{smcl} {* 25may2005}{...} {hline} help for {hi:xtarsim} {hline} {title: Simulate panel dataset} {p 8 16 2}{cmd:xtarsim} {it:newdepvar} {it:newindepvar} {it:newindeffect} {it:newtimeffect} {cmd:,} {cmdab:n:id:(}{it:#}{cmd:)} {cmdab:t:ime:(}{it:#}{cmd:)} {cmdab:g:amma:(}{it:real}{cmd:)} {cmdab:b:eta:(}{it:real}{cmd:)} {cmdab:r:ho:(}{it:real}{cmd:)} {cmdab:sn:ratio:(}{it:real}{cmd:)} [{cmdab:s:igma:(}{it:real}{cmd:)} {cmdab:one:way:(}{it:effect_type load}{cmd:)} {cmdab:two:way:(}{it:effect_type load}{cmd:)} {cmdab:u:nbd:(}{it:N_1 T_1}{cmd:)} {cmdab:seed:(}{it:#}{cmd:)}] {p 4 4 2} {cmd:xtarsim} creates panel datasets for use in Monte Carlo experiments as pseudo-random realizations from (possibly) dynamic twoway linear panel data models. {p 4 4 2} {title:Description} {p 4 4 2} {cmd:xtarsim} creates a dataset from the following general panel data model {p 4 12 2}y[i,t] = {bind: y[i,t-1]gamma} + {bind:x[i,t]beta} + u[i] + u[t] + e[i,t] {p 4 12 2}x[i,t] = {bind: x[i,t-1]rho} + v[i,t] {space 4} i={c -(}1,...,N{c )-}; {space 3} t={c -(}1,...,T{c )-}, where {p 4 4 2}gamma, beta and rho are real numbers chosen by the user. {p 4 4 2}e[i,t] are iid Normal(0,sigma^2), with sigma chosen by the user. {p 4 4 2}v[i,t] are iid Normal(0,sigma_v^2), with sigma_v being uniquely determined once choosing the model parameters and the signal to noise ratio of the y[i,t] regression. Attention should be paid to supply parameter values that ensure a finite positive variance for v[i,t]. When this does not happen an error message is issued by {cmd:xtarsim}. {p 4 4 2}e[i,t] and v[i,t] are not correlated, so that x[i,t] is a strictly exogenous regressor in the first equation of the model. {p 4 4 2}u[i] and u[t] are, respectively, the individual and time effects, and may or may not be correlated with x[i,t]. {p 4 4 2}If correlated, individual effects are determined as u[i]=load_1*(1-gamma)*(1+x[i]-x), where x[i] and x, respectively, are the group mean and the overall mean of x[i,t], and load_1 is a load factor chosen by the user. Correlated time effects, instead, are determined as contrasts to the first period, u[t]=load_2*(1-gamma)*(x[t]-x[1]), where again load_2 is a load factor chosen by the user. Such normalisation is convenient in that the constant term in {help xtreg}, in its one-way fixed effect version as well as two-way fixed effect version excluding the first time indicator, can be interpreted as an estimate for load_1*(1-gamma) (see the example file {cmd:static2way_bias.do} available for {stata "net get xtarsim, replace": download}). If not correlated, both effects are taken to be iid Normal(0,load^2*(1-gamma)^2) with a specific load factor for each effect. {p 4 4 2}Following Kiviet (1995) start-up values y[i,0] and x[i,0] are obtained according to the model using the McLeod and Hipel (1978) procedure. This avoids wasting random numbers in generating start-up values and also small-sample non-stationarity problems. This procedure has been also applied by Bun and Kiviet (2003), Bruno (2005a) and (2005b). {title:Options} {p 4 8 2}{cmd:nid(}{it:#}{cmd:)} specifies the number of individuals in the panel. {p 4 8 2}{cmd:time(}{it:#}{cmd:)} specifies the number of time observations for each individual. {p 4 8 2}{cmdab:gamma(}{it:real}{cmd:)} specifies the value for the gamma parameter. Since the model is stationary it must be picked up from within (1,-1). {p 4 8 2}{cmdab:beta(}{it:real}{cmd:)} specifies the value for the beta parameter, which can be any real number. {p 4 8 2}{cmdab:rho(}{it:real}{cmd:)} specifies the value for the rho parameter. Since the model is stationary it must be picked up from within (1,-1). {p 4 8 2}{cmdab:snratio(}{it:real}{cmd:)} specifies the value for the signal to noise ratio. {p 4 8 2}{cmdab:sigma(}{it:real}{cmd:)} specifies the value for the standard deviation of e[i,t]. The default is unity. {p 4 8 2}{cmdab:oneway(}{it:effect_type load}{cmd:)} specifies 1) whether the individual effect is or is not correlated with x[i,t] and 2) the load factor {it:load}. Allowed {it:effect_type} is {cmdab:corr} for correlated effects and {cmdab:rand} for not correlated effects. {it:load} may be any real number. The default is {cmdab:oneway(}{cmdab:rand 1}{cmd:)}. {p 4 8 2}{cmdab:twoway(}{it:effect_type load}{cmd:)} specifies 1) whether the time effect is or is not correlated with x[i,t] and 2) the load factor {it:load}. Allowed {it:effect_type} is {cmdab:corr} for correlated effects and {cmdab:rand} for not correlated effects. {it:load} may be any real number. The default is no time effect. {p 4 8 2}{cmdab:unbd(}{it:N_1 T_1}{cmd:)} determines a specific form of unbalancedess, such that the last {it:T_1} time observations are missing for the first {it:N_1} individuals. The default is no ubalancedness. {p 4 8 2}{cmdab:seed(}{it:#}{cmd:)} sets the random-number seed. {title:Examples} {p 4 4 2}(Create a panel from a static one-way random effect Data Generation Process (DGP)){p_end} {p 8 12 2}{stata "xtarsim y x eta, n(200) t(10) g(0) b(.8) r(.2) sn(9) seed(1234)" : . xtarsim y x eta, n(200) t(10) g(0) b(.8) r(.2) sn(9) seed(1234)} {p 8 12 2}{stata "describe": . describe} {p 8 12 2}{stata "xtdes": . xtdes} {p 4 4 2}(Create a panel from a dynamic one-way fixed effect DGP){p_end} {p 8 12 2}{stata "xtarsim y x eta, n(200) t(10) g(.2) b(.8) r(.2) sn(9) one(corr 1) seed(1234)" : . xtarsim y x eta, n(200) t(10) g(.2) b(.8) r(.2) one(corr 1) sn(9) seed(1234)} {p 8 12 2}{stata "xtdes": . xtdes} {p 4 4 2}(Demonstrate, on this dataset, the expected good perfomance of the basic Arellano-Bond estimator in terms of estimation error and specification tests){p_end} {p 8 12 2}{stata "xtabond y x,noco": . xtabond y x,noco} {p 4 4 2}(Create a panel from a dynamic two-way fixed effect DGP){p_end} {p 8 12 2}{stata "xtarsim y x eta theta, n(200) t(10) g(.2) b(.8) r(.2) sn(9) two(corr 5) seed(1234)" : . xtarsim y x eta theta, n(200) t(10) g(.2) b(.8) r(.2) two(corr 5) sn(9) seed(1234)} {p 8 12 2}{stata "describe": . describe} {p 8 12 2}{stata "xtdes": . xtdes} {p 4 4 2}(Demonstrate, on this dataset, the expected poor perfomance of the basic Arellano-Bond estimator in terms of estimation error and specification tests){p_end} {p 8 12 2}{stata "xtabond y x,noco": . xtabond y x,noco} {p 4 4 2}(Demonstrate the expected better perfomance of the two-way Arellano-Bond estimator){p_end} {p 8 12 2}{stata "tab tvar,gen(time)": . tab tvar,gen(time)} {p 8 12 2}{stata "xtabond y x time*,noco": . xtabond y x time*,noco} {p 4 4 2}(Make the foregoing dataset unbalanced: the last 5 time observations are missing for the first 50 individuals in the sample){p_end} {p 8 12 2}{stata "xtarsim y x eta theta, n(200) t(10) g(.2) b(.8) r(.2) sn(9) two(corr 5) unbd(50 5) seed(1234)" : . xtarsim y x eta theta, n(200) t(10) g(.2) b(.8) r(.2) two(corr 5) sn(9) unbd(50 5) seed(1234)} {p 8 12 2}{stata "xtdes": . xtdes} {p 4 4 2}For examples of {cmd:xtarsim} in Monte Carlo experiments {stata "net get xtarsim, replace":download} the do files {cmd:dyn_bias.do} and {cmd:static2way_bias.do}. The former, upon setting up a dynamic one-way random effect DGP, estimates the unconditional small-sample biases of the dynamic one-way fixed effect and random effect estimators by 1000 Monte Carlo simulations. The latter sets up a static two-way fixed effect DGP and estimates the unconditional small-sample biases of the one-way and two-way fixed effect estimators using 1000 Monte Carlo simulations. {title:References} {p 4 8 2}Bruno, G.S.F. 2005a. Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models. {it:Economics Letters,} 87, 361-366: {browse "http://dx.doi.org/doi:10.1016/j.econlet.2005.01.005"}. {p 4 8 2}Bruno, G.S.F. 2005b. Estimation and inference in dynamic unbalanced panel data models with a small number of individuals. {it:CESPRI WP n.165} , Università Bocconi-CESPRI, Milan. {p 4 8 2}Bun, M.J.G., Kiviet, J.F., 2003. On the diminishing returns of higher order terms in asymptotic expansions of bias. {it:Economics Letters,} 79, 145-152. {p 4 8 2}Kiviet, J.F., 1995. On Bias, Inconsistency and Efficiency of Various Estimators in Dynamic Panel Data Models. {it:Journal of Econometrics,} 68, 53-78. {p 4 8 2}Kiviet, J.F., 1999. Expectation of Expansions for Estimators in a Dynamic Panel Data Model; Some Results for Weakly Exogenous Regressors. In: Hsiao, C., Lahiri, K., Lee, L.-F., Pesaran, M.H. (Eds.), {it:Analysis of Panel Data and Limited Dependent Variables.} Cambridge University Press, Cambridge. {p 4 8 2}McLeod, A.I., K.W. Hipel 1978. Smulation Procedures for Box-Jenkins Models. {it:Water Resources Research,} 14, 969-975. {title:Author} {p 4}Giovanni S.F. Bruno{p_end} {p 4}Istituto di Economia Politica, Università Bocconi{p_end} {p 4}Milan, Italy{p_end} {p 4}giovanni.bruno@unibocconi.it{p_end} {p 4 13 2} Online: help for {help generate}, {help describe}, {help simulate}, {help xtabond}, {help xtdes}, {help xtsum}.