
Motivation Overview of possible methods Usage Extensions

Mata routines for solution of nonlinear systems

using interval methods

Matthew J. Baker - Department of Economics
Hunter College and the Graduate Center, CUNY

July 31, 2014

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Multiple equilibria models

Current research interest: models with multiple equilibria.

Examples:

Social interactions (teen smoking). (Bisin, Moro, and Topa,
2011)
Market outcomes that have game-theoretic or strategic
underpinnings. (Bajari, Hong, and Ryan 2010)
Macro-models with multiple equilibria (e.g., Diamond, 1982),
examples in Cooper (1999)

For given values of parameters, explanatory variables, and
error terms, observed outcome y may not be the only

outcome consistent with parameters and data.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Estimation of Multiple Equilibria models

State-of-the-art:

1 Solve the model, given parameters and data. Find all

solutions!

2 Probabilistically weight the observed outcome solution in
forming moment conditions or likelihood.

3 Repeat 1-2 as objective is maximized.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Estimation of Multiple Equilibria models

State-of-the-art:

1 Solve the model, given parameters and data. Find all

solutions!

2 Probabilistically weight the observed outcome solution in
forming moment conditions or likelihood.

3 Repeat 1-2 as objective is maximized.

Requirement: a reliable way to find all solutions of the model.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Nonlinear solvers

There are a lot of nonlinear system solvers out there, but:

Most find a solution to a system - finding all system solutions
is a bit more tricky!

Sometimes clumsy to use if one wants to work in Stata.

Goal: create a means of reliably finding all solutions to a nonlinear
system within Stata (actually, Mata).

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Interval methods?

First, why interval methods?

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Interval methods?

First, why interval methods? Alternative ways of solving systems:

Homotopy methods:

Polynomial systems.
Very elegant - use Bezout’s theorem to guarantee all solutions.
Drawback: hard to use constraints, numerical stability, hard to
adapt to non-polynomial cases.

Polynomial ideals/Groebner bases:

Extremely elegant.
Drawback: numerical stability.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Interval methods?

First, why interval methods? Alternative ways of solving systems:

Homotopy methods:

Polynomial systems.
Very elegant - use Bezout’s theorem to guarantee all solutions.
Drawback: hard to use constraints, numerical stability, hard to
adapt to non-polynomial cases.

Polynomial ideals/Groebner bases:

Extremely elegant.
Drawback: numerical stability.

Interval methods:

Slow. Brute-force, but...
Details are easy to grasp.
Numerically reliable, constraints easy to include, flexible.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Intervals and zeros: basics

Take an interval x = [x ] ∈ [x , x ]. Consider the problem of finding
the zeros of some continuous, differentiable f (x) in this interval.

1 Consider a list of intervals [x ].

2 Use interval arithmetic to compute largest and possible values
that f (x) could take in the intervals.

3 For each interval in the list, if x ≤ 0 and x ≥ 0, subdivide x

and retest. Otherwise, throw out [x ].

4 Repeat until all remaining boxes are smaller than some
specified size, or there are no more intervals. Solutions are
bracketed by small intervals.

If f (x) is multivariate, x = [x ] will be a vector of intervals - a
“box”.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Interval computations and functions

Interval arithmetic largely consists of operating on upper and lower
bounds:

Addition: [x ] + [y ] = [x + y , x + y ]. Example:
[0, 1] + [3, 4] = [3, 5].

Multiplication: [x ][y ] = [min S ,maxS ], S = [xy , xy , xy , xy ].
Example: [1, 3][3, 4] = [3, 12].

More complex operations are simple to program, especially if
they are monotone: e[x ] = [ex , ex ].

Package int utils and accompanying help files explain different
operations.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Parallel computation with intervals

Backbone of intsolver: int utils and another package
rowmat utils.

int utils interval operations on vectors, matrices.

rowmat utils is a collection of matrix operations where a
matrix is written as a single row of a larger matrix. Idea:
compute the inverse, say, of many (say 1000) smaller matrices
all at once in parallel.

Will be clear how this works (hopefully) from examples.
int utils and rowmat utils have expansive help files.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Inclusion functions

One can use interval computations to develop an “inclusion
function [f ]([x ]),” where f ([x ]) ⊆ [f ]([x ]). Bounds values of the
domain of f given range [x ]. Most inclusion functions are
“pessimistic” and not unique. From MKC (2009):
x(1− x) = x − x2.

x(1− x): [0, 1](1 − [0, 1]) = [0, 1][0, 1] = [0, 1]

x − x2: [0, 1] − [0, 1][0, 1] = [0, 1] − [0, 1] = [−1, 1]

True range is [0, 14 ]!

But generall convergence of [f ]([x ]) to f ([x ]) as interval shrinks
occurs at a factor > 1.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

intsolver inclusion function

intsolver represents multivariate problems using a
Taylor-expansion based inclusion function. If [x ] is a box,
[x ] = [(x1, x1), (x2, x2), . . . , (xn, xn)] and xc is the center of the
box (xc = x−x

2 ), we have:

f ([x ]) ⊆ f (xc ) + [J]([x ])([x ] − xc)

If one can program versions of the function and Jacobian,
intsolver uses an interval Gauss-Seidel method on the above
function to iteratively narrow potential boxes.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

More precisely...

In an N-dimensional nonlinear system, pick a variable i ∈ N and an
equation j ∈ N in an N-dimensional system. Then:

fj([x ]) = fj(xc ) +

N
∑

k=1

[J]jk([x ])([x ]k − xck)

Or, viewed as a recursion:

˜[x ]i =
fj([x ]) −

∑N
k=1,k 6=i [J]jk([x ])([x ]k − xck)

[J]ji ([x ])

Update by computing ˜[x ]i and then updating: [x ]i ← ˜[x ]i ∩ [x ]i . If
this doesn’t work, subdivide [x ]i , and keep going with a larger list
of intervals.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Using intsolver

Usage is via a mata structure, similar to how one uses moptimize.
An example: suppose one wishes to find all zeros of the function:

f (x) =

(

1− 2x1x2 − 3x21
1− x21 − 3x22

)

Which has Jacobian:

J(x) =

(

−2x2 − 6x1 −2x1
−2x1 −6x2

)

One now needs to program ordinary versions of the above, and
their interval counterparts, in a particular way.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

A note on arguments...

intsolver works with sets of points in parallel. Functions should
be written with a single matrix as an argument, with rows
representing points:

x =











x11 x21
x12 x22
...

...
x1D x2D











This allows intsolver to do stuff like Newton iteration in parallel
on a large number of potential points.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Programming the functions

For the example, from the mata prompt:

: real matrix fun(real matrix x,real scalar i)

{

if (i==1) return(1:-2*x[,1]:*x[,2]:-3*x[,1]:^2)

if (i==2) return(1:-x[,1]:^2:-3*x[,2]:^2)

}

Scalar argument following the set of points x is an equation
number. Note how the function computes in parallel across many
points.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Programming part 2

The jacobian is then:

: real matrix jac(real matrix x,real scalar i,

real scalar j)

{

if (i==1 & j==1) return(-2*x[,2]:-6:*x[,1])

if (i==1 & j==2) return(-2*x[,1])

if (i==2 & j==1) return(-2*x[,1]])

if (i==2 & j==2) return(-6*x[,2])

}

Here, i , j indicate the ith row and jth column of the jacobian, and
x again carries x1, x2 points as rows.
The next step is to program interval versions of these functions.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Arguments again...

Interval functions should be constructed the same way - so that
each row of a matrix x can be regarded as an interval. That is:

x =











x11 x11 x21 x21
x12 x12 x22 x22
...

...
x1D x1D x2D x2D











x is a D × 2N matrix, where D is a number of points, and N is the
dimension of the problem. Odd columns are lower bounds, even
columns are upper bounds on an interval for each variable.
Function needs x , row (and column) labels, and a final argument,
d , which controls “outward rounding.”

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Programming part 3 - interval function

real matrix fun_I(real matrix x,real scalar i, real scalar d)

{

X1=x[,1::2];X2=x[,3::4]

if (i==1) {

A=2*int_mult(X1,X2,d)

I=J(rows(A),2,1)

B=int_sub(I,A,d)

C=3*int_pow(X1,2,d)

D=int_sub(B,C,d)

return(D) }

if (i==2) {

A=int_mult(X1,X1,d)

B=3*int_pow(X2,X2)

I=J(rows(A),2,1)

C=int_sub(I,A,d)

D=int_sub(C,B,d)

return(D) }

}

Operations defined in int utils help.
Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Programming part 4 - interval jacobian

: real matrix jac_I(real matrix x,real scalar i,real scalar j, real scalar d)

{

X1=x[,1::2];X2=x[,3::4];r=rows(X1)

if (i==1 & j==1) {

A=int_mult(J(r,2,-2),X2,d)

B=int_mult(J(r,2,-6),X1,d)

C=int_add(A,B,d)

return(C) }

if (i==1 & j==2) {

A=int_mult(J(r,2,-2),X1,d)

return(A) }

if (i==2 & j==1) {

A=int_mult(J(r,2,-2),X1,d)

return(A) }

if (i==2 & j==2) {

A=J(rows(X1),2,-6)

B=int_mult(A,X2,d)

return(B) }

}

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Problem definition

Having programmed everything in, we now can define a problem.
From within Mata:

: Prob=int_prob_init()

: int_prob_args(Prob,2)

: int_prob_f_Iform(Prob,&fun_I())

: int_prob_jac_Iform(Prob,&jac_I())

: int_prob_f(Prob,&fun())

: int_prob_jac(Prob,&jac())

Then, the problem can be solved once some boxes are passed
along:

: Ival=(-100,100) \ (-100,100)

: int_prob_ival(Prob,Ival)

: int_solve(Prob)

The problem has been solved! What do the solutions look like?

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Problem solutions

The solutions are returned as intervals:

: int prob ints vals(Prob)

1 2 3 4

-.7249408 -.7249155 .3976849 .3976926

-.4291268 -.4291181 -.5214909 -.5214856

.4291181 .4291268 .5214856 .5214909

.7249155 .7249408 -.3977003 -.3976926

.7249155 .7249408 -.3976926 -.3976849

Typically, there is some redundancy/closeness/overlap in boxes.
One can control how small boxes are in options (described in help
file). Here, box size is 1e − 4 (default setting).

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Refining solutions to a point

It has been shown (Pandian, 1984) that the midpoints of solution
boxes constitute great and reliable points for Newton iteration.
One can do this and see resulting points using the commands:

: int_newton_iter(Prob)

: int_prob_pts_vals(Prob)

1 2

-.7249360956 .3976881766

-.4291212844 -.5214898284

.4291212844 .5214898284

.7249360956 -.3976881766

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Less rigor, more speed...

If one wishes, one can simply start with a set of random points
covering an interval and do Newton iteration - and avoid using
interval methods all together. In my experience, this actually works
quite well in finding a, or all, solutions to a system:

: Prob2=int_prob_init()

: int_prob_args(Prob2,2)

: int_prob_f(Prob2,&func())

: int_prob_jac(Prob2,&jac())

: randpoints=-100:+200*runiform(10,2)

: int_prob_init_pts(Prob2,randpoints)

: int_prob_method(Prob2,"newton")

: int_newton_iter(Prob2)

: int_prob_pts_vals(Prob2)

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Mata packages to be uploaded on SSC soon!

intsolver, with a help file and a .do file of examples,
including a number of common nonlinear test functions.

Some more complex examples include additional arguments
(Diamond 1982 model)

int utils, a collection of interval operations.

rowmat utils, write and operate on a sequence of matrices
in a parallel, where each row of a meta matrix is a matrix.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Other materials

Do file to accompany packages contains examples, including
examples of how to pass along additional arguments, and
treatment of some famous test problems.
Many details of package, such as control of rounding errors, how
to do floating point arithmetic, etc. can be controlled by user.
Detailed in the help files.

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Also, a Stata function - dagsolve

Reason for development of int solver - usage in estimation or
other packages. Example: dagsolve.
Uses intsolver extensively - finds all solutions to “discrete
action” games with an arbitrary number of players, each of whom
has an arbitrary number of actions.
A very difficult computational problem - mixed strategies for games
with more than two players require repeated solution of polynomial
systems on the 0, 1 interval. Also to be posted!

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods



Motivation Overview of possible methods Usage Extensions

Conclusion

Other plans:

Form additional Stata routines to estimate some standard
nonlinear, multiple-solution models.

Develop a parser or otherwise automate the process of writing
interval functions.

Expand the algorithm to include some other interval
techniques, preconditioning, etc.

Tools for checking internal consistency of user-programmed
functions. (debuggers)

If you have a nonlinear system that needs to be solved, please let
me know! I am happy to help and am looking for functions!

Matthew J. Baker - Department of Economics Hunter College and the Graduate Center, CUNY

Mata routines for solution of nonlinear systems using interval methods


	Motivation
	Overview of possible methods
	Usage
	Extensions

