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Abstract. This paper extends the theory of added-variable plots to three panel
data estimation methods: fixed-effects, between-effects and random-effects. An
added-variable plot is a very effective way to show the correlation between an
independent variable and a dependent variable conditional on other independent
variables. In a multivariate context, a simple scatterplot showing x versus y is
not adequate to show the relationship of x with y because it ignores the impact of
the other covariates. Added-variable plots are also useful for spotting influential
outliers in the data which affect the estimated regression parameters. Stata can
display added-variable plots with the command avplot, but it can only be used
after regress. The new command xtavplot is a post-estimation command that
creates added-variable plots after xtreg estimates. Unlike avplot, xtavplot can
display a confidence interval around the fitted regression line.

Keywords: st0001, xtavplot, added-variable plot, panel data, postestimation di-
agnostics, xtreg

1 Introduction

An added-variable plot displays a scatterplot of a transformation of an independent
variable (say, x1) and the dependent variable (y) that nets out the influence of the other
independent variables. The fitted regression line between these transformed variables
has the same slope as the coefficient on x1 in the full regression model which includes
all the independent variables.

An added-variable plot is a visually compelling method for showing a partial corre-
lation between x1 and y. A confidence interval shows how precisely the sample data fit
that correlation. An added-variable plot is the multivariate analogue of using a simple
scatterplot with a regression fit in a univariate context.

The main purpose of the panel data estimation methods in xtreg is to control
for individual effects. If it is important to control for them in regressions, it is also
important to control for them in graphs of the relationship of a covariate with the
dependent variable. xtavplot controls for the influence of individual effects as well as
other covariates on the partial correlation of x1 and y.

Outliers in a simple scatterplot of x1 versus y may no longer be outliers when other
covariates are included in the model. An added-variable plot is a handy visual diagnostic
for spotting influential outliers after conditioning on all the other covariates in the model.
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2 Added-variable plots for panel data estimation

2 Why do we need added-variable plots and where do
they come from?

The purpose of multivariate regression is to assess the influence of each independent
variable on the dependent variable while simultaneously accounting for the influence
of all the other independent variables. The regression coefficient quantifies the partial
correlation of an independent variable (x1) on the dependent variable (y) controlling
for the other independent variables (x). A simple scatterplot is an effective visual
presentation of the unconditional correlation of x1 with y, but an added-variable plot
is needed to display the partial correlation of x1 with y conditional on the other x
variables. The partial correlation will have a different magnitude and possibly even a
different sign than the unconditional correlation.

For example, there is a positive correlation between the log of wages and worker age
in the NLSW Stata dataset. This is clear to the eye from a scatterplot of the data with
a regression line:
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In a fixed-effects regression which includes age as well as a quadratic in job tenure and
total years of labor market experience, however, age has a negative partial correlation
with log wages in this sample. How can we display this relationship graphically, the
partial correlation of age with log wages controlling for the other independent variables?
With xtavplot:

. xtreg ln_w age tenure c.tenure#c.tenure ttl_exp, fe
(output omitted )

. xtavplot age
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coef = -.0083194, se =  .0039658, t = -2.10

The added-variable plot provides a graphical representation of the relationship be-
tween age and wages when other regressors are also included in the model, which is
dramatically different from the unconditional relationship of age and wages. The pos-
itive unconditional correlation of age with wages becomes a negative correlation when
it is conditional on the other included regressors. The slope of the fitted regression line
in the added-variable plot is equal to the estimated coefficient on x1 in the fixed-effect
regression.1

The next subsections explain the statistical basis for added-variable plots. If that
is not your interest, please skip to Section 3, the Stata syntax of xtavplot, as well as
detailed examples of its use in Section 5.

2.1 Partial Regression

The statistical basis for an added variable plot is partial regression. Partial regression
shows that the partial correlation of x1, one of multiple independent variables, with
the dependent variable y can be found by “partialing out” the influence of the other
independent variables on both x1 and y first and then regressing the “partialed” x1 on
the “partialed” y.

Take the standard linear regression equation relating the dependent variable, y, to
K − 1 independent variables x1, . . . , xK−1, an intercept term and an error term ε:

yi = β1x1i + ∙ ∙ ∙ + βK−1xK−1,i + βK + εi.

where the intercept term is placed after the x variables for notational convenience.

1. Note that the added-variable plot is not a very good method for evaluating the functional form of
the relationship between x1 and y because its validity depends on the assumed linear relationship
between y and all the x’s, as shown in the next section.
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If we draw a sample of N observations of data that conform to this relationship, we
have n × 1 data vectors of the dependent variable y and the K independent variables
(including xK ≡ 1, a vector of ones, for the intercept βK), x1, . . . ,xK . Combining all
the independent variables into an n × K matrix X, the data fit the equation

y = Xβ + ε

where β is a K × 1 vector of unknown parameters and ε is an n × 1 vector of the
unobserved errors.

The ordinary least squares (OLS) estimator b is derived by minimizing the sum of
squared residuals (ε̂′ε̂ where ε̂ = y − Xb) and solving the first-order normal equation

X′Xb = X′y. (1)

We can partition the X matrix into X = [x1X2] where X2 = [x2 ∙ ∙ ∙xK ], partition b

into b =

[
b1

b2

]

where b2 =






b2

...
bK




, and rewrite (1) as

[
x′

1x1 x′
1X2

X′
2x1 X′

2X2

] [
b1

b2

]

=

[
x′

1y
X′

2y

]

.

With some manipulation, we can solve for b1 = (x′
1M2x1)−1x′

1M2y where M2 =
(I − X2(X′

2X2)−1X′
2). Since M2 is symmetric and idempotent, we can rewrite b1 as

b1 = (x′
1M

′
2M2x1)

−1x′
1M

′
2M2y = (e′x1

ex1)
−1e′x1

ey (2)

where ex1 = M2x1 and ey = M2y.

By inspecting the equation for M2, we can see that ey = M2y is the vector of
residuals from the regression of y on X2 and likewise ex1 = M2x1 is the vector of
residuals from the regression of x1 on X2.

ey and ex1 can be interpreted as y and x1 purged of the influence of the X2 variables.
ey = y − ŷ

X2
, where ŷ

X2
is the predicted value of y from the regression of y on X2.

That is, ey is what is left over when all the variation in y that can be predicted by
X2 has been subtracted out. Similarly for ex1 . So the correlation of ey and ex1 is the
partial correlation y and x conditional on X2.

This decomposition gives rise to the added-variable plot. A scatterplot of the values
in ex1 versus ey will show the correlation of the x1 variable with the y variable, control-
ling for the influence of the other independent variables in the multiple regression. From
equation (2), we can see that the OLS estimator b1 of β1 is the result of regressing ey

on ex1 (with no intercept term). Thus the OLS linear fit of the data in the scatterplot
of ex1 versus ey is equal to b1, the estimated partial effect of x1 on y.

This is what we were seeking: a way of displaying the relationship between x1 and
y, controlling for the effect of the other independent variables in the regression. An
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added-variable plot creates a scatterplot of ex1 versus ey and displays the linear fit line
with confidence interval boundaries above and below the regression line. The regression
line has a slope of b1.

2.2 Partial Regression of Transformed Variables

The derivation of partial regression above only applies to OLS estimation because it
results from the OLS normal equation (1). However, we can derive a partial regression
formula for non-OLS estimation methods if their estimating equations can be trans-
formed so that they meet OLS assumptions.2 The fixed-effects, between-effects and
random-effects panel estimation methods can each be represented as transformations
of the original model, which can then be estimated by OLS yielding the β coefficient
estimates we are seeking.

If the transformed variables y∗, x∗
1 and X∗

2 conform to OLS assumptions, the equa-
tion

y∗ = x∗
1β1 + X∗

2β2 + ε∗

results in the OLS normal equation
[
x∗′

1 x∗
1 x∗′

1 X∗
2

X∗′
2 x∗

1 X∗′
2 X∗

2

] [
b1

b2

]

=

[
x∗′

1 y∗

X∗′
2 y∗

]

.

As above,

b1 = (x∗′
1 M∗

2x
∗
1)

−1x∗′M∗
2y

∗ = (e′x∗
1
ex∗

1
)−1e′x∗

1
ey∗

for M∗
2 = I − X∗

2(X∗′
2 X∗

2)−1X∗′
2 , ex∗

1
= M∗

2x
∗
1 and ey∗ = M∗

2y
∗.

(3)

The next three subsections apply the partial regression formula for a transformed
estimating equation to three panel data estimation methods: fixed-effects, between-
effects, and random-effects.

2.3 Fixed Effects Estimation

Fixed-effects estimation is just a computationally-efficient way estimating OLS coef-
ficients incorporating a separate intercept for each cross-sectional unit in the panel
data sample. Direct computation using OLS with dummy variables for each unit is
straightforward but cumbersome. In the typical situation where the number of cross-
sectional units n is large and the number of time series observations per unit Ti is
small, unit-specific intercepts result in a very large number of dummy variables and
the coefficients on them are usually not of interest in themselves (nor consistently es-
timated). Fixed-effects estimation transforms the estimating equation to eliminate the
numerous intercept terms. Estimating the transformed equation via OLS still delivers

2. This is the idea behind the typical proof of the properties of GLS, generalized least squares esti-
mation.
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the same coefficients and standard errors (after a degrees of freedom adjustment) as
direct computation, making the estimation faster and more convenient.

Given panel data on individuals or units indexed by i ∈ {1, . . . , n} for multiple time
periods t ∈ {1, . . . , Ti}, consider the linear model

yit = xitβ + υi + εit (4)

where xit is a 1 × K row vector of independent variables and υi is an individual or
unit-specific intercept term that is assumed to be uncorrelated with the error term εit.
The great advantage of including the individual intercepts is that they control for all
characteristics of the individual that don’t change over time. Without panel data, one
could not control for fixed individual characteristics without gathering data on each
of the characteristics. This model can be estimated using OLS by including dummy
variables for each individual in the sample. Since the individual intercepts are not
typically of interest, however, time and effort can be saved by subtracting out their
effects.

Taking the average of the observations over each individual, equation (4) becomes

yi = xiβ + υi + εi (5)

where yi = 1/Ti

∑
Ti

yit, xi = 1/Ti

∑
Ti

xit, and εi = 1/Ti

∑
Ti

εit. Subtracting (5)
from (4),

yit − yi = (xit − xi)β + εit − εi,

which cancels out all the υi terms, dramatically reducing the dimensionality of the
estimation when n is large. This can be rewritten as

y∗
it = x∗

itβ + ε∗it (6)

where y∗
it = yit − yit, x∗

it = xit − xit and ε∗it = εit − εit.

Fixed-effects estimation applies OLS to equation (6) to estimate the β coefficients
efficiently.3

One could apply the partitioned regression formula in equation (3) to equation (6)
to derive residuals ey∗ and ex∗

1
. These could be plotted and the slope of their linear fit

would be b1. However the meaning of the residuals is not very intuitive. ey∗ is a vector
of y∗

it controlling for x∗
2it (where x∗

it = [x∗
1it x∗

2it]), not yit controlling for x2it. Similarly,
ex∗

1
is a vector of x∗

1it controlling for x∗
2it, not x1it controlling for x2it.

It is straightforward, however, to calculate the OLS ey and ex1 from the fixed-
effects ey∗ and ex∗

1
. ey∗ is the fixed-effect residual from the regression of x∗

2 on y∗,
producing the coefficient by∗|x∗

2
. An element of ey∗ is ey∗

it
= yit−yi− (x2it−x2i)by∗|x∗

2
.

3. Although not often mentioned, the fixed-effect transformation of the error terms ε∗it = εit − ε̄i

violates OLS assumptions because it introduces both serial correlation and heteroskedasticity (if
the Ti are not identical) into the transformed error. Nonetheless, OLS estimation of the transformed
equation provides efficient estimates of β since the transformed x∗

it cancel out the problem. See
Wooldridge (2010), p. 305.
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The fixed-effects coefficient by∗|x∗
2

is exactly equal to the OLS coefficient by|x2
from

regressing x2it and υi on yit.4 So, ey∗
it

= (yit − x2itby|x2)− (yi − x2iby|x2). The second
term, (yi − x2i)by|x2

= u(y|x2)i, is the OLS estimate of the individual effect. Hence
ey∗

it
= eyit

− u(y|x2)i and ey = ey∗ + uy where uy is an (N =
∑

i Ti) × 1 vector of
u(y|x2)i. Similarly, ex1 = ex∗

1
+ ux1 . That means that one can readily calculate the

more intuitive OLS residuals ex1 and ey from the fixed-effects estimates.

So in the case of fixed-effects, the estimation of the transformed equation (6) pro-
duces b coefficients identical to those from a direct OLS estimation of equation (4). The
fixed-effects estimates are used to transform the fixed-effects residuals ex∗

1
and ey∗ into

the OLS residuals of ex1 and ey to create an added-variable plot whose fitted regression
line has slope b1.

2.4 Between-Effects Estimation

Between-effects estimation applies OLS to the n unique individual mean values of equa-
tion (5), taking υi as part of the error term since it is not separately identifiable.

The per-individual averages are transformations of the original y and x variables, so
we can apply the partial regression of transformed variables in equation (3) where

y∗ =






y1
...

yn




 and X∗ =






x1

...
xn




 .

Then ey∗ and ex∗
1

provide the data points for the added-variable plot. In this case ey∗

and ex∗
1

are rather intuitive. The plot shows the relationship of the individual means of
y versus the means of x1 controlling for the influence of the means of x2.

2.5 Random-Effects Estimation

Random-effects estimation considers the same model as fixed-effects estimation in equa-
tion (4), but interprets the individual effects υi as belonging to the error term. This
means the error terms υi + εit are not independent and identically distributed as re-
quired for efficient estimation by OLS. The model, however, reveals the stucture of the
errors, so it can be estimated by generalized least squares (GLS). GLS is estimated by
applying OLS estimation to transformations of the observed variables which renders the
transformed errors independent and identically distributed.

The appropriate transformation of the panel data model in equation (4) for feasible
GLS estimation is

yit − θ̂iyi = (xit − θ̂ixi)β + (1 − θ̂i)υi + εit − θ̂iεi

4. One can show that by∗|x∗
2

= by|x2
by applying the partial regression formula in (2) because

y∗
it = yit − yi and x∗

2it = x2it − x2i are the residuals from regressing the υi individual dummy
variables on yit and x2it. That is, fixed-effects regression itself is an application of partial regression.
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where θ̂i = 1 − σ̂2
ε

Tiσ̂2
υ+σ̂2

ε
and σ̂2

υ and σ̂2
ε are estimates of the variances of υi and εit,

respectively.

We can apply the partial regression of transformed variables in equation (3) where

y∗ =

















y11 − θ̂1y1
...

y1T1 − θ̂1y1
...

yn1 − θ̂nyn
...

ynTn − θ̂nyn

















and X∗ =

















x11 − θ̂1x1

...
x1T1 − θ̂1x1

...
xn1 − θ̂nxn

...
xnTn − θ̂nxn

















, (7)

enabling us to construct ey∗ and ex∗
1
. Regressing ex∗

1
on ey∗ produces the coefficient b1,

but unlike fixed-effects estimates, the residuals cannot be converted into OLS residuals
ey and ex1 and still have a fitted regression slope of b1. Therefore we make the added-
variable plot out of ey∗ and ex∗

1
, which have a somewhat intuitive interpretation as

heteroskedasticity-corrected residuals.5

The added-variable plot of ey∗ and ex∗
1

presents the contribution of each data point
(x1it, yit) to the estimated coefficient b1, so the plot is a good visual diagnostic for
outlier observations having a large influence on the estimated relationship, just as in
the OLS, fixed-effects or between-effects cases.

2.6 Maximum Likelihood Random-Effects and Population-Averaged
Model

Neither the maximum likelihood estimation of random-effects (xtreg, mle) nor the
population-average model (xtreg, pa) can be represented as a transformed partial-
regression in the form of (3), in the way OLS and GLS estimators can. xtavplot
cannot be used after these estimation methods. This may not be much of a loss in
the case of xtreg, mle. The Methods and Formulas section of [XT] xtreg notes that
it yields “essentially the same results” as xtreg, re except when the sample is quite
small (≤ 200 observations) and unbalanced.

5. The errors are not independently and identically distributed due to autocorrelation between the
errors for each individual caused by the individual effects (a clustering effect), as well as het-
eroskedasticity across individuals if the time spans Ti vary across i.
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3 The xtavplot and xtavplots commands

3.1 Syntax

xtavplot indepvar
[
, options

]

xtavplots
[
, options combine options

]

options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Regression line

rlopts(cline options) affect rendition of the regression line
nocoef turns off display of coefficent below graph

Confidence interval

ciopts(ci options) affect rendition of the confidence interval lines
noci turns off confidence interval
ciunder puts confidence interval underneath the scatter
level(#) specifies the confidence level
ciplot(plottype) how to plot CI

default is ciplot(rline)
a common alternative is ciplot(rarea)

Y axis, X axis, Titles, Legend, Overall

twoway options any of the options documented in [G-3] twoway options
other than by()

addmeans rescale the residuals, regression line and confidence intervals
to be centered on the means of x and y instead of zero

xtavplot-only options

xlim(#
[
#
]
), ylim(#

[
#
]
) limit the ranges of the x and y residuals displayed

generate(exvar, eyvar) save the values of x and y residuals in new variables
nodisplay suppress display of plot
addplot(plot) add other plots to the generated graph

xtavplots-only option

combine options any of the options documented in [G-2] graph combine
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3.2 Description of xtavplot and xtavplots

xtavplot creates an added-variable plot (a.k.a. partial-regression leverage plot, par-
tial regression plot, or adjusted partial residual plot) after xtreg, fe (fixed-effects
estimation), xtreg, re (random-effects estimation) or xtreg, be (between-effects es-
timation). xtavplot cannot be used after xtreg, mle or xtreg, pa.

xtavplots creates a matrix of added-variable plots of all the indepvars.

indepvar is an independent (x) variable (a.k.a. predictor, carrier, or covariate) that
may or may not have been included in the preceding estimation. The user would choose
an indepvar not already in the estimation to evaluate whether it is worthwhile to include
it.

xtavplot shows the partial correlation between one indepvar and the depvar from
a multivariate panel regression.

Besides showing the relationship between the indepvar and the depvar controlling
for the other regressors, xtavplot is useful for visually identifying which outlier obser-
vations have a big effect on the estimated coefficient.

After fixed-effects estimation, the plotted e(x|X) values are the residuals from the
regression of x1 on the other x2 variables in the original regression, and the plotted
e(y|X) values are the residuals from the regression of y on the other x2 variables.

After between-effects estimation, e(av.x|av.X) and e(av.y|av.X) are the residuals
from the regression of per-unit means x1i, and yi on the per-unit means x2i of the other
independent variables.

After random-effects estimation, e(x*|X*) and e(y*|X*) are the residuals from the
regression of heteroskedasticity-corrected x∗

1 and heteroskedasticity-corrected y∗ on the
other heteroskedasticity-corrected independent x∗

2 variables.

The fitted line shown in the graph is the least squares fit between the residuals. For
each of the three panel data estimation methods, the fitted line has the same slope as
the estimated coefficient on the indepvar in the preceding regression.

Due to their construction, the residuals each have a mean of zero, and the regression
line fitted between them passes exactly through e(x|X)=0 and e(y|X)=0. At that
point, the confidence interval has zero width, giving it an unfamiliar shape.6

3.3 Options for xtavplot and xtavplots

Plot

marker options affect the rendition of markers drawn at the plotted points, including
their shape, size, color, and outline; see [G-3] marker options.

6. The confidence interval for a conventional regression with no constant term also has this shape at
the point where all the independent variables have a value of zero.
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marker label options specify whether and how markers are to be labeled; see
[G-3] marker label options.

addmeans rescales the scatterplot values, the regression line and the confidence intervals
to be centered on the mean values of the x and y variables instead of being centered
on zero by default. This may make the plot more visually intuitive, but it is impor-
tant to make clear to viewers that the graph is showing conditioned values rather
than the original data.

Regression line

rlopts(cline options) affects the rendition of the regression (fitted) line. See [G-3] cline options.

nocoef turns off display below the graph of the values of the coefficient, standard error
and t statistic from the regression line.

Confidence interval

noci turns off display of the confidence interval on the graph.

ciunder causes the confidence interval to be graphed underneath the scatterplot (i.e.
the scatter points are visible on top of confidence interval). This is mainly useful
when graphing a solid confidence interval with option ciplot(rarea).

level(#) specifies the confidence level, in percent, for the confidence interval around
the regression line. The default is level(95) or as set by set level; see [U] 20.8
Specifying the width of confidence intervals.

ciopts(cline options) affects how the upper and lower confidence interval lines are
rendered. See [G-3] cline options. If you specify ciplot(), then rather than using
cline options you should specify whichever options are appropriate for the plottype.

ciplot(plottype) specifies how the confidence interval is to be plotted. The default
is ciplot(rline), meaning that the prediction will be plotted by graph twoway
rline.

A common alternative is ciplot(rarea), which will substitute lines around the
prediction for shading. See [G-2] graph twoway for a list of plottype choices. You
may choose any plottypes that expect two y variables and one x variable.

Y axis, X axis, Titles, Legend, Overall

twoway options are any of the options documented in [G-3] twoway options, excluding
by(). These include titling the graph (see [G-3] title options) and saving the graph
to disk (see [G-3] saving option).

xtavplot-only options

xlim(#
[
#
]
), ylim(#

[
#
]
) limit the range of the indepvar and depvar residuals dis-

played. If only one number is specified, residuals with a value below that number
will not be displayed in the scatterplot. If two numbers are specified, residuals below
the first number and above the second number will not be displayed.
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Excluding observations of the residuals does not affect the slope of the regression
line in the graph. The purpose of these options is to avoid a few outlying obser-
vations dramatically extending the range of the x or y axis, obscuring display of
the relationship between the variables. Since panel datasets are typically large, it is
common to have a few distant outliers which don’t significantly affect the estimates.
Make sure that the undisplayed observations are not important to the estimated
relationship and that their exclusion is noted in the text.

generate(exvar eyvar) saves the values of the x and y residuals in variables named
by the user. The user must specify two variable names for exvar and eyvar. These
residuals can be used for subsequent calculations or graphing commands. See sec-
tions 3.4 and 4 below for how to access the estimate b1 as well as its standard error
and how to calculate the regression fit and confidence intervals.

nodisplay suppresses display of the plot. This is mainly useful for users creating their
own plots from variables created with generate().

addplot(plot) provides a way to add other plots to the generated graph. See [G-

3] addplot option.

xtavplots-only options

combine options are any of the options documented in [G-2] combine options for ar-
ranging a matrix of plots in a single image.

3.4 Stored results

xtavplot stores the following in r():

Scalars
r(coef) the estimated coefficient of the added variable
r(se) the standard error of the estimated coefficient

After the addmeans option:
r(ybar) (possibly weighted) mean of the depvar y
r(xbar) (possibly weighted) mean of the added variable x1

4 Methods and Formulas

Since xtavplot is an xtreg post-estimation command, the preceding xtreg command
will have the form

xtreg y x1 x2, model (8)

where y is the depvar, x1 is one of the indepvars, x2 is a vector of the other indepvars,
and model is a choice of fe, be, or re. This will be followed by the command

xtavplot x1, options

xtavplot allows for x1 not to be included in the preceding xtreg indepvars. In that
case there is some adjustment to these formulas, principally to estimate the full xtreg



J.L. Gallup 13

model including x1.

4.1 After xtreg, fe

xtavplot calculates residuals ey and ex1
in equation (2) from

xtreg y x2, fe

predict ey, xbu

xtreg x1 x2, fe

predict ex1 , xbu

using the same weights and sample restrictions as in Equation 8.

4.2 After xtreg, be

xtavplot forms the n individual means y, x1 and x2 as defined in (5). Residuals ey∗

and ex∗
1

in equation (3) are calculated from

regress y x2

predict ey∗ , resid

regress x1 x2

predict ex∗
1
, resid

using the weights and sample of Equation 8.

4.3 After xtreg, re

xtavplot forms the weighted deviations from the mean variables y∗, x∗
1 and X∗

2 as

defined in (7) where X∗ =
[
x∗

1 X∗
2

]
. The weights θ̂i = 1− σ̂2

ε

Tiσ̂2
υ+σ̂2

ε
are calculated from

σ̂2
ε = e(sigma e)^2 and σ̂2

υ = e(sigma u)^2 from the preceding xtreg, re command.
Define the (N =

∑
i Ti) × 1 vector

(1 − θ) =

















1 − θ̂1

...
1 − θ̂1

...
1 − θ̂n

...
1 − θ̂n

















where each 1 − θ̂i is repeated Ti times.
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ey∗ and ex∗
1

are calculated from

regress y∗ (1 − θ) X∗
2, nocons

predict ey∗ , resid

regress x∗
1 (1 − θ) X∗

2, nocons

predict ex∗
1
, resid

using the sample of Equation 8 (weights at not allowed in xtreg, re estimation).

Note that it doesn’t work to use xtreg y x2, re and xtreg x1 x2, re to generate
residuals because they will estimate different values for σ̂2

ε and σ̂2
υ, which vary depending

on the included indepvars.

4.4 Confidence Interval

The preceding subsections explain how to calculate the residuals ey and ex1 (or ey∗ and
ex∗

1
, as appropriate throughout this section). It is not necessary to regress one residual

on the other to calculate the coefficient b1 and its standard error σ̂b1 because they are
already available from the preceding xtreg command.7

By default, xtavplot displays a confidence interval around the predicted fit from
the regression of ex1 on ey. The fitted values of ey are êy = ex1b1. The confidence
interval boundaries are êy ± tα/2ex1 σ̂b1 for fixed-effects and between-effects estimates,
and êy±zα/2ex1 σ̂b1 for random-effects estimates, where tα/2 is the α/2 percentile of the
cumulative t distribution, zα/2 is the α/2 percentile of the cumulative standard normal
distribution, and α = 1 − level/100.

4.5 addmeans option

The addmeans option recenters the graph on the mean values of y and x1, instead of
the default of zero. The mean y of y and x1 of x1 are calculated using the weights and
sample restrictions in the preceeding xtreg command. x1 is added to the residuals ex1 ,
and y is added to ey, the predicted values and the confidence interval boundaries before

7. This also eliminates the need to worry about heteroskedasticity corrections which may have been
implemented in the preceding regression since they affect only the standard errors of the estimates,
not the values of the residuals ex1 and ey. If the user is interested in verifying that the residuals
are calculated correctly (consistent with the coefficient b1 in the preceding regression), there is an
otherwise undocumented xtavplot option debug which calculates b1 as the coefficient on ex1 from

regress ey ex1 , nocons

and stores the result in r(b check). This regression does not calculate the correct standard error
for b1, which requires an adjustment for the additional degrees of freedom taken up by controlling
for the influence of the other covariates. The correct standard errors can be calculated using the
undocumented regress option dof() to change the degrees of freedom:

regress ey ex1 , nocons dof(df)

where df = e(N) − e(df m) − 1 after xtreg, fe and xtreg, re, and df = e(df r) after xtreg, be.



J.L. Gallup 15

the graph is displayed. The means are not added to the values of ex1
and ey saved by

the generate option, but y and x1 are saved as r(ybar) and r(xbar) in the return
values.

5 Examples of xtavplot and xtavplots in use

Since xtavplot and xtavplots are xtreg post-estimation commands, we first load an
example Stata panel dataset nlswork. We only keep the first thousand observations of
the large dataset so that the graphs display more quickly. Use xtreg to estimate a fixed
effects model of the correlates of wages. The specification of the model is discussed in
help xtreg.

. webuse nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. keep in 1/1000
(27,534 observations deleted)

. xtreg ln_w tenure c.tenure#c.tenure ttl_exp not_smsa south, fe

Fixed-effects (within) regression Number of obs = 989
Group variable: idcode Number of groups = 163

R-sq: Obs per group:
within = 0.1840 min = 1
between = 0.2753 avg = 6.1
overall = 0.2004 max = 15

F(5,821) = 37.03
corr(u_i, Xb) = 0.1490 Prob > F = 0.0000

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

tenure .0379093 .0076476 4.96 0.000 .0228981 .0529206

c.tenure#c.tenure -.0014394 .0004394 -3.28 0.001 -.0023018 -.000577

ttl_exp .0203816 .0035609 5.72 0.000 .013392 .0273712
not_smsa -.0450833 .0707906 -0.64 0.524 -.1840351 .0938685

south -.0727986 .0986778 -0.74 0.461 -.2664892 .1208919
_cons 1.626667 .0202064 80.50 0.000 1.587005 1.666329

sigma_u .34239623
sigma_e .27343844

rho .61058793 (fraction of variance due to u_i)

F test that all u_i=0: F(162, 821) = 7.68 Prob > F = 0.0000

Invoking the command xtavplot ttl exp will display a graph of the partial cor-
relation between ttl exp and ln wage, giving a sense of how closely the individual
observations fit this relationship. The slope of the regression of residuals e(ttl exp|X)
on e(ln wage|X) is shown as a solid line, and the limits of its confidence interval as
dashed lines.
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. xtavplot ttl_exp
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coef =  .0203816, se =  .0035609, t =  5.72

The graph has excessive white space to the left of the data. This is due to one
observation with a value of e(ttl exp|X) equal to -6.2. By adding the option xlim(-6),
the graph is better situated:

. xtavplot ttl_exp, xlim(-6)
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coef =  .0203816, se =  .0035609, t =  5.72

In this particular case, the source of the problem is the label algorithm which could be
better solved with option xlabel(-5(5)10) causing no observations to be omitted, as
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in the graph below. However, if the value of this outlier had been -10, the xlim option
would be helpful because the problem could not be solved with an xlabel option.
Omitting the value of -10 would probably warrant a footnote.

The confidence interval can be displayed as an area plot with the ciplot(rarea)
option, as displayed in the command lfitci. The ciunder option causes the confidence
interval to appear underneath the scatterplot. By default the confidence interval would
be above the scatter, obscuring some of the data points.

. // With solid confidence interval area

. xtavplot ttl_exp, ciplot(rarea) ciunder xlabel(-5(5)10)
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coef =  .0203816, se =  .0035609, t =  5.72

The graph below changes the scatterplot marker symbol to triangles, doesn’t display
a confidence interval around the fitted line, and removes the value of ttl exp coefficient,
standard error and t statistic from the bottom of the graph.
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. xtavplot ttl_exp, msymbol(+) noci nocoef xlabel(-5(5)10)
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The addmeans option rescales the graph to be centered on the actual means of y and
x1 instead of the zero means of the residuals ey and ex1 . This may be more intuitive
for the reader by conveying the central values of y and x1. It is probably a good idea
to remind the reader that the graph shows the conditional values ey and ex1 , not the
actual values y and x1.

The graph below shows the added-variable plot of south centered on its mean value
of 0.02 and the mean ln wage of 1.83. The mean value of south, close to zero, shows
that there are very few southerners in the sample.

Note that added-variable plots can be an intuitive way of graphing the relationship
of dummy variables like south to the dependent variable since the values of the residuals
ex1 are continuous even though the unconditional values of south are 0 or 1.
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. xtavplot south, addmeans
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coef = -.0727986, se =  .0986778, t = -0.74

5.1 xtavplots

The command xtavplots with an s on the end creates all possible added-variable plots
of the indepvars in a matrix as a single image.

. keep in 1/500
(500 observations deleted)

. xtreg ln_w tenure c.tenure#c.tenure ttl_exp not_smsa south, fe
(output omitted )
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. xtavplots
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Adding a title and shifting the position of the plots with the holes option make the
image look better.

. xtavplots, title(Added-Variable Plots) holes(2)
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Added-Variable Plots

The examples above have focused on graphing options to change the appearance of
the graphs created by xtavplot after fixed-effects estimation. xtavplot can also be
employed after between-effects and random-effects estimation. The conceptual issues
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involved in created added-variables plots after these other estimation methods are dis-
cussed in previous sections, but the visual considerations when creating these graphs
are the same as after fixed-effects estimation.
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