{smcl} {cmd:help xtmrho} {hline} {title:Title} {phang}{hi:xtmrho} {hline 1} Computes intraclass correlations, median odds ratios and median incidence rate ratios after xtmixed, xtmelogit, xtmepoisson {p_end} {title:Syntax} {phang}{it:(xtmixed, xtmelogit or xtmepoisson regression)} {phang}{cmd:. xtmrho} {title:Description} {pstd} {cmd:xtmrho} is a convenient way to compute intra class correlations (ICC), median odds ratios (MOR) and median incidence rate ratios (MIRR) after {helpb xtmixed}, {helpb xtmepoisson} and {helpb xtmelogit}. {pstd} It uses the most recently fitted modell to compute intra correlations for all levels automatically. For each level it stores scalars (help {helpb scalar}, {helpb ereturn}) for {hi:ICC e(rho'{it:level}')}, {hi:MOR e(mor'{it:level}')} or {hi:MIRR e(mirr'{it:level}')} as well as a scalar for the total variance on the level {hi:e(u'{it:level}')}. {pstd} Its results can be used for {helpb estimates table} or {helpb estout} (if installed). {title:Options} {it:(no options are supported)} {title:Example} {cmd:. use http://www.stata-press.com/data/r9/productivity.dta} {cmd:. xtmixed gsp private emp hwy water other unemp || region: || state:} {txt}{it: (output omitted)} {txt}{cmd:. xtmrho} {txt}Levels: {res}region state {txt}Intra class correlation on level {res}1{txt} rho = {res}.19561036 {txt}Intra class correlation on level {res}2{txt} rho = {res}.66469224 {cmd:. gen gsp_l9 = gsp<9} {cmd:. xtmelogit gsp_l9 private emp hwy water other unemp || region: || state:} {txt}{it: (output omitted)} {cmd}. xtmrho {txt}Levels: {res}region state {txt}level {res}1{txt}: {txt}Intraclass correlation (ICC): {res}rho1{txt} = {res}0.00000 {txt}Median Odds Ratio (MOR): {res}mor1{txt} = {res}1.00000 {txt}level {res}2{txt}: {txt}Intraclass correlation (ICC): {res}rho2{txt} = {res}0.71714 {txt}Median Odds Ratio (MOR): {res}mor2{txt} = {res}15.71828 {cmd:. xtile gsp_nq4 = gsp, nq(4)} {cmd:. xtmepoisson gsp_nq4 private emp hwy water other unemp || region: || state:} {txt}{it: (output omitted)} {cmd}. xtmrho {txt}Levels: {res}region state {txt}level {res}1{txt}: Median Incidence Rate Ratio (MIRR): {res}MIRR1{txt} = {res}1.00000 {txt}level {res}2{txt}: Median Incidence Rate Ratio (MIRR): {res}MIRR2{txt} = {res}1.03960 {cmd:. est tab , stat(mirr1 mirr2) stfmt(%4.3f) b(%3.2f) eform} {res} {txt}{hline 12}{c -}{c TT}{c -}{hline 7}{c -}{c -} {ralign 12:Variable} {c |} {center 7:active} {space 1} {hline 12}{c -}{c +}{c -}{hline 7}{c -}{c -} {res}eq1 {txt}{c |} {res}{txt}{space 5}private {c |}{res} {ralign 7:1.12}{txt} {space 1} {res}{txt}{space 9}emp {c |}{res} {ralign 7:1.50}{txt} {space 1} {res}{txt}{space 9}hwy {c |}{res} {ralign 7:0.90}{txt} {space 1} {res}{txt}{space 7}water {c |}{res} {ralign 7:1.04}{txt} {space 1} {res}{txt}{space 7}other {c |}{res} {ralign 7:0.97}{txt} {space 1} {res}{txt}{space 7}unemp {c |}{res} {ralign 7:1.00}{txt} {space 1} {res}{txt}{space 7}_cons {c |}{res} {ralign 7:0.10}{txt} {space 1} {hline 12}{c -}{c +}{c -}{hline 7}{c -}{c -} {res}lns1_1_1 {txt}{c |} {res}{txt}{space 7}_cons {c |}{res} {ralign 7:0.00}{txt} {space 1} {hline 12}{c -}{c +}{c -}{hline 7}{c -}{c -} {res}lns2_1_1 {txt}{c |} {res}{txt}{space 7}_cons {c |}{res} {ralign 7:0.04}{txt} {space 1} {hline 12}{c -}{c +}{c -}{hline 7}{c -}{c -} {res}{lalign 12:Statistics}{txt} {c |} {center 7:} {space 1} {ralign 12:mirr1} {c |}{res} {ralign 7:1.000}{txt} {space 1} {ralign 12:mirr2} {c |}{res} {ralign 7:1.040}{txt} {space 1} {hline 12}{c -}{c BT}{c -}{hline 7}{c -}{c -} {txt}{it: (end)} {title:References} {txt} Hox J (2002) Multilevel Analyses. Techniques and Applications. Lawrence Erlbaum Associates, New Jersey. pp.31. Larsen K and Merlo J (2005). Appropriate Assessment of Neighborhood Effects on Individual Health: Integrating Random and Fixed Effects in Multilevel Logistic Regression. American Journal of Epidemiology 161 (1). p.81-88. Rabe-Hesketh S, Skrondal A (2008). Multilevel and Longitudinal Modeling using Stata. 2nd Edition. College Station, TX: Stata Press Publication. Snijders TAB, Bosker RJ (1999). Multilevel analysis: an introduction to basic and advanced multilevel modeling, 1st ed. Thousand Oaks, CA: Sage. {title:Methods and formulas} {text}Intraclass-Correlation after xtmixed (cf. Snijders 1999): {phang2}{text}{hi: ICC = AREA LEVEL VARIANCE / TOTAL VARIANCE } {text}Intraclass-Correlation after xtmelogit (cf. Snijders 1999): {phang2}{text}{hi: ICC = AREA LEVEL VARIANCE / (SUM OF AREA LEVEL VARIANCES + (c(pi)^2)/3) } {text} Median Odds Ratio after xtmelogit (cf. Larsen and Merlo 2002): {phang2}{text}{hi: MOR = exp(sqrt(2*AREA LEVEL VARIANCE))*invnormal(0.75))} {text} Median Incedence Rate Ratio after xtmepoisson (cf. Rabe-Hesketh and Skrondal 2008): {phang2}{text}{hi: MIRR = exp(sqrt(2*AREA LEVEL VARIANCE))*invnormal(0.75))} {title:Author} {p 4 4 2}Lars E. Kroll, {browse "mailto:mail@lkroll.de": email} {break} {browse "http://www.lkroll.de": http://www.lkroll.de} {title:Also see} {psee} Manual: {bf:[XT] xtmixed}, {bf:[XT] xtmelogit}, {bf:[XT] xtmepoisson} {psee} Online: {helpb xtmixed}, {helpb xtmelogit}, {helpb xtmepoisson}, {helpb estimates} {p_end}