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1. INTRODUCTION

his paper presents a Stata routine, 

ctreatreg, for estimating a 

dose-response function through a 

regression approach when: (i) treatment is 

continuous, (ii) individuals may react 

heterogeneously to observable confounders, 

and (iii) selection-into-treatment may be 

potentially endogenous. In this context, the 

dose-response function is equal to the 

“Average Treatment Effect, given the level 

of treatment t” (i.e. ATE(t)). But also other 

causal parameters of interest, such as the 

unconditional Average Treatment Effect 

(ATE), the Average Treatment Effect on 

Treated (ATET), the Average Treatment 

Effect on Non-Treated (ATENT) are 

estimated by ctreatreg, along with 

those effects conditional on the vector (x; t), 

where x is a vector of pre-determined 

variables. 

Such a routine seems of worth, as in 

many socio-economic and epidemiological 

contexts, interventions take the form of a 

continuous exposure to a certain type of 

treatment. Indeed, from a program 

evaluation perspective, what is relevant in 

many settings is not only the binary 

treatment status, but also the level of 

exposure (or “dose”) provided by a public 

agency.  

This is also in tune with the language of 

epidemiology, where dose-response 

functions are usually estimated in order to 

check patients’ resilience to different levels 

of drug administration (Robertson et al., 

1994; Royston and Sauerbrei, 2008).    

To fix ideas, consider a policy program 

where the treatment is assigned not 

randomly (i.e., according to some 

“structural” rule), and where – after setting 

who is treated and who is not – the program 

provides a different “level” or “exposure” 

to treatment ranging from 0 (no treatment) 

to 100 (maximum treatment level). Two 

groups of units are thus formed: (i) 

untreated, whose level of treatment (or 

dose) is zero, and (ii) treated, whose level 

of treatment is greater than zero.  

We are interested in estimating the causal 

effect of the treatment variable t on an 

outcome y within the observed sample, by 

assuming that treated and untreated units 

may respond differently both to specific 

observable confounders (that we collect in a 

vector x), and to the “intensity” of the 

treatment t. We wish to estimate a dose-

response function of y on t, either when the 

treatment is assumed to be exogenous (i.e., 

selection-into-treatment depends only on 

observable-to-analyst factors) or 

endogenous (i.e., selection-into-treatment 

depends both on observable and 

unobservable-to-analyst factors).   

Compared with similar models - and in 

particular the one proposed by Hirano and 

Imbens (2004) implemented in Stata by Bia 

and Mattei (2008)1 - this model does not 

need a full normality assumption, and it is 

well-suited when many individuals have a 

zero-level of treatment (“spike” or no-nil 

probability mass at zero as in Royston et al. 

(2010)). Additionally, it may account for 

treatment “endogeneity” by exploiting an 

1 See also Bia, Flores and Mattei (2011) generalizing 

the Hirano-Imbens (2004) model by allowing for a 

nonparametric estimation of the Dose-Response 

Function. Furthermore, see Guardabascio and 

Ventura (2013) for an extension of the Hirano-

Imbens model allowing for various non-normal 

distributions of the continuous-treatment variable. 

T
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Instrumental-Variables (IV) estimation in a 

continuous treatment context.  

The reliability of the model and of its 

Stata implementation via ctreatreg is 

then checked by a Monte Carlo experiment, 

proving that the model and the routine lead 

to expected theoretical results.  

The routine provides also an interesting 

graphical representation of results by 

optionally plotting both the conditional 

effects’ distribution and the dose-response 

function along with its confidence intervals.  

The paper is organized as follows: section 

2 and 3 present the model, its assumptions 

and formulas, as well as the related 

estimation techniques (section 3); section 4 

presents and explains the use of the Stata 

routine ctreatreg; then, the paper goes 

on by showing, in section 5, an application 

of ctreatreg on real data; section 6 sets 

out the results from a related Monte Carlo 

experiment to test the routine’s reliability; 

section 7, finally, concludes the paper. At 

the end of the paper, Table1A reports 

ctreatreg’s help-file.   

2. THE MODEL 

We set out with some notation. Consider 

two different and exclusive outcomes: one 

referring to a unit i when she is treated, y1i; 

and one referring to the same unit when she 

is untreated, y0i.  

Define wi as the treatment indicator, 

taking value 1 for treated and 0 for 

untreated units, and xi = (x1i, x2i,  x3i, ... , xMi)  

as a row vector of M exogenous and 

observable characteristics (confounders) for 

unit i = 1, ... , N. Let N be the number of 

units involved in the experiment, N1 be the 

number of treated units, and N0 the number 

of untreated units with N = N1 + N0. 

Define two distinct functions, g1(xi) and 

g0(xi), as the unit i’s responses to the vector 

of confounding variables xi when the unit is 

treated and untreated respectively. Assume 

µ1 and µ0 to be two scalars, and e1 and e0 

two random variables having zero 

unconditional mean and constant variance. 

Finally, define ti – taking values within the 

continuous range [0;100] – as the 

continuous-treatment indicator, and h(ti) as 

a general derivable function of ti.  

In what follows, in order to simplify 

notation, we’ll get rid of the subscript i 

when defining population quantities and 

relations. 

Given previous notation, we assume a 

specific population generating process for 

the two exclusive potential outcomes2: 
 

1 1 1 1

0 0 0 0

1:   ( ) ( )

0 :  ( )

w y g h t e

w y g e

µ
µ

= = + + +
 = = + +

x

x
 

 

 

(1) 

where the h(t) function is different from 

zero only in the treated status. Given this, 

we can also define the causal parameters of 

interests.  

Indeed, by defining the treatment effect as 

the difference TE = (y1 – y0), We define the 

causal parameters of interests, as the 

population Average Treatment Effects 

(ATEs) conditional on x and t, that is: 
 

                                                      
2 Such a model is the representation of a treatment 

random coefficient regression as showed by 

Wooldridge (1997; 2003). See also Wooldridge 

(2010, Ch. 18). For the sake of simplicity, as we refer 

to the population model, here we avoid to write the 

subscript i referring to each single unit i’s 

relationships.  
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1 0

1 0

1 0

ATE( ; ) E( | , )

ATET( ; 0) E( | , 0)

ATENT( ; 0) E( | , 0)

t y y t

t y y t

t y y t

= −
> = − >

= = − =

x x

x x

x x

 

(2) 
 

where ATE indicates the overall average 

treatment effect, ATET the average 

treatment effect on treated, and ATENT the 

one on untreated units. By the law of 

iterated expectation (LIE), we know that the 

population unconditional ATEs are 

obtained as: 
 

( ; )

( ; 0)

( ; 0)

ATE = E {ATE( ; )}

ATET = E {ATE( ; 0)}

ATENT = E {ATE( ; 0)}

t

t

t

t

t

t

>

=

>

=

x

x

x

x

x

x

 

 

 

(3) 
 

where Ez(·) identifies the mean operator 

taken over the support of a generic vector of 

variables z. By assuming a linear-in-

parameters parametric form for 

0( )g = 0x xδ  and 1 1( )g =x xδ  the 

Average Treatment Effect (ATE) 

conditional on x and t becomes: 

 

 

(4) 
 

where µ=(µ1-µ0) and δ=(δ1-δ0) and the 

unconditional Average Treatment Effect 

(ATE) related to model (1) is equal to: 
 

 
 

where p(·) is a probability, and 0th >  is the 

average of the response function taken  

over t > 0. Since, by LIE, we have that  

ATE = p(w=1)·ATET + p(w=0)·ATENT, 

we obtain from the previous formula that:  

 

 
 

where the dose-response function is given 

by averaging ATE(x, t) over x: 
 

 
(6) 

 

that is a function of the treatment intensity 

t. The estimation of equation (6) under 

different identification hypothesises is the 

main purpose of next sections. 

3. THE REGRESSION APPROACH 

In this section we consider the conditions 

for a consistent estimation of the causal 

parameters defined in (2) and (3) and thus 

of the dose-response function in (6).  

What it is firstly needed, however, is a 

consistent estimation of the parameters of 

the potential outcomes in (1) – we call here 

“basic” parameters – as both ATEs and the 

dose-response function are functions of 

these parameters.  

Under previous definitions and 

assumptions, and in particular the form of 

the potential outcomes in model (1), to be 

substituted into Rubin’s potential outcome 

equation 0 1 0( )i i i iy y w y y= + − , the 

following Baseline random-coefficient 

regression can be obtained (Wooldridge, 

1997; 2003): 

ATE( , , ) [ ( )] (1 ) [ ]t w w h t wµ µ= ⋅ + + + − ⋅ +x xδ δ

ATE( , , ) [ ( )] (1 ) [ ]t w w h t wµ µ= ⋅ + + + − ⋅ +δ xδ  

 
0 0 0ATE = ( 1) ( ) ( 0) ( )t t tp w h p wµ µ> > == ⋅ + + + = ⋅ +x δ δ

0 0 0ATE = ( 1) ( ) ( 0) ( )t t tp w h p wµ µ> > == ⋅ + + + = ⋅ +δ x δ

0 0 0

0 0

0

ATE ( 1)( ) ( 0)( )

ATET

ATENT

µ µ
µ

µ

> > =

> >

=

 = = + + + = +


= + +
 = +

t t t

t t

t

p w h p w

h

x δ x δ

x δ

x δ
 

 

 

0ATET ( ( ) )    if    0
ATE( )

ATENT                       if    0
th t h t

t
t

> + − >
= 

=
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(7) 
 

where  
 

0 1 0( )i i i i ie w e eη = + ⋅ − . 

 

The equation sets out in (12), provides the 

baseline regression for estimating the basic 

parameters (µ0, µ1, δ0, δ1, ATE) and then all 

the remaining ATEs.  

Both a semi-parametric or a parametric 

approach can be employed as soon as a 

parametric or a non-parametric form of the 

function h(t) is assumed.  

In both cases, however, in order to get a 

consistent estimation of basic parameters, 

we need some additional hypotheses. We 

start by assuming first Unconfoundedness 

or Conditional Mean Independence (CMI), 

showing that it is sufficient to provide 

parameters’ consistent estimation.  

Then we remove this hypothesis and 

introduce other identifying assumptions.   

 

3.1 Estimation under 
Unconfoundedness 

Unconfoundedness states that, conditional 

on the knowledge of the true exogenous 

confounders x, the condition for 

randomization are restored, and causal 

parameters become identifiable.  

Given the set of random variables  

{ y1i, y1i, wi , xi} as defined above, 

Unconfoundedness (or CMI) implies that: 
 

E(yij | wi , xi) = E(yij | xi)    with  j = {0,1}  

 

CMI is a sufficient condition for 

identifying ATEs and the dose-response 

function in this context.  

Indeed, this assumption entails that, given 

the observable variables collected in x, both 

w and t are exogenous in equation (7), so 

that we can write the regression line of the 

response y simply as: 
 

 
(8) 

 

and Ordinary Least Squares (OLS) can be 

used to retrieve consistent estimation of all 

parameters.  

Once a consistent estimation of the 

parameters in (8) is obtained, we can 

estimate ATE directly from this regression, 

and ATET, ATENT and the dose-response 

function by plugging the estimated basic 

parameters into formula (5) and (6).  

This is possible because these parameters 

are functions of consistent estimates, and 

thus consistent themselves.  

Observe that standard errors for ATET 

and ATENT can be correctly obtained via 

bootstrapping (see Wooldridge, 2010, pp. 

911-919). 

To complete the identification of ATEs 

and the dose-response function, we finally 

assume a parametric form for h(t): 
 

2 3( )i i i ih t at bt ct= + +   

 

(9) 
 

where a, b, and c are parameters to be 

estimated in regression (8). 

 

 

 
0 ATE ( ) ( ( ) )i i i i i i i iy w w w h t hµ η= + ⋅ + + ⋅ − + ⋅ − +0x δ x x δ

ATE ( ) ( ( ) )i i i i i i i iy w w w h t hµ η= + ⋅ + + ⋅ − + ⋅ − +δ δ

 
0E( | , , ) ATE ( ) ( ( ) )i i i i i i i i i iy w t w w w h t hµ= + ⋅ + + ⋅ − + ⋅ −0x x δ δ

E( | , , ) ATE ( ) ( ( ) )i i i i i i i i i iy w t w w w h t h= + ⋅ + + ⋅ − + ⋅ −δ x x δ



 

Cerulli G., Working Paper Cnr-Ceris, N° 05/2014                                                              

 

9 

 

Under CMI, an OLS estimation of 

equation (8) produces consistent estimates 

of the parameters, we indicate as 

0
ˆˆ ˆˆˆ ˆ ˆ, ,ATE, , , , .a b cµ 0δ δ  

With these parameters at hand, we can 

finally estimate consistently the dose-

response function as:  

 

 
(10) 

 

where: 

0ATE T( ) ATE( )
ii i tt t

∧ ∧

>=  

 

A simple plot of the curve 0ATE( )
∧

>ii tt
over the support of t returns the pattern of 

the dose-response function.  

Moreover, for each level of the dose t, it 

is also possible to calculate the α-

confidence interval around the dose-

response curve. Indeed, by defining T1=t-

E(t), T2=t2-E(t2) and T3= t3-E(t3), the 

standard error of the dose-response function 

is equal to3: 
 

 

(11) 
 

                                                      
3 This comes from the variance/covariance properties 

where T1 T2 T3 are taken as constant and a, b and c as 

random variables. 

This means that the α-confidence interval 

of ˆATE( )t for each t is then given by: 
 

{ }/ 2
ATE( )

ˆ ˆ ATE( )
t

t Zα σ ∧± ⋅  

 

that can be usefully plotted along the dose-

response curve for detecting visually the 

statistical significance of the treatment 

effect along the support of the dose t.  

 

3.2 Estimation under treatment 
endogeneity 

When w (and thus t) are endogenous, 

CMI hypothesis does not hold anymore, 

and the OLS estimate of regression (8) 

becomes biased.  

This occurs because the orthogonality 

condition implied by Unconfoundedness 

fails, so that:  

 

 

(12) 

 

where it is clear that inequality depends on 

the endogeneity of wi (and ti), being xi 

assumed to be pre-determined.  

In such a case, however, an Instrumental-

Variables (IV) estimation may be 

implemented to restore consistency.  

To this aim, it is sufficient to express 

previous model in a semi-structural form, 

that is: 

1 1 1

1 1 1
ˆ ˆATE( ) [ATET ( ) ( ) ( )] (1 ) ATENT

N N N

i i i i i i i
i i i

t w a t t b t t c t t w
N N N

∧ ∧ ∧

= = =

= + − + − + − + −∑ ∑ ∑

2 2 3 3

1 1 1

1 1 1ˆˆ ˆATE( ) [ATET ( ) ( ) ( )] (1 ) ATENT
N N N

i i i i i i i
i i i

t w a t t b t t c t t w
N N N

∧ ∧ ∧

= = =

= + − + − + − + −∑ ∑ ∑

ATE( ) [ATET ( ) ( ) ( )] (1 ) ATENTt w a t t b t t c t t w
∧ ∧ ∧

= + − + − + − + −

{ 2 2 2 2 2 2
1 2 3 1 2 , 1 3 , 2 3 ,

ATE( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2a b c a b a c b c

t
T T T TT TT T Tσ σ σ σ σ σ σ∧ = + + + + +

}1/ 2

1 2 3 1 2 , 1 3 , 2 3 ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2a b c a b a c b cT T T TT TT T Tσ σ σ σ σ σ σ= + + + + +  

 ( ) ( 0 1 0E , , E ( ) , , 0i i i i i i i i i i iw t e w e e w tη = + ⋅ − ≠x x

)0 1 0E , , E ( ) , , 0i i i i i i i i i i iw t e w e e w t= + ⋅ − ≠x x
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0 1 2 3

*
,

,

ATE [ ]

                                                                      

                                                     

i i i i i i i i i i i i

i w i w wi

i t i t ti

y w w wT bwT cwT

w

t

µ η
ε

ε

= + + + − + + + +

= +
′ = +

0x δ x x δ

x β

x β                   







 

 

(13.1) 

(13.2) 

(13.3) 

 

 

where: T1i=ti-E(ti), T2i=ti
2-E(ti

2) and T3i = ti
3-

E(ti
3); wi

* represent the latent unobservable 

counterpart of the binary variable wi (for 

instance, wi
* might be seen as the net 

benefit - cost minus return - of an agency 

choosing to finance specific subjects); ti is 

fully observed only when wi=1 (and ti= it ′ ), 

otherwise it is supposed to be unobserved 

(although put equal to zero);  xwi and xti are 

two sets of exogenous regressors, and εiw, εit 

and ηi are error terms supposed to be freely 

correlated one another with zero 

unconditional mean.  

Equation (13.2) – the selection equation – 

defines the regression explaining the net 

benefit indicator w*. The vector of 

covariates x1i are the selection criteria used, 

for instance, by an agency to set the treated 

and untreated group. In turn, equation 

(13.3) – the treatment-level equation – 

defines how the level of unit treatment is 

decided, and it regards only units that were 

considered eligible for treatment.  

The vector of covariates x2i are those 

exogenous variables thought of as 

determining exactly the treatment level.    

In equation (13.1), wi and T1i, T2i and T3i 

are endogenous, being these latter ones 

functions of the endogenous t. In general, 

with two endogenous variables, the 

identification of the linear system (13) 

would require the availability of at least two 

instrumental variables zw,i and zt,i supposed 

to be: (i) correlated with wi
* and it′ , 

respectively; (ii ) uncorrelated with εw,i, εt,i 

and ηi. This leads naturally to the following 

specification of the exogenous confounders 

in system (13):  
 

xw,i = [xi; zw,i] 
 

xt,i = [xi; zt,i] 

 

 
(14) 

Practical estimation of system (13) starts 

from recognizing that the two last equations 

– i.e., (13.2) and (13.3) – represents a 

bivariate sample-selection model or type-2 

tobit model (Heckman, 1979). Generally, 

such a model is estimated by invoking some 

distributive assumptions regarding the error 

terms. As usual, we assume that the error 

terms in (13.2) and (13.3) are jointly 

normally distributed and homoskedastic: 
 

2

10
;

0
wi wt

wt tti

N
ε σ

σ σε
     
     
      

∼  

 

where the normalization σw=1 is used 

because only the sign of wi
* is observed.  

Given this additional assumption, all the 

ingredients to provide a procedure for 

estimating system (13) consistently are 

available: 
 

1. First: estimate equations (13.2)-(13.3) 

jointly by a type-2 tobit model. 
 

Comment. As said, this can be achieved 

by a Heckman two-step procedure 

(Heckman, 1979). The Heckman two-step 
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( 1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , [ ], , ,i wi wi i wi i wi i wi ip p p T p T p T−x x x ) 

procedure performs a probit of wi on x1i in 

the first step using only the N1 selected 

observations, and an OLS regression of it ′  

on x2i, augmented by the Mills’ ratio 

obtained from the probit in the second step, 

using all the N observations as predictions 

are made also for the censored data. 

However, because of the errors’ joint 

normality, a maximum-likelihood (ML) 

estimation can be also employed; ML leads 

to more efficient estimates of βw and βt.  
 

2. Second: compute the predicted values 

of wi (i.e. ˆwip ) and ti (i.e. ît ) from 

the previous type-2 tobit estimation, 

and then perform a two-stage  

least squares (2SLS) for equation 

(13.1) using as instruments 

the following exogenous variables 

 

Comment. This 2SLS approach provides 

consistent estimation of the basic 

coefficients 0,  ,  ATE, ,  ,  ,  a b cµ 0δ δ  

(Wooldridge, 2010, pp. 937-951)4.   
 

3. Third: once previous procedure 

estimates consistently the basic 

parameters in system (13), the causal 

parameters of interest - ATEs and the 

dose-response function - can be 

consistently estimated by the same plug-

in approach used for the OLS case. 
 

 

 

 

                                                      
4 Observe that instruments used in the 2SLS are based 

on the orthogonal projection of wi and ti on the vector 

space generated by all the exogenous variables of 

system (13). 

3.3 Estimation of comparative dose-
response functions 

Besides the dose-response function and 

the other causal parameters of interest as 

defined above, the previous model allows 

also for calculating the average comparative 

response at different level of treatment (as 

in Hirano and Imbens, 2004). This quantity 

takes this formula:  
 

ATE( , ) E[ ( ) ( )]∆ = + ∆ −t y t y t  (15) 

 

Equation (15) identifies the average 

treatment effect between two states (or 

levels of treatment): t and t + ∆ . Given a 

level of ∆ = ∆ , we can get a particular 

ATE( , )t ∆  that can be seen as the 

“treatment function at ∆” .  

 

4. THE STATA ROUTINE 

CTREATREG 

The Stata routine ctreatreg estimates 

previous dose-response function both under 

CMI and under treatment endogeneity5. 

The complete Stata help-file of the 

routine showing the syntax along with the 

options as set out in Table A1, at the end of 

this paper.  

Here, we just report the syntax and a 

comment on the main options. 

                                                      
5 For a Stata implementation when the treatment is 

binary see Cerulli (2012). 
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Syntax of ctreatreg 
 
ctreatreg outcome treatment [varlist] [if] [in] [weight],  

model(modeltype) ct(treat_level) [hetero(varlist_h)       

estype(model) iv_t(instrument_t) iv_w(instrument_w)  

delta(number) ci(number) graphate graphdrf conf(number)  

vce(robust) const(noconstant) head(noheader) beta] 

 

This routine appears rather 

straightforward to use and useful to provide 

suitable graphical representations of results. 

In particular, it provides a plot of the dose-

response function (along with its 

confidence interval curves) and of the 

density of ATE(x,t), ATET(x,t) and 

ATENT(x,t). The main ctreatreg’s 

options with a comment of their function 

are reported below:  
 

model(modeltype) specifies the 

treatment model to be estimated, where 

modeltype must be one of the following two 

models: "ct-ols", "ct-iv". It is always 

required to specify one model. 
 

ct(treat_level) specifies the 

treatment level (or dose).  This variable 

takes values in the [0;100] interval, where 0 

is the treatment level of non-treated units. 

The maximum dose is thus 100. 
 

hetero(varlist_h) specifies the 

variables over which to calculate the 

idiosyncratic Average Treatment Effect 

ATE(x), ATET(x) and ATENT(x), where 

x=varlist_h. It is optional for all models. 

When this option is not specified, the 

command estimates the specified model 

without heterogeneous average effect. 

Observe that varlist_h should be the same 

set or a subset of the variables specified in 

varlist.  Observe however that only 

numerical variables may be considered. 
 

estype(model) specifies which type of 

estimation method has to be used for 

estimating the type-2 tobit model in the 

endogenous treatment case. Two choices 

are available: "twostep" implements a 

Heckman two-step procedure; "ml" 

implements a maximum-likelihood 

estimation. This option is required only for 

"ct-iv". 
 

iv_t(instrument_t) specifies the 

variable to be used as instrument for the 

continuous treatment variable t in the type-2 

tobit model. This option is required only for 

"ct-iv". 
 

iv_w(instrument_w) specifies the 

variable to be used as instrument for the 

binary treatment variable w in the type-2 

tobit model. This option is required only for 

"ct-iv". 
 

delta(number) identifies the average 

treatment effect between two states: t and 

t+delta. For any reliable delta, we can 

obtain the response function 

ATE(t;delta)=E[y(t)-y(t+delta)]. 
 

ci(number) sets the significant level for 

the dose-response function, where number 

may be 1, 5 or 10. This option is mandatory 

when option graphdrf is called. 
 

graphate allows for a graphical 

representation of the density distributions of 

ATE(x;t) ATET(x;t) and ATENT(x;t). It is 
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optional for all models and gives an 

outcome only if variables into hetero() 

are specified.  
 

graphdrf allows for a graphical 

representation of the Dose Response 

Function (DRF) and of its derivative. By 

default, it plots also the 95% confidence 

interval of the DRF over the dose levels.  
 

Finally, ctreatreg generates some 

useful variables for post-estimation analysis 

and returns the estimated treatment effects 

into scalars so to get, for instance, 

bootstrapped standard errors for ATET and 

ATENT that do not have a standard 

analytical form (see Table A1).  

5. AN INSTRUCTIONAL 

APPLICATION   

To see how to use ctreatreg in 

practice, we consider the Stata 13 example-

dataset “nlsw88.dta” collecting data from 

the National Longitudinal Survey of Young 

Women of 1988, containing information on 

women’s labor conditions such as wages, 

educational level, race, marital status, etc.. 

As an example, we aim at studying the 

impact of the variable “tenure” (job tenure) 

on “wage” (wages in dollars per hour) 

conditional on a series of other covariates 

(i.e., observable confounders) referring to 

each single woman.  

The variable tenure is a good candidate to 

be exploited as  continuous-treatment (i.e., 

dose) for such a model, having a (small) 

spike at zero: 
 
 
. sum tenure 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
      tenure |      2231     5.97785    5.510331          0   25.91667 
 
. count if tenure ==0 
   51 
 

 

The dataset description is set out below: 

 
 
. sysuse nlsw88.dta 
 
. describe 
 
 
 
Contains data from C:\Program Files\Stata13\ado\base/n/nlsw88.dta 
  obs:         2,246                          NLSW, 1988 extract 
 vars:            51                          1 May 2011 22:52 
 size:       345,884                          (_dta has notes) 
---------------------------------------------------------------------- 
              storage   display    value 
variable name   type    format     label      variable label 
------------------------------------------------------------------------------ 
idcode          int     %8.0g                 NLS id 
age             byte    %8.0g                 age in current year 
race            byte    %8.0g      racelbl    race 
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married         byte    %8.0g      marlbl     married 
never_married   byte    %8.0g                 never married 
grade           byte    %8.0g                 current grade completed 
collgrad        byte    %16.0g     gradlbl    college graduate 
south           byte    %8.0g                 lives in south 
smsa            byte    %9.0g      smsalbl    lives in SMSA 
c_city          byte    %8.0g                 lives in central city 
industry        byte    %23.0g     indlbl     industry 
occupation      byte    %22.0g     occlbl     occupation 
union           byte    %8.0g      unionlbl   union worker 
wage            float   %9.0g                 hourly wage 
hours           byte    %8.0g                 usual hours worked 
ttl_exp         float   %9.0g                 total work experience 
tenure          float   %9.0g                 job tenure (years) 

 
 

 

We consider a model where the outcome, 

the treatment and the controls are defined as 

follows:  

 

• outcome y: “wage” 

• treatment w: “tenure” 

• controls x: “age”, “race”, “married”, 

“collgrad”, “south”, “industry”, 

“occupation”, “union 

 

Furthermore, we consider two (potential) 

instrumental variables to use in the IV 

estimation (when assuming endogenous 

treatment): 

 

• instrument for w: “c_city” 

• instrument for t: ttl_exp 

 

Notice, however, that the goodness of 

these instruments is just assumed and 

neither discussed, nor tested, being this just 

an instructional example.  

Before estimation, however, we first 

generate the binary treatment variable, we 

call “treatment”:  
 

 

* Generate the binary treatment 
. cap drop treatment 
. gen treatment=0 if tenure==0 
. replace treatment=1 if tenure >0 & 
tenure !=.  
. tab treatment , mis 

 

and then we generate the continuous-

treatment (dose), we call “tenure2” 

 
* Generate the continuous-treatment 
(ranging between 0 and 100) 
. cap drop tenure2 
. qui sum tenure , detail 
. gen tenure2=(tenure-0)/(r(max)-
0)*100 
. sum tenure2 

 

We have now all the ingredients to apply 

ctreatreg to this example. We start with 

estimating the “ct-ols” model (by assuming 

Unconfoundedness), and then the “ct-iv” 

model (by assuming treatment 

endogeneity).  

Firstly, however, we put variables into 

proper global macros:  

 
. global xvars age i.race i.married 
i.collgrad i.south i.industry 
i.occupation i.union 
 
. global xvarh age married 
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1. Applying ctreatreg using "ct-ols" (Unconfoundedness): 

 

 

. xi: ctreatreg wage treatment $xvars  ,  graphrf   /// 

delta(10) hetero($xvarh) model(ct-ols) ct(tenure2)  ci(1) 

 

      Source |       SS       df       MS              Number of obs =    1851 

-------------+------------------------------           F( 36,  1814) =   31.98 

       Model |  12500.2091    36  347.228032           Prob > F      =  0.0000 

    Residual |  19693.1797  1814  10.8562181           R-squared     =  0.3883 

-------------+------------------------------           Adj R-squared =  0.3761 

       Total |  32193.3889  1850  17.4018318           Root MSE      =  3.2949 

 

-------------------------------------------------------------------------------- 

          wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

     treatment |  -.9830216   .5226014    -1.88   0.060    -2.007985    .0419421 

           age |   .2534269   .1523452     1.66   0.096    -.0453635    .5522173 

      _Irace_2 |  -.2183432   .1938451    -1.13   0.260    -.5985263    .1618399 

      _Irace_3 |   .4435454   .6846921     0.65   0.517    -.8993225    1.786413 

   _Imarried_1 |   1.673357   1.137141     1.47   0.141    -.5568866    3.903602 

  _Icollgrad_1 |   2.897919   .2261756    12.81   0.000     2.454327     3.34151 

     _Isouth_1 |  -.9020501    .166936    -5.40   0.000    -1.229457   -.5746431 

  _Iindustry_2 |   .8564371   2.577174     0.33   0.740    -4.198104    5.910978 

  _Iindustry_3 |   2.053313   1.322305     1.55   0.121     -.540087    4.646714 

  _Iindustry_4 |   .7290251   1.115645     0.65   0.514    -1.459059    2.917109 

  _Iindustry_5 |   3.530271   1.152409     3.06   0.002     1.270084    5.790458 

  _Iindustry_6 |  -1.227708   1.106073    -1.11   0.267    -3.397019    .9416029 

  _Iindustry_7 |   1.205707   1.124255     1.07   0.284    -.9992633    3.410677 

  _Iindustry_8 |   .0125544   1.173701     0.01   0.991    -2.289393    2.314502 

  _Iindustry_9 |  -.5871449   1.212847    -0.48   0.628    -2.965868    1.791578 

 _Iindustry_10 |   .6133445   1.407516     0.44   0.663    -2.147178    3.373867 

 _Iindustry_11 |  -.6954708   1.102368    -0.63   0.528    -2.857514    1.466572 

 _Iindustry_12 |   .8412632   1.125167     0.75   0.455    -1.365496    3.048023 

 _Ioccupatio_2 |    .383661   .3211564     1.19   0.232    -.2462143    1.013536 

 _Ioccupatio_3 |  -2.338188   .2647344    -8.83   0.000    -2.857404   -1.818971 

 _Ioccupatio_4 |  -1.239092   .4720051    -2.63   0.009    -2.164823   -.3133615 

 _Ioccupatio_5 |  -2.120975   .5446508    -3.89   0.000    -3.189184   -1.052767 

 _Ioccupatio_6 |  -3.692821   .3946061    -9.36   0.000    -4.466752   -2.918891 

 _Ioccupatio_7 |  -3.825877   .9565287    -4.00   0.000     -5.70189   -1.949863 

 _Ioccupatio_8 |  -2.814455   .3311778    -8.50   0.000    -3.463985   -2.164925 

 _Ioccupatio_9 |  -3.769752   3.483959    -1.08   0.279    -10.60275    3.063242 

_Ioccupatio_10 |  -4.184864   1.639078    -2.55   0.011    -7.399542   -.9701856 

_Ioccupatio_11 |  -3.131495   1.001367    -3.13   0.002    -5.095449   -1.167541 

_Ioccupatio_12 |  -4.126322   3.321699    -1.24   0.214    -10.64108    2.388436 

_Ioccupatio_13 |  -2.298906   .3491133    -6.58   0.000    -2.983613     -1.6142 

     _Iunion_1 |   .9275427   .1960457     4.73   0.000     .5430437    1.312042 
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       _ws_age |  -.2517413    .154501    

   _ws_married |  -1.875545   1.146583    

            Tw |   .0592733   .0282068     2.10   0.036     .0039

           T2w |  -.0002733   .0008544    

           T3w |  -1.23e-06   7.13e

         _cons |   -1.19245   6.197508    

--------------------------------------------------------------------------------

 

 

Results show a good R-squared with a 

negative and significant ATE, equal to 

around –.98. It means that, on average on 

all values taken by job tenure, the effect of 

tenure on wage is negative. However, 

ctreatreg is able to plot the Dose 

 

Figure 1. Dose response function of “job tenure” on “wage”. Exogenous treatment case.

 

 

 

2. Applying ctreatreg using "CT
 

 

xi: ctreatreg wage treatment $xvars  ,  graphrf   ///

delta(10) hetero($xvarh) model(ct

estype(twostep) iv_t(ttl_exp) iv_w(c_city)
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.2517413    .154501    -1.63   0.103    -.5547598    .0512772

1.875545   1.146583    -1.64   0.102    -4.124306    .3732158

Tw |   .0592733   .0282068     2.10   0.036     .0039521    .1145946

.0002733   .0008544    -0.32   0.749     -.001949    .0014024

06   7.13e-06    -0.17   0.863    -.0000152    .0000128

1.19245   6.197508    -0.19   0.847    -13.34745    10.962

--------------------------------------------------------------------------------

squared with a 

negative and significant ATE, equal to 

.98. It means that, on average on 

enure, the effect of 

tenure on wage is negative. However, 

is able to plot the Dose 

Response Function (Fig. 1), showing that 

the relation is first weakly increasing and 

then decreasing with a maximum around a 

dose level of 70.  

The relation is quite strongly significant 

(at 1%).   

Figure 1. Dose response function of “job tenure” on “wage”. Exogenous treatment case.

using "CT-IV" (Treatment endogeneity): 

xi: ctreatreg wage treatment $xvars  ,  graphrf   /// 

delta(10) hetero($xvarh) model(ct-iv) ct(tenure2) ci(1)  /// 

estype(twostep) iv_t(ttl_exp) iv_w(c_city) 

Cnr-Ceris, N° 05/2014 

.5547598    .0512772 

4.124306    .3732158 

521    .1145946 

.001949    .0014024 

.0000152    .0000128 

13.34745    10.96255 

-------------------------------------------------------------------------------- 

Response Function (Fig. 1), showing that 

the relation is first weakly increasing and 

then decreasing with a maximum around a 

The relation is quite strongly significant 

 

Figure 1. Dose response function of “job tenure” on “wage”. Exogenous treatment case. 
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*** First step *** 

 

Heckman selection model -- two-step estimates   Number of obs      =      2231 

(regression model with sample selection)        Censored obs       =        51 

                                                Uncensored obs     =      2180 

 

                                                Wald chi2(5)       =    325.86 

                                                Prob > chi2        =    0.0000 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

tenure2      | 

         age |   .2443289   .5733199     0.43   0.670    -.8793574    1.368015 

    _Irace_2 |   4.352386   5.732858     0.76   0.448    -6.883809    15.58858 

    _Irace_3 |  -5.507249   8.302224    -0.66   0.507    -21.77931    10.76481 

 _Imarried_1 |   1.249892    2.81451     0.44   0.657    -4.266446    6.766231 

     ttl_exp |   2.711141    .151083    17.94   0.000     2.415024    3.007258 

       _cons |  -20.02397    19.7768    -1.01   0.311    -58.78578    18.73784 

-------------+---------------------------------------------------------------- 

treatment    | 

         age |  -.0428734   .0193969    -2.21   0.027    -.0808907   -.0048561 

    _Irace_2 |  -.4157974   .1334837    -3.11   0.002    -.6774207   -.1541741 

    _Irace_3 |   4.201402          .        .       .            .           . 

 _Imarried_1 |  -.1936928   .1339983    -1.45   0.148    -.4563246    .0689389 

      c_city |   .0404156   .1371767     0.29   0.768    -.2284458     .309277 

       _cons |   3.941515   .7921321     4.98   0.000     2.388965    5.494065 

-------------+---------------------------------------------------------------- 

mills        | 

      lambda |  -34.00867   110.9056    -0.31   0.759    -251.3797    183.3623 

-------------+---------------------------------------------------------------- 

         rho |   -1.00000 

       sigma |  34.008667 

------------------------------------------------------------------------------ 

 

 

*** Second step *** 

 

Instrumental variables (2SLS) regression 

 

      Source |       SS       df       MS              Number of obs =    2231 

-------------+------------------------------           F(  9,  2221) =   19.96 

       Model | -7979.49202     9 -886.610224           Prob > F      =  0.0000 

    Residual |  82081.3197  2221  36.9569201           R-squared     =       . 

-------------+------------------------------           Adj R-squared =       . 

       Total |  74101.8276  2230  33.2295191           Root MSE      =  6.0792 
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------------------------------------------------------------------------------

        wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+-----------------------

   treatment |   2.382129   28.81026     0.08   0.934    

     _ws_age |   2.483951   3.440528     0.72   0.470    

          Tw |   .4324907   .1644757     2.63   0.009   

         T2w |   -.006349   .0051065    

         T3w |   .0000279   .0000414     0.67   0.500    

         age |  -2.531013   3.396567    

    _Irace_2 |   -1.90372    .732588    

    _Irace_3 |   .9560915   1.293234     0.74   0.460    

 _Imarried_1 |  -.7593091   .3741212    

       _cons |   105.4548   154.0347     0.68   0.494    

------------------------------------------------------------------------------

Instrumented:  treatment _ws_age Tw T2

Instruments:   age _Irace_2 _Irace_3 _Imarried_1 probw _ps_age T_hatp

               T_hat2p T_hat3p

 

 

We see that ATE becomes now positive 

(2.38), but no longer significant. However, 

the Dose Response Function (Fig. 2) set

 

 

 

Figure 2. Dose response function of “job tenure” on “wage”. Endogenous treatment case.  
 

                                                    Cerulli G., Working Paper Cnr

------------------------------------------------------------------------------

wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

----------------------------------------------------------------

treatment |   2.382129   28.81026     0.08   0.934    -54.11573    58.87999

_ws_age |   2.483951   3.440528     0.72   0.470    -4.263037     9.23094

Tw |   .4324907   .1644757     2.63   0.009     .1099485    .7550328

.006349   .0051065    -1.24   0.214    -.0163629    .0036649

T3w |   .0000279   .0000414     0.67   0.500    -.0000533    .0001091

2.531013   3.396567    -0.75   0.456    -9.191792    4.129767

1.90372    .732588    -2.60   0.009    -3.340349   

_Irace_3 |   .9560915   1.293234     0.74   0.460    -1.579983    3.492166

593091   .3741212    -2.03   0.043    -1.492973   

_cons |   105.4548   154.0347     0.68   0.494    -196.6122    407.5218

------------------------------------------------------------------------------

Instrumented:  treatment _ws_age Tw T2w T3w 

Instruments:   age _Irace_2 _Irace_3 _Imarried_1 probw _ps_age T_hatp

T_hat2p T_hat3p 

We see that ATE becomes now positive 

(2.38), but no longer significant. However, 

the Dose Response Function (Fig. 2) sets  

out a pattern similar to the previous model, 

with still a slight parabolic form, getting the 

maximum at a dose level around 45. 

 

Figure 2. Dose response function of “job tenure” on “wage”. Endogenous treatment case.  

Cnr-Ceris, N° 05/2014 

------------------------------------------------------------------------------ 

wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------------------------------- 

54.11573    58.87999 

4.263037     9.23094 

.1099485    .7550328 

.0163629    .0036649 

.0000533    .0001091 

9.191792    4.129767 

3.340349   -.4670908 

1.579983    3.492166 

1.492973   -.0256451 

196.6122    407.5218 

------------------------------------------------------------------------------ 

Instruments:   age _Irace_2 _Irace_3 _Imarried_1 probw _ps_age T_hatp 

out a pattern similar to the previous model, 

with still a slight parabolic form, getting the 

maximum at a dose level around 45.  

 
Figure 2. Dose response function of “job tenure” on “wage”. Endogenous treatment case.   



 

Cerulli G., Working Paper Cnr-Ceris, N° 05/2014                                                              

 

19 

 

Of course, such results have to be taken 

just as instructional, as we have no idea 

about instruments’ goodness. 

6. A MONTE CARLO EXPERIMENT 

FOR TESTING CTREATREG’S 

RELIABILITY  

In this section we provide a Monte Carlo 

experiment to check whether ctreatreg 

complies with predictions from the theory 

and to assess its correctness from a 

computational point of view. The first step 

is that of defining a data generating process 

(DGP) as follows: 
 

1 2

0 1 2

1 1 2

1 2

1[50 60 30 60 0]

0.1 0.2 0.3

0.3 0.6 0.3

0.4 0.6

= + + + + >
 = + + +
 = + + +
 = + +

w x x z a

y x x e

y x x e

t x x u

 

 

where we have assumed, for simplifying the 

model, that e1=e0=e and: 

 

1

2
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with: 

 

2 2
, ,
2 2
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,
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σ σ σ ρ σ σ
σ σ

σ σ ρ

   
= =   
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= = =

∼

a a u a a u a u

u u

a u a u

a u N 0 Ω

Ω  

 

Finally, we suppose that the correlation 

between a and e0 can be either equal or 

different from zero. In the latter case, w is 

endogenous. Therefore, we assume the 

following DGP6: 

 

2 2

(0;1)

/(1 )

corr( ; )

0.0001

η γ

γ ρ ρ
ρ
η

= + +

= −
=
=

∼

e a v

v N

e a

 

 

When ρ=0 the model “ct-ols” would be 

the appropriate one; otherwise, the model 

“ct-iv” should be employed. By zw and zt, 

we indicate the instrumental variable for w 

and t, directly correlated with w and t 

respectively, but (directly) uncorrelated 

with y1 and y0.  

Given these assumptions, the DGP is 

completed by the potential outcome 

equation yi = y0i + wi (y1i  - y0i), generating 

the observable outcome (or response) y. 

The DGP is simulated 200 times using a 

sample size of 10,000. For each simulation 

we get a different data matrix (x1, x2, y, w, t, 

zw, zt) on which we apply the two models 

(“ct-ols” and “ct-iv”) implemented by 

ctreatreg.   
 

Case 1. Exogeneity 
 

We start by assuming ρ=0, that is, zero 

correlation between the error term of the 

outcome equation (e) and the error term of 

the selection equation (a). Under this 

assumption, w is exogenous.  
 

                                                      
6 The coefficient γ is equal to (ρ2/(1- ρ2))-1/2 , where 

ρ=corr(e0;a). To get this result put x=e and y=a. We 

know that corr(x;y)=cov(x;y)/sd(x)sd(y). We can see 

that, while var(y)=1 by assumption, var(x)=γ2+1. 

Moreover,cov(x;y)=cov(η+γa+v;a)=cov(η+γa;a)+cov

(v;a)=cov(η+γa;a)=cov(γa;a)=γcov(a;a)=γvar(a)=γ. 

Thus, ρ=γ/(γ2+1)-1/2, that implies that γ=(ρ2/(1- ρ2))-1/2. 
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Table 1. Mean test of ATE from Monte Carlo results using ctreatreg. 

Exogenous selection is assumed. 
 

 
Mean Std. Err. [95% Confidence Interval] 

ATE  (true value) 9.22 - - - 
ATE - CT-OLS 9.21 0.01 9.19 9.22 
ATE - CT-IV 9.20 0.01 9.19 9.22 
%  BIAS of OLS 0.81 0.04 0.73 0.90 
%  BIAS of IV 0.86 0.04 0.77 0.94 

Note: ρ=0. Number of observations 10,000. Number of simulations 200. 

 

Moreover, we assume a strong correlation 

between the selection and the dose 

equation, as implied by a correlation 

between a and u equal to 0.8. Results are 

set out in Table 1. It is immediate to see 

that the value of ATE obtained by the “ct-

ols” estimator is really close to the true 

ATE (9.22) and that the confidence interval 

at 5% of significance for this estimator 

strictly contains that value. But also the 

percentage bias of “ct-iv” is very low 

(0.86%) and comparable with CT-OLS 

(0.81%) and sufficient to imply that the 5% 

of significance contains the true ATE even 

in this case.  

These results confirm what was expected, 

thus showing that the option “ct-ols” of 

ctreatreg behaves correctly. As a 

conclusion, when the analyst assumes 

exogeneity, he/she may reliably use 

ctreatreg with the option “ct-ols”.    
 

Case 2. Endogeneity 
 

If we assume that ρ=0.7, that is, a high 

positive correlation between the error term 

of the outcome equation (e) and the error 

term of the selection equation (a), then w 

becomes endogenous. For the sake of 

comparison, we still assume the same 

strong correlation between the selection and 

the dose equation (0.8).Table 2 shows that 

results are - also in this case - coherent with 

the theoretical predictions. Indeed, the 

percentage bias of model “ct-ols” is rather 

high and equal to around 18%, whereas the 

bias of “ct-iv” is around 1%. Furthermore, 

and more importantly, the 95% mean test 

confidence interval for “ct-iv” contains the 

true ATE.  

 

Table 2. Mean test of ATE from Monte Carlo results using ctreatreg. 

Endogenous selection is assumed. 
 

Mean Std. Err. [95% Confidence Interval] 

ATE  (true value) 9.22 - - - 
ATE - CT-OLS 7.53 0.01 7.51 7.55 
ATE - CT-IV 9.22 0.01 9.20 9.24 
%  BIAS of OLS 18.26 0.11 18.05 18.48 
%  BIAS of IV 1.28 0.07 1.15 1.41 

Note: ρ=0.7. Number of observations 10,000. Number of simulations 200. 
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MODEL CT-OLS (under exogeneity) MODEL CT-IV (under endogeneity) 

 

  

 

Figure 3. Graphical representation of the dose-response function using the ctreatreg option 

CT-OLS and CT-IV under exogeneity and endogeneity respectively. 
 

 

As expected, this implies that “ct-iv” is an 

unbiased estimator in presence of selection 

endogeneity, thus leading to a reliable 

estimation of the true value of ATE. 

Overall, these results confirm the 

reliability of both the model and 

ctreatreg by allowing for a trustful use 

of this model and its related Stata 

implementation either under selection 

exogeneity or endogeneity. Finally, Fig. 3 

plots the dose-response function along with 

the 95% interval confidence lines for both 

models. This is done by exploiting the 

“graphdrf” option of  ctreatreg. Results 

clearly confirm our predictions. 

7. CONCLUSION 

The paper has presented ctreatreg, a 

Stata module for estimating dose-response 

functions through a regression approach 

 

where: (i) treatment is continuous, (ii) 

individuals may react heterogeneously to 

observable confounders, and (iii) selection-

into-treatment may be endogenous.  

Two estimation procedures are 

contemplated by this routine: one based on 

OLS under Conditional Mean Independence 

(or CMI), and one based on Instrumental-

variables (IV), when assuming selection 

endogeneity.  

An application to real data, for testing in 

an instructional example the impact of job 

tenure on wages, has been set out. Finally, 

in order to test the reliability of the 

formulas and of their associated Stata 

implementation, a Monte Carlo experiment 

has been performed.  

Monte Carlo results show that the 

model’s formulas and the Stata routine 

accompanying it are both reliable as 

estimates consistently fit expected results.   
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Table A1. Stata help-file for ctreatreg. 

 
 

help ctreatreg 
---------------------------------------------------------------------------------------------------------------------
- 
 
Title 
 
    ctreatreg -  Dose-Response model with "continuous" treatment, endogeneity and heterogeneous response to 
                   observable confounders 
 
 
Syntax 
 
ctreatreg outcome treatment [varlist] [if] [in] [weight], model(modeltype) ct(treat_level) [hetero(varlist_h)      
estype(model) iv_t(instrument_t) iv_w(instrument_w) delta(number) ci(number) graphate graphdrf conf(number) 
vce(robust) const(noconstant) head(noheader) beta] 
 
 
          fweights, iweights, and pweights are allowed; see weight. 
 
 
Description 
 
    ctreatreg estimates the dose-response function (DRF) of a given treatment on a specific target variable, within 
    a model where units are treated with different levels. The DRF is defined as the “average treatment effect, 
    given the level of the treatment t” (i.e. ATE(t)).  The routine also estimates other “causal” parameters of 
    interest, such as the average treatment effect (ATE), the average treatment effect on treated (ATET), the 
    average treatment effect on non-treated (ATENT), and the same effects conditional on t and on the vector of 
    covariates x.The DRF is approximated by a third degree polynomial function.  Both OLS and IV estimation are 
    available, according to the case in which the treatment is not or is endogenous. In particular, the implemented 
    IV estimation is based on a Heckman bivariate selection model (i.e., type-2 tobit) for w (the yes/no decision to 
treat ……….a given unit) and t (the level of the treatment provided) in the first step, and a 2SLS estimation for the 
outcome (y) 
    equation in the second step.  The routine allows also for a graphical representation of results. 
 
      
Options 
     
    model(modeltype) specifies the treatment model to be estimated, where modeltype must be one of the following two 
        models: "ct-ols", "ct-iv".  it is always required to specify one model. 
 
    ct(treat_level) specifies the treatment level (or dose).  This variable takes values in the [0;100] interval, 
        where 0 is the treatment level of non-treated units. The maximun dose is thus 100. 
 
    hetero(varlist_h) specifies the variables over which to calculate the idiosyncratic Average Treatment Effect 
        ATE(x), ATET(x) and ATENT(x), where x=varlist_h. It is optional for all models. When this option is not 
        specified, the command estimates the specified model without heterogeneous average effect. Observe that 
        varlist_h should be the same set or a subset of the variables specified in varlist.  Observe however that 
        only numerical variables may be considered. 
 
    estype(model) specifies which type of estimation method has to be used for estimating the type-2 tobit model in 
the 
        endogenous treatment case. Two choices are available: "twostep" implements a Heckman two-step procedure; "ml" 
        implements a maximum-likelihood estimation. This option is required only for "ct-iv". 
 
    iv_t(instrument_t) specifies the variable to be used as instrument for the continuous treatment variable t in the 
        type-2 tobit model. This option is required only for "ct-iv". 
 
    iv_w(instrument_w) specifies the variable to be used as instrument for the binary treatment variable w in the 
type-2 
        tobit model. This option is required only for "ct-iv". 
 
    delta(number) identifies the average treatment effect between two states: t and t+delta. For any reliable delta, 
        we can obtain the response function ATE(t;delta)=E[y(t)-y(t+delta)]. 
 
    ci(number) sets the significant level for the dose-response function, where number may be 1, 5 or 10. 
 
    graphate allows for a graphical representation of the density distributions of ATE(x;t) ATET(x;t) and  
        ATENT(x;t). It is optional for all models and gives an outcome only if 
        variables into hetero() are specified. 
 
    graphdrf allows for a graphical representation of the Dose Response Function (DRF) and of 
        its derivative. It plots also the 95% confidence interval of the DRF over the dose 
        levels.  
 
    vce(robust) allows for robust regression standard errors. It is optional for all models. 
 
    beta reports standardized beta coefficients. It is optional for all models. 
 
    const(noconstant) suppresses regression constant term. It is optional for all models. 
 
    conf(number) sets the confidence level equal to the specified number.  The default is number=95. 
 
 
  modeltype_options           description 
  -------------------------------------------------------------------------------------------------------------------
- 
  Model 
  ct-ols                      Control-function regression estimated by ordinary least squares 
  ct-iv                       IV regression estimated by Heckman bivariate selection model and 2SLS 
  -------------------------------------------------------------------------------------------------------------------
- 
 
 
    ctreatreg creates a number of variables: 
 
        _ws_varname_h are the additional regressors used in model's regression when hetero(varlist_h) is specified. 
 
        _ps_varname_h are the additional instruments used in model's regression when hetero(varlist_h) is specified 
        in model "ct-iv". 
 
        ATE(x;t) is an estimate of the idiosyncratic Average Treatment Effect. 
 
        ATET(x;t) is an estimate of the idiosyncratic Average Treatment Effect on treated. 
 
        ATENT(x;t) is an estimate of the idiosyncratic Average Treatment Effect on Non-Treated. 
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        ATE(t) is an estimate of the dose-response function. 
 
        ATET(t) is the value of the dose-response function in t>0. 
 
        ATENT(t) it is the value of the dose-response function in t=0. 
 
        probw is the predicted probability from the Heckman selection model (estimated only for model "ct-iv"). 
 
        mills is the predicted Mills' ratio from the Heckman selection model (estimated only for model "ct-iv"). 
 
        t is a copy of the treatment level variable, but only in the sample considered. 
 
         
        t_hat is the prediction of the level of treatment from the Heckman bivariate selection model (estimated only 
        for model "ct-iv"). 
 
        der_ATE_t is the estimate of the derivative of the dose-response function. 
 
        std_ATE_t is the standardized value of the dose-response function. 
 
        std_der_ATE_t is the standardized value of the derivative of the dose-response function. 
 
        Tw, T2w, T3w are the three polynomial factors of the dose-response function. 
 
        T_hatp, T2_hatp, T3_hatp are the three instruments for the polynomial factors of the dose-response function 
        when model "ct-iv" is used. 
 
 
    ctreatreg returns the following scalars: 
 
        r(N_tot) is the total number of (used) observations. 
 
        r(N_treated) is the number of (used) treated units. 
 
        r(N_untreated) is the number of (used) untreated units. 
 
        r(ate) is the value of the Average Treatment Effect. 
 
        r(atet) is the value of the Average Treatment Effect on Treated. 
 
        r(atent) is the value of the Average Treatment Effect on Non-treated. 
 
 
Remarks  
 
    The variable specified in treatment has to be a 0/1 binary variable (1 = treated, 0 = 
    untreated). 
 
    The standard errors for ATET and ATENT may be obtained via bootstrapping. 
 
    When using the option ct-iv in modeltype(), be sure that the number of variables included in 
    hetero() is less than the number of variables included in varlist.  This is because 
    otherwise instruments are too much correlated and some emerging collinearity prevent to 
    identify the estimates. For instance, when six covariates are specified in varlist, at most 
    five are to be put into hetero(). 
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