Figure 1. Dose response function of “job tenure”‘wage”. Exogenous treatment ca

2. Applyingct r eat r eg using "C1-IV" (Treatment endogeneity):

Xi: ctreatreg wage treatnent $xvars , graphrf 111
delta(10) hetero($xvarh) nodel (ct-iv) ct(tenure2) ci(1l) ///
estype(twostep) iv_t(ttl_exp) iv_.w(c_city)

1€
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*** First step ***

Heckman sel ection nodel -- two-step estinates
(regression nodel with sanple selection)

Nunber of obs =
Censor ed obs =

Uncensor ed obs =

2231
51
2180

325. 86
0. 0000

| Coef Std. Err z

t enure2 |
age | . 2443289 . 5733199 0.43
_lrace_2 | 4.352386  5.732858 0.76
_lrace_3 | -5.507249 8.302224 -0.66
_Imarried_1 | 1.249892 2.81451 0.44
ttl_exp | 2.711141 . 151083 17. 94
_cons | -20.02397 19. 7768 -1.01

treat nent |
age | -.0428734 .0193969 -2.21
_lrace 2 | -.4157974 .1334837 -3.11
_lrace_3 | 4.201402 . .
_lmarried_1 | -.1936928 .1339983 -1.45
c_city | . 0404156 . 1371767 0.29
_cons | 3.941515 .7921321 4.98

mills |
| ambda | -34.00867 110. 9056 -0.31

rho | -1. 00000

sigma | 34.008667

val d chi 2(5) =
Prob > chi 2 =
P>| z| [ 95% Conf .
0.670 -. 8793574
0. 448 - 6. 883809
0. 507 -21.77931
0. 657 -4,266446
0. 000 2.415024
0.311 -58. 78578

027 -. 0808907
0. 002 -. 6774207
0. 148 -.4563246

. 768 -.2284458

. 000 2. 388965
0. 759 -251. 3797

I nterval ]

1. 368015
15. 58858
10. 76481
6. 766231
3. 007258
18. 73784

-. 0048561
-. 1541741

. 0689389
. 309277
5. 494065

*** Second step ***

I nstrumental variables (2SLS) regression

Model | -7979. 49202 9 -886.610224
Resi dual | 82081.3197 2221 36.9569201

Total | 74101.8276 2230 33.2295191

Nunber of obs

F(

9, 2221)

Prob > F
R- squar ed

Adj
Root

R- squar ed
VBE

= 2231
= 19. 96
= 0.0000

= 6.0792

17
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wage | Coef Std. Err t P>| t| [95% Conf. Interval]

_____________ o m m m e e e e e e e e e e e e e eeiidieaoos

treatment | 2.382129  28.81026 0.08 0.934 -54.11573 58. 87999

_ws_age | 2.483951 3. 440528 0.72 0.470 -4.263037 9. 23094

Tw | . 4324907 . 1644757 2.63 0.009 . 1099485 . 7550328

T2w | -.006349 .0051065 -1.24 0.214 -. 0163629 . 0036649

T3w | . 0000279  .0000414 0.67 0.500 -. 0000533 . 0001091

age | -2.531013  3.396567 -0.75 0.456 -9.191792 4.129767

_lrace_2 | -1.90372 . 732588 -2.60 0.009 -3.340349  -.4670908

_lrace_3 | . 9560915  1.293234 0.74 0.460 -1.579983 3. 492166

_Imarried_1 | -.7593091 .3741212 -2.03 0.043 -1.492973  -.0256451

_cons | 105. 4548 154. 0347 0. 68 0. 494 -196. 6122 407. 5218

Instrumented: treatment _ws_age Tw T2w T3w

| nstrunents: age lrace_ 2 lrace_ 3 Imarried_1 probw ps_age T hatp

T_hat2p T_hat 3p

We see that ATE becomes now posit
(2.38), but no longer significant. Howev
the Dose Response Function (Fig. 2)s

Response-function

Model: ct-iv

out a pattern similar to the previous mot
with still a slight parabolic form, getting tl
maximum at a dose level around

Dose Response Function

Outcome variable: wage

| |
50 60

Dose (t)

ATE(t)
1% significance

Figure 2. Dose response function of “job tenure”‘avage”. Endogenous treatment cas

18



Cerulli G., Working Paper Cnr-Ceris, N° 05/2014

=S

Of course, such results have to be taken
just as instructional, as we have no idea
about instruments’ goodness.

6. AMONTE CARLO EXPERIMENT
FOR TESTINGCTREATREG S
RELIABILITY

In this section we provide a Monte Carlo
experiment to check whethet r eat r eg
complies with predictions from the theory
and to assess its correctness from a
computational point of view. The first step
is that of defining a data generating process
(DGP) as follows:

w =150+ 60x + 3, + 6+ a> 0
Y, =0.1+ 0.2¢+ 0.%,+ e

y, =0.3+ 0.6, + 0.%,+ e
t=0.4x + 0.6x,+ u

where we have assumed, for simplifying the
model, thaie,=e,=e and:

X ~U(0;1)[100
X, ~U(0;1)[10C
z, ~ N(15,1)
z ~ N(100,1)
with:
(a,u) ~ N(0;2)
Q:Fﬁ G?J:Yﬁ pmiyﬂ
UU UU

o2=1, 0:=6.5,p,,= 0.8

Finally, we suppose that the correlation
betweena and e, can be either equal or
different from zero. In the latter case,is

endogenous. Therefore, we assume the
following DGP;

e=n+ya+v

v~ N(0;1)
y=+p*I(1-p?)
p =corr(e;a)

n =0.0001

When p=0 the model “ct-ols” would be
the appropriate one; otherwise, the model
“ct-iv’ should be employed. By, and z,
we indicate the instrumental variable for
and t, directly correlated withw and t
respectively, but (directly) uncorrelated
with y; andy,.

Given these assumptions, the DGP is
completed by the potential outcome
equationy, = yoi + W; (V1 - Yoi), generating
the observable outcome (or response)

The DGP is simulated 200 times using a
sample size of 10,000. For each simulation
we get a different data matrix;( X,, y, w, t,

Z,, Z) on which we apply the two models
(“ct-ols” and “ct-iv’) implemented by
ctreatreg.

Case 1. Exogeneity

We start by assuming=0, that is, zero
correlation between the error term of the
outcome equatione) and the error term of
the selection equationa), Under this
assumptiony is exogenous.

® The coefficienty is equal to £%/(1- p%)™Y? , where

p=corr(ega). To get this result put=e andy=a. We
know that corngy)=cov(xy)/sd)sdf). We can see
that, while varf)=1 by assumption, vaf=y>+1.
Moreover,covky)=Ccov(;+ ya+v;a)=cov(;+ya;a)+cov
(v;a)=cov(y+ya;a)=cov(ya;a)=ycov(a;a)=yvar(@)=y.
Thus,p=y/(y*+1)*2 that implies that=(v?/(1- p?) V2

19
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Table 1. Mean test of ATE from Monte Carlo resudigct r eat r eg.
Exogenous selection is assumed.

Mean Std. Err. [95% Confidence Interval]
ATE (true value) 9.22 - - -
ATE - CT-OLS 9.21 0.01 9.19 9.22
ATE - CT-IV 9.20 0.01 9.19 9.22
% BIAS of OLS 0.81 0.04 0.73 0.90
% BIAS of IV 0.86 0.04 0.77 0.94
Note:p=0. Number of observations 10,000. Number of sitiuha 200.
Moreover, we assume a strong correlation  exogeneity, he/she may reliably use

between the selection and the dose
equation, as implied by a correlation
betweena andu equal to 0.8. Results are
set out in Table 1. It is immediate to see
that the value of ATE obtained by the “ct-
ols” estimator is really close to the true
ATE (9.22) and that the confidence interval
at 5% of significance for this estimator
strictly contains that value. But also the
percentage bias of “ct-iv’ is very low
(0.86%) and comparable with CT-OLS
(0.81%) and sufficient to imply that the 5%
of significance contains the true ATE even
in this case.

These results confirm what was expected,
thus showing that the option “ct-ols” of
ctreatreg behaves correctly. As a
conclusion, when the analyst assumes

ctr eat r eg with the option “ct-ols”.

Case 2. Endogeneity

If we assume thap=0.7, that is, a high
positive correlation between the error term
of the outcome equatiore)(and the error
term of the selection equation)( thenw
becomes endogenous. For the sake of
comparison, we still assume the same
strong correlation between tkelectionand
the doseequation (0.8).Table 2 shows that
results are - also in this case - coherent with
the theoretical predictions. Indeed, the
percentage bias of model “ct-ols” is rather
high and equal to around 18%, whereas the
bias of “ct-iv” is around 1%. Furthermore,
and more importantly, the 95% mean test
confidence interval for “ct-iv’ contains the
true ATE.

Table 2. Mean test of ATE from Monte Carlo resutiigct r eat r eg.
Endogenous selection is assumed.

Mean Std. Err. [95% Confidence Interval]
ATE (true value) 9.22 - - -
ATE - CT-OLS 7.53 0.01 7.51 7.55
ATE - CT-IV 9.22 0.01 9.20 9.24
% BIAS of OLS 18.26 0.11 18.05 18.48
% BIAS of IV 1.28 0.07 1.15 1.41

Note:p=0.7. Number of observations 10,000. Number of &tens 200.
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MODEL CT-OLS (under exogeneity)

Dose Response Function

Outcome variable: outcome

Response-function

Dose (t)

ATE(t)
***** 95% confidence interval

Model: ct-ols

Response-function

MODEL CT-IV (undemdogeneity)

Dose Response Function

Outcome variable: outcome

I
0 10 20 30 40 50 60 70 80 90 100
Dose (t)

ATE(t)
***** 95% confidence interval

Model: ct-iv

Figure 3. Graphical representation of the dose-mse function using thet r eat r eg option
CT-OLS and CT-IV under exogeneity and endogenesyeactively.

As expected, this implies that “ct-iv” is an
unbiased estimator in presence of selection
endogeneity, thus leading to a reliable
estimation of the true value of ATE.

Overall, these results confirm the
reliability of both the model and
ctreatreg by allowing for a trustful use
of this model and its related Stata
implementation either under selection
exogeneity or endogeneity. Finally, Fig. 3
plots the dose-response function along with
the 95% interval confidence lines for both
models. This is done by exploiting the
“graphdrf” option of ct r eat r eg. Results
clearly confirm our predictions.

7. CONCLUSION

The paper has presentetlr eat r eg, a
Stata module for estimating dose-response
functions through a regression approach

where: (i) treatment iscontinuous (ii)
individuals may react heterogeneously to
observable confounders, and (iii) selection-
into-treatment may be endogenous.

Two estimation procedures are
contemplated by this routine: one based on
OLS under Conditional Mean Independence
(or CMI), and one based on Instrumental-
variables (IV), when assuming selection
endogeneity.

An application to real data, for testing in
an instructional example the impact of job
tenure on wages, has been set out. Finally,
in order to test the reliability of the
formulas and of their associated Stata
implementation, a Monte Carlo experiment
has been performed.

Monte Carlo results show that the
model's formulas and the Stata routine
accompanying it are both reliable as
estimates consistently fit expected results.
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Table Al. Stata help-file foct r eat r eg.

help ctreatreg

Title

ctreatreg - Dose-Response model with "continuous" treatment, endogeneity and heterogeneous response to
observable confounders

Syntax

ctreatreg outcome treatment [varlist] [if] [in] [weight], model(modeltype) ct(treat_level) [hetero(varlist_h)
estype(model) iv_t(instrument_t) iv_w(instrument_w) delta(number) ci(number) graphate graphdrf conf(number)
vce(robust) const(noconstant) head(noheader) beta]

fweights, iweights, and pweights are allowed; see weight.

Description

ctreatreg estimates the dose-response function (DRF) of a given treatment on a specific target variable, within

a model where units are treated with different Tevels. The DRF is defined as the “average treatment effect,

given the Tevel of the treatment t” (i.e. ATE(t)). The routine also estimates other “causal” parameters of

interest, such as the average treatment effect (ATE), the avera%e treatment effect on treated (ATET), the

average treatment effect on non-treated (ATENT), and the same effects conditional on t and on the vector of

covariates x.The DRF is aﬁprox1mated by a third degree polynomial function. Both OLS and IV estimation are

available, according to the case in which the treatment is not or 1is endogenous. In particular, the implemented

IV estimation is based on a Heckman bivariate selection model (i.e., type-2 tobit) for w (the yes/no decision to
treat " ? given unit) and t (the Tlevel of the treatment provided) in the first step, and a 2SLS estimation for the
outcome (y

equation in the second step. The routine allows also for a graphical representation of results.

Options

mode1(mode1type) spec1f1es the treatment model to be estimated, where modeltype must be one of the following two
models: "ct-ols", "ct-iv" it is always required to spec1fy one model.

ct(treat_level) specifies the_treatment level (or dose). This variable takes va]ues in the [0;100] interval,
where 0 is the treatment level of non-treated units. The maximun dose 1is thus 100.

hetero(varlist_h) specifies the variables over wh1ch to calculate the idiosyncratic Average Treatment Effect
ATE(X), ATET(x) and ATENT(x), where x=varlist_h. It is oﬁtiona1 for all models. when this option is not
spec1f1ed the command estimates the specified model without hetero%eneous average effect. Observe that
varlist_h should be the same set or a subset of the variables speci
only numerical variables may be considered.

ied in varlist. Observe however that

estype(mode]) specifies which type of estimation method has to be used for estimating the type-2 tobit model 1in
e

endogenous treatment case. Two choices are available: "twostep” implements a Heckman two-step procedure; "ml"
implements a maximum-likelihood estimation. This option is required only for "ct-iv"

iv_t(7nstrument_t) specifies the variable to be used as instrument for the continuous treatment variable t in the
type-2 tobit model. This option 1is required only for "ct-iv"

i;_w(fnstrument_ub specifies the variable to be used as instrument for the binary treatment variable w in the
type- . . . . A .
tobit model. This option is required only for "ct-iv".

delta(number) identifies the average treatment effect between two states: t and t+delta. For any reliable delta,
we can obtain the response function ATE(t;delta)=E[y(t)-y(t+delta)].

ci(number) sets the significant level for the dose-response function, where number may be 1, 5 or 10.
graphate allows for a graphical representation of the density distributions of ATE(x;t) ATET(x;t) and
ATENT(X;t). It is optional for all models and gives an outcome only if
variables into hetero() are specified.
graphdrf allows for a graphical representation of the Dose Response Function (DRF) and of
}ts $er1vat1ve It plots also the 95% confidence interval of the DRF over the dose
evels
vce(robust) allows for robust regression standard errors. It is optional for all models.
beta reports standardized beta coefficients. It is optional for all models.
const(noconstant) suppresses regression constant term. It is optional for all models.

conf(number) sets the confidence level equal to the specified number. The default is number=95.

modeltype_options description

Model . . . .

ct-ols control-function regression estimated by ordinary least squares

ct-iv IV regression estimated by Heckman bivariate selection model and 2SLS

ctreatreg creates a number of variables:
_ws_varname_h are the additional regressors used in model's regression when hetero(varlist_h) is specified.

_ps_ vgr?ame h are the additional instruments used in model's regression when hetero(varlist_h) 1is specified
in model "ct-i

ATE(X;t) is an estimate of the idiosyncratic Average Treatment Effect.
ATET(x;t) 1is an estimate of the idiosyncratic Average Treatment Effect on treated.

ATENT(X;t) is an estimate of the idiosyncratic Average Treatment Effect on Non-Treated.
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ATE(t) is an estimate of the dose-response function.

ATET(t) 1is the value of the dose-response function in t>0.

ATENT(t) it is the value of the dose-response function in t=0.

probw is the predicted probability from the Heckman selection model (estimated only for model "ct-iv").
mills is the predicted Mills' ratio from the Heckman selection model (estimated only for model "ct-iv").

t is a copy of the treatment level variable, but only in the sample considered.

t_hat is_the preQiction of the level of treatment from the Heckman bivariate selection model (estimated only

for model "ct-iv'").
der_ATE_t 1is the estimate of the derivative of the dose-response function.
std_ATE_t 1is the standardized value of the dose-response function.
std_der_ATE_t is the standardized value of the derivative of the dose-response function.
Tw, T2w, T3w are the three polynomial factors of the dose-response function.
T_hatp, T2_hatp, T3_hatp are the three instruments for the polynomial factors of the dose-response function
when model "ct-iv" 1is used.
ctreatreg returns the following scalars:
r(N_tot) is the total number of (used) observations.
r(N_treated) is the number of (used) treated units.
r(N_untreated) is the number of (used) untreated units.
r(ate) is the value of the Average Treatment Effect.
r(atet) 1is the value of the Average Treatment Effect on Treated.

r(atent) 1is the value of the Average Treatment Effect on Non-treated.

Remarks

The variable specified in treatment has to be a 0/1 binary variable (1 = treated, 0 =
untreated).

The standard errors for ATET and ATENT may be obtained via bootstrapping.

when using the option ct-iv in modeltype(), be sure that the number of variables included in
hetero() is less than the number of variables included in variist. This is because
otherwise instruments are too much correlated and some emerging collinearity prevent to
identify the estimates. For instance, when six covariates are specified in var/7st, at most
five are to be put into heteroQ).
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