Estimating treatment effects from observational data using teffects

David M. Drukker

Director of Econometrics StataCorp

Stata Conference Boston July 31, 2014 and August 1, 2014

A question

- Will a mother hurt her child by smoking while she is pregnant?
 - Too vague
- Will a mother reduce the birthweight of her child by smoking while she is pregnant?
 - Less interesting, but more specific
 - There might even be data to help us answer this question
 - The data will be observational, not experimental

Potential outcomes

- Potential outcomes are the data that we wish we had to estimate causal treatment effects
- Suppose that we could see
 - the birthweight of a child born to each mother when she smoked while pregnant, and
 - 2 the birthweight of a child born to each mother when she did not smoke while pregnant

For example, we wish we had data like

. list mother_id bw_smoke bw_nosmoke in 1/5, abbreviate(10)

	mother_id	bw_smoke	bw_nosmoke
1.	1	3183	3509
2.	2	3060	3316
3.	3	3165	3474
4.	4	3176	3495
5.	5	3241	3413

- There are two treatment levels, the mother smokes and the mother does not smoke
 - For each treatment level, there is an outcome (a baby's birthweight) that would be observed if the mother got that treatment level

Average treatment effect

 If we had data on each potential outcome, the sample-average treatment effect would be the sample average of bw_smoke minus bw_nosmoke

. mean bw_smoke bw_nosmoke Mean estimation		Number of obs			=	4642		
	Mean	Std. Err.	[95% Co	nf.	Inter	val]		
bw_smoke bw_nosmoke	3171.72 3402.599	.9088219 1.529189	3169.93 3399.60	-	3173 3405			
	w_smoke]b ke - bw_nosmol]					
Mean	Coef.	Std. Err.	t P)> t		[95%	Conf.	Interval]
(1)	-230.8791	1.222589	-188.84 0	.000		-233	. 276	-228.4823

• In population terms, the average treatment effect is

$$ATE = \mathbf{E}[bw_{smoke} - bw_{nosmoke}] = \mathbf{E}[bw_{smoke}] - \mathbf{E}[bw_{nosmoke}]$$

Missing data

- The "fundamental problem of causal inference" (Holland (1986)) is that we only observe one of the potential outcomes
 - The other potential outcome is missing
 - We only see *bw_{smoke}* for mothers who smoked
 - 2 We only see $bw_{nosmoke}$ for mothers who did not smoked
- We can use the tricks of missing-data analysis to estimate treatment effects
- For more about potential outcomes Rubin (1974), Holland (1986), Heckman (1997), Imbens (2004), (Cameron and Trivedi, 2005, chapter 2.7), Imbens and Wooldridge (2009), and (Wooldridge, 2010, chapter 21)

Random-assignment case

- Many questions require using observational data, because experimental data would be unethical
 - We could not ask a random selection of mothers to smoke while pregnant
- The random-assignment methods used with experimental data are useful, because observational-data methods build on them
- When the treatment is randomly assigned, the potential outcomes are independent of the treatment
- If smoking were randomly assigned to mothers, the missing potential outcome would be missing completely at random
 - The average birthweight of babies born to mothers who smoked would be a good estimator for mean of the smoking potential outcome of all mothers in the population
 - ② The average birthweight of babies born to mothers who did not smoke would be a good estimator for mean of the not-smoking potential outcome of all mothers in the population

As good as random

- Instead of assuming that the treatment is randomly assigned, we assume that the treatment is as good as randomly assigned after conditioning on covariates
- Formally, this assumption is known as conditional independence
- Even more formally, we only need conditional mean independence which says that after conditioning on covariates, the treatment does not affect the means of the potential outcomes

Assumptions used with observational data

- The assumptions we need vary over estimator and effect parameter, but some version of the following assumptions are required.
 - CMI The conditional mean-independence CMI assumption restricts the dependence between the treatment model and the potential outcomes
- Overlap The overlap assumption ensures that each individual could get any treatment level
 - IID The independent-and-identically-distributed (IID) sampling assumption ensures that the potential outcomes and treatment status of each individual are unrelated to the potential outcomes and treatment statuses of all the other individuals in the population

The overlap assumption

- The overlap assumption requires that each individual has a positive probability of receiving each treatment level.
- Formally, the overlap assumption requires that for each possible \mathbf{x}_i in the population and each treatment level t, $0 < \mathbf{P}(t_i = t | \mathbf{x}) < 1$.

The IID assumption

- We also make the standard assumption that we have an independently and identically distributed (IID) sample from the population
- In potential-outcome models, IID sampling implies that the potential outcomes and treatment status of each individual are unrelated to the potential outcomes and treatment statuses of all the other individuals in the population
 - IID sampling rules out interactions among the individuals
 - For instance, models of vaccinations in epidemiology and spatially-dependent outcomes in economics violate the independence assumption

Some references for assumptions

For Reference Only

- Versions of the CMI assumption are also known as unconfoundedness and selection-on-observables in the literature; see Rosenbaum and Rubin (1983), Heckman (1997), Heckman and Navarro-Lozano (2004), (Cameron and Trivedi, 2005, section 25.2.1), (Tsiatis, 2006, section 13.3), (Angrist and Pischke, 2009, chapter 3), Imbens and Wooldridge (2009), and (Wooldridge, 2010, section 21.3)
- Rosenbaum and Rubin (1983) call the combination of conditional independence and overlap assumptions strong ignorability; see also (Abadie and Imbens, 2006, pp 237-238) and Imbens and Wooldridge (2009).
- The IID assumption is a part of what is known as the stable unit treatment value assumption (SUTVA); see (Wooldridge, 2010, p.905) and Imbens and Wooldridge (2009)

1/10401

Choice of auxiliary model

- Recall that the potential-outcomes framework formulates the estimation of the ATE as a missing-data problem
- We use the parameters of an auxiliary model to solve the missing-data problem
 - The auxiliary model is how we condition on covariates so that the treatment is as good as randomly assigned

Endless and an

iviodei		Estimator
outcome	\rightarrow	Regression adjustment (RA)
treatment	\rightarrow	Inverse-probability weighted (IPW)
outcome and treatment	\rightarrow	Augmented IPW (AIPW)
outcome and treatment	\rightarrow	IPW RA (IPWRA)
outcome (nonparametrically)	\rightarrow	Nearest-neighbor matching (NNMATCH)
treatment	\rightarrow	Propensity-score matching (PSMATCH)

Regression adjustment estimators

- Regression adjustment (RA) estimators:
 - RA estimators run separate regressions for each treatment level, then
 - means of predicted outcomes using all the data and the estimated coefficients for treatment level i all the data estimate POM_i
 - use differences of POMs, or conditional on the treated POMs, to estimate ATEs or ATETs
 - Formally, the CMI assumption implies that we can we can estimate $\mathbf{E}(y_t|\mathbf{x}_i)$ directly from the observations for which person i gets treatment t
 - \bullet y_t is the potential outcome for treatment level t
 - Averages of predicted $\mathbf{E}(y_t|\mathbf{x}_i)$ yield estimates of the POM $\mathbf{E}[y_t]$
- See (Cameron and Trivedi, 2005, chapter 25), (Wooldridge, 2010, chapter 21), and (Vittinghoff et al., 2012, chapter 9)

RA example I

mbsmoke nonsmoker

```
. use cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ra (bweight mmarried prenatal1 fbaby medu) (mbsmoke)
Iteration 0:
              EE criterion = 2.336e-23
Iteration 1: EE criterion = 5.702e-26
Treatment-effects estimation
                                                Number of obs
                                                                         4642
Estimator
              : regression adjustment
Outcome model : linear
Treatment model: none
                            Robust
    bweight
                   Coef.
                           Std. Err.
                                                P>|z|
                                                          [95% Conf. Interval]
ATE
    mbsmoke
    (smoker
         vs
 nonsmoker)
                -230.9541
                           24.34012
                                       -9.49
                                                0.000
                                                         -278.6599
                                                                     -183.2484
POmean
```

356.41

0.000

• RA with linear regression to model outcome

9.546721

3402.548

3421.259

3383.836

```
. teffects ra (bweight mmarried prenatal1 fbaby medu, poisson) (mbsmoke)
Iteration 0:
               EE criterion = 3.926e-17
Iteration 1:
               EE criterion = 1.612e-23
Treatment-effects estimation
                                                Number of obs
                                                                          4642
Estimator
               : regression adjustment
Outcome model
               : Poisson
Treatment model: none
                             Robust
     bweight
                    Coef.
                            Std. Err.
                                                P>|z|
                                                          [95% Conf. Interval]
ATE
    mbsmoke
    (smoker
        VS
 nonsmoker)
                -230.7723
                            24.41324
                                        -9.45
                                                0.000
                                                         -278.6213
                                                                     -182.9232
POmean
    mbsmoke
  nonsmoker
                 3402,497
                            9.547989
                                       356.36
                                                0.000
                                                          3383.783
                                                                      3421,211
```

• RA with exponential conditional mean to model outcome

RA other models

 teffects ra can also model the outcome using probit, logit, or heteroskedastic probit

Inverse-probability-weighted estimators

- Inverse-probability-weighted (IPW) estimators:
 - IPW estimators weight observations on the outcome variable by the inverse of the probability that it is observed to account for the missingness process
 - Observations that are not likely to contain missing data get a weight close to one; observations that are likely to contain missing data get a weight larger than one, potentially much larger
 - IPW estimators model the probability of treatment without any assumptions about the functional form for the outcome model
 - In contrast, RA estimators model the outcome without any assumptions about the functional form for the probability of treatment model
- See Horvitz and Thompson (1952) Robins and Rotnitzky (1995),
 Robins et al. (1994), Robins et al. (1995), Imbens (2000), Wooldridge (2002), Hirano et al. (2003), (Tsiatis, 2006, chapter 6), Wooldridge (2007) and (Wooldridge, 2010, chapters 19 and 21)

```
. teffects ipw (bweight ) (mbsmoke mmarried prenatal1 fbaby medu)

Iteration 0: EE criterion = 1.701e-23

Iteration 1: EE criterion = 6.339e-27

Treatment-effects estimation Number of obs = 4642

Estimator : inverse-probability weights

Outcome model : weighted mean

Treatment model: logit
```

bweight	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-231.1516	24.03183	-9.62	0.000	-278.2531	-184.0501
Honsmoker)	-231.1310	24.03103	-9.02	0.000	-278.2531	-104.0501
POmean mbsmoke nonsmoker	3402.219	9.589812	354.77	0.000	3383.423	3421.015

• IPW with logit to model treatment

```
. teffects ipw (bweight) (mbsmoke mmarried prenatal1 fbaby medu, hetprobit(medu
> ))
Iteration 0:
               EE criterion = 7.158e-16
Iteration 1:
               EE criterion = 1.681e-26
Treatment-effects estimation
                                                 Number of obs
                                                                            4642
Estimator
               : inverse-probability weights
Outcome model
               : weighted mean
Treatment model: heteroskedastic probit
                             Robust.
     bweight
                    Coef.
                            Std. Err.
                                                 P>|z|
                                                            [95% Conf. Interval]
ATE
     mbsmoke
    (smoker
         VS
 nonsmoker)
                -217.7521
                             28.5796
                                         -7.62
                                                 0.000
                                                           -273.7671
                                                                       -161.7371
POmean
     mbsmoke
  nonsmoker
                 3401.788
                            9.570692
                                        355.44
                                                 0.000
                                                            3383.03
                                                                        3420.546
```

- IPW with heteroskedastic probit to model treatment
- Could have used probit to model the treatment

Augmented IPW estimators

- Augmented IPW (AIPW) estimators
 - Augmented-inverse-probability-weighted (AIPW) estimators model both the outcome and the treatment probability
 - The estimating equation that combines both models is essentially an IPW estimating equation with an augmentation term
 - AIPW estimator have the double-robust property
 - only one of the two models must be correctly specified to consistently estimate the treatment effects
 - AIPW estimators can be more efficient than IPW or RA estimators
- See Robins and Rotnitzky (1995), Robins et al. (1995), Lunceford and Davidian (2004), Bang and Robins (2005), (Tsiatis, 2006, chapter 13), Cattaneo (2010), Cattaneo, Drukker, and Holland (2013)

AIPW example I

```
. teffects aipw (bweight mmarried prenatal1 fbaby medu)
                                                          ///
          (mbsmoke mmarried prenatal1 fbaby medu)
Iteration 0:
              EE criterion = 4.031e-23
Iteration 1:
               EE criterion = 2.179e-26
Treatment-effects estimation
                                                Number of obs
                                                                          4642
Estimator
               : augmented IPW
Outcome model : linear by ML
Treatment model: logit
                             Robust
     bweight
                   Coef.
                            Std. Err.
                                           z
                                                P>|z|
                                                          [95% Conf. Interval]
ATE
    mbsmoke
    (smoker
        VS
 nonsmoker)
                -229.7809
                            24.96839
                                        -9.20
                                                0.000
                                                          -278.718
                                                                     -180.8437
POmean
    mbsmoke
  nonsmoker
                 3403,122
                            9.564165
                                       355.82
                                                0.000
                                                          3384.376
                                                                      3421.867
```

AIPW with linear model for outcome and logit for treatment


```
. teffects aipw (bweight mmarried prenatal1 fbaby medu, poisson) ///
          (mbsmoke mmarried prenatal1 fbaby medu, hetprobit(medu))
               EE criterion = 7.551e-16
Iteration 0:
Iteration 1:
               EE criterion = 8.662e-24
Treatment-effects estimation
                                                 Number of obs
                                                                            4642
Estimator
               : augmented IPW
               : Poisson by ML
Outcome model
Treatment model: heteroskedastic probit
                             Robust
                            Std. Err.
                                                            [95% Conf. Interval]
     bweight
                    Coef.
                                                 P>|z|
ATE
     mbsmoke
    (smoker
         vs
 nonsmoker)
                            28.30292
                                         -7.79
                 -220.496
                                                 0.000
                                                          -275.9687
                                                                       -165.0233
POmean
     mbsmoke
```

 AIPW with exponential conditional mean model for outcome and heteroskedastic probit for treatment

9.557345

 Could have used linear, poisson, logit, probit, or heteroskedastic probit to model the outcome and probit, logit, or heteroskedastic logit to model the treatment

356.00

0.000

3383.697

3421.161

nonsmoker

3402.429

Matching estimators

- Matching estimators use an average of the outcomes of the nearest individuals to impute the missing potential outcome for each sampled individual
- The difference between the observed outcome and the imputed potential outcome is essentially an estimate of the expected individual-level treatment effect conditional on the covariates
- These estimated expected individual-level treatment effects are averaged to estimate the ATE

Nearest-neighbor matching

- Nearest-neighbor matching (NNM) determines "nearest" using a weighted function of the covariates for each observation
- NNM is nonparametric
 - No explicit functional form for either the outcome model or the treatment model is specified
 - The estimator needs more data to get to the true value than an estimator that imposes a functional form
 - The NNM estimator converges to the true value at a rate slower than the parametric rate, when matching on more than one continuous covariate
 - teffects nnmatch uses bias-correction to fix this problem

Nearest-neighbor matching II

- See Abadie and Imbens (2006) and Abadie and Imbens (2011) for formal results, rates of convergence, and the details of the bias-correction methods
- Rubin (1973), Rubin (1977), Quade (1982) did early work on matching estimators with formal results in Abadie and Imbens (2006) and Abadie and Imbens (2011)
- tefffect nnmatch is based on the results in Abadie and Imbens (2006) and Abadie and Imbens (2011) and a previous implementation in Abadie, Drukker, Herr, and Imbens (2004)

NNM example

```
. teffects nnmatch (bweight mmarried prenatal1 fbaby medu) (mbsmoke)
Treatment-effects estimation
                                                Number of obs
                                                                           4642
Estimator
               : nearest-neighbor matching
                                                Matches: requested =
Outcome model
               : matching
                                                                min =
Distance metric: Mahalanobis
                                                                            645
                                                                max =
                            AI Robust
                            Std. Err.
    bweight
                    Coef.
                                                P>|z|
                                                           [95% Conf. Interval]
                                           z
ATE
    mbsmoke
    (smoker
         VS
 nonsmoker)
                -220.5255
                             28.0835
                                        -7.85
                                                0.000
                                                          -275.5681
                                                                      -165.4828
```

Propensity-score matching

- Propensity-score matching (PSM) determines "nearest" using the estimated treatment probabilities, which are known as the propensity scores
 - PSM is implemented in teffects psmatch
- PSM provides an alternative to bias-correction because it matches on a single continuous covariate, the estimated treatment probabilities
- Abadie and Imbens (2012) derived the standard errors that account for the error in estimating the propensity scores

PSM example I

```
. teffects psmatch (bweight) (mbsmoke mmarried prenatal1 fbaby medu)
Treatment-effects estimation
                                                 Number of obs
                                                                            4642
Estimator
               : propensity-score matching
                                                 Matches: requested =
Outcome model : matching
                                                                min =
Treatment model: logit
                                                                             645
                                                                max =
                            AT Robust
    bweight
                    Coef.
                            Std. Err.
                                                 P>|z|
                                                           [95% Conf. Interval]
                                            z
ATE
    mbsmoke
    (smoker
         vs
 nonsmoker)
                -217.3852
                            28.98542
                                         -7.50
                                                 0.000
```

- Used logit for propensity score
- Other choices were probit or heteroskedastic probit

-160.5748

-274.1956

PSMATCH example I

```
. teffects psmatch (bweight) (mbsmoke mmarried prenatal1 fbaby medu)
Treatment-effects estimation
                                                 Number of obs
                                                                            4642
Estimator
               : propensity-score matching
                                                 Matches: requested =
Outcome model : matching
                                                                 min =
Treatment model: logit
                                                                             645
                                                                 max =
                             AT Robust
     bweight
                    Coef.
                            Std. Err.
                                                 P>|z|
                                                            [95% Conf. Interval]
                                            7.
ATE
     mbsmoke
    (smoker
         vs
 nonsmoker)
                -217.3852
                            28.98542
                                         -7.50
                                                 0.000
                                                           -274.1956
                                                                       -160.5748
```

- Used heteroskedastic probit for propensity score
- Other choices were logit or probit

Now what?

 Go to http://www.stata.com/manuals13/te.pdf entry teffects intro advanced for more information and lots of links to literature and examples

QTEs for survival data

- Imagine a study that followed middle-aged men for two years after suffering a heart attack
 - Does exercise affect the time to a second heart attack?
 - Some observations on the time to second heart attack are censored
 - Observational data implies that treatment allocation depends on covariates
 - We use a model for the outcome to adjust for this dependence

QTEs for survival data

- Exercise could help individuals with relatively strong hearts but not help those with weak hearts
- For each treatment level, a strong-heart individual is in the .75
 quantile of the marginal, over the covariates, distribution of time to
 second heart attack
 - QTE(.75) is difference in .75 marginal quantiles
- Weak-heart individual would be in the .25 quantile of the marginal distribution for each treatment level
 - QTE(.25) is difference in .25 marginal quantiles
- our story indicates that the QTE(.75) should be significantly larger that the QTE(.25)

A regression-adjustment estimator for QTEs

- Estimate the θ_1 parameters of $F(y|\mathbf{x}, t=1, \theta_1)$ the CDF conditional on covariates and conditional on treatment level
 - Conditional independence implies that this conditional on treatment level CDF estimates the CDF of the treated potential outcome
- ullet Similarly, estimate the $oldsymbol{ heta}_0$ parameters of $F(y|\mathbf{x},t=0,oldsymbol{ heta}_1)$
- At the point y,

$$1/N\sum_{i=1}^N F(y|\mathbf{x}_i,\widehat{\boldsymbol{\theta}}_1)$$

estimates the marginal distribution of the treated potential outcome

• The $\widehat{q}_{1..75}$ that solves

$$1/N \sum_{i=1}^{N} F(\widehat{q}_{1,.75} | \mathbf{x}_i, \widehat{\boldsymbol{\theta}}_1) = .75$$

estimates the .75 marginal quantile for the treated potential outcome

A regression-adjustment estimator for QTEs

• The $\hat{q}_{0..75}$ that solves

$$1/N \sum_{i=1}^{N} F(\widehat{q}_{0,.75} | \mathbf{x}_i, \widehat{\boldsymbol{\theta}}_0) = .75$$

estimates the .75 marginal quantile for the control potential outcome

- $\widehat{q}_1(.75) \widehat{q}_0(.75)$ consistently estimates QTE(.75)
- See Drukker (2014) for details

mqgamma example

- mqgamma is a user-written command documented in Drukker (2014)
- ssc install mqgamma

```
    use exercise

. mggamma t active, treat(exercise) fail(fail) lns(health) quantile(.25 .75)
Iteration 0:
               EE criterion =
                                 7032254
Iteration 1:
               EE criterion =
                                .05262105
Iteration 2:
               EE criterion =
                               00028553
Iteration 3:
               EE criterion = 6.892e-07
Iteration 4:
               EE criterion = 4.706e-12
               EE criterion = 1.604e-22
Iteration 5:
Gamma quantile-treatment-effect estimation
                                                  Number of obs
                                                                             2000
                              Robust
           t.
                     Coef.
                             Std. Err.
                                                  P>|z|
                                                             [95% Conf. Interval]
q25_0
       _cons
                  .2151604
                             .0159611
                                         13.48
                                                  0.000
                                                             .1838771
                                                                         .2464436
q25_1
                  .2612655
                             .0249856
                                                  0.000
                                                             .2122946
                                                                         .3102364
                                          10.46
       _cons
q75_0
                                                             1.44893
                                                                         1.733363
                 1.591147
                             .0725607
                                         21.93
                                                  0.000
       _cons
q75_1
                 2.510068
                             .1349917
                                          18.59
                                                  0.000
                                                            2.245489
                                                                         2.774647
       _cons
```

mqgamma example

```
. nlcom (_b[q25_1:_cons] - _b[q25_0:_cons]) > (_b[q75_1:_cons] - _b[q75_0:_cons])
                                                          ///
                 _b[q25_1:_cons] - _b[q25_0:_cons]
                 _b[q75_1:_cons] - _b[q75_0:_cons]
                       Coef.
                                Std. Err.
                                                        P>|z|
                                                                    [95% Conf. Interval]
             t
                                                  z
        _nl_1
                    .0461051
                                 .0295846
                                                1.56
                                                        0.119
                                                                   -.0118796
                                                                                  .1040899
                    .9189214
                                 .1529012
                                                6.01
                                                        0.000
        _n1_2
                                                                    .6192405
                                                                                  1.218602
```

What are QTE

- Quantile treatment effects (QTE) are differences in the quantiles of the marginal potential outcome distributions
 - $q_1(\tau) = F_{y_1}^{-1}(\tau)$ is the $\tau(\text{th})$ quantile of the distribution of the treated potential outcome y_1
 - $q_0(\tau) = F_{y_0}^{-1}(\tau)$ is the $\tau(\text{th})$ quantile of the distribution of the control potential outcome y_0
 - $q_1(\tau)$ and $q_0(\tau)$ are quantiles of the marginal distributions of the potential outcomes
 - $QTE = q_1(\tau) q_0(\tau)$, the QTE is the difference in the marginal quantiles
 - The distributions are marginalized over the distributions of the covariates
 - $\bullet F_{y_j}(y) = \mathbf{E}_{\mathbf{x}}[F_{y_j|\mathbf{x}}(y|\mathbf{x})]$
 - Keep in mind that $q_j(\tau) = F_{y_j}^{-1}(\tau) \neq \mathbf{E}[q_j(\tau|\mathbf{x})]$, where $q_j(\tau|\mathbf{x})$ is condition-on-x quantile of the potential-outcome distribution

poparms estimates QTEs

- poparms is a user-written command documented in Cattaneo, Drukker, and Holland (2013)
- poparms estimates mean and quantiles of the potential-outcome distributions
 - poparms implements an IPW and an AIPW derived in Cattaneo (2010)
 - Cattaneo (2010) and Cattaneo, Drukker, and Holland (2013) call the AIPW estimator an efficient-influence function (EIF) estimator because EIF theory is what produces the augmentation term

QTE can differ over au

- Suppose that robust babies, those born at the .80 quantile, would not be measurably harmed by the mother smoking a few cigarettes
- Further suppose that at-risk babies, those born at the .20 quantile, could be seriously harmed by the mother smoking a few cigarettes
- ATE and ATET cannot investigate this type of hypothesis
- QTE can investigate this type of hypothesis

poparms

poparms installation

```
. findit poparms . net install st0303, replace checking st0303 consistency and verifying not already installed... all files already exist and are up to date. . help poparms
```

poparms example

poparms estimates

```
. clear all
. use cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. poparms (mbsmoke mmarried fbaby medu mage c.medu#c.medu c.mage#c.mage) ///
> (bweight prenatal1 fbaby medu mage), ///
quantiles(.2 .8)
Treatment Mean and Quantiles Estimation Number of obs = 4642
(efficient influence function)
```

bweight	Coef.	bootstrap Std. Err.	z	P> z	[95% Conf.	Interval]
mean mbsmoke nonsmoker smoker	3403.35 3183.081	9.696517 27.67854	350.99 115.00	0.000	3384.346 3128.832	3422.355 3237.33
q20 mbsmoke nonsmoker smoker	3000 2778	13.34484 31.33055	224.81 88.67	0.000	2973.845 2716.593	3026.155 2839.407
q80 mbsmoke nonsmoker smoker	3840 3625	9.76136 28.05127	393.39 129.23	0.000	3820.868 3570.021	3859.132 3679.979

poparms example

poparms estimates

```
. poparms, coeflegend
Treatment Mean and Quantiles Estimation
                                                  Number of obs
                                                                           4642
(efficient influence function)
                    Coef. Legend
     bweight
mean
     mbsmoke
 nonsmoker
                  3403.35 b[mean:Obn.mbsmoke]
                 3183.081 b[mean:1.mbsmoke]
     smoker
a20
     mbsmoke
 nonsmoker
                     3000 _b[q20:0bn.mbsmoke]
                     2778 _b[q20:1.mbsmoke]
     smoker
a80
     mbsmoke
 nonsmoker
                          _b[q80:0bn.mbsmoke]
                     3840
                          _b[q80:1.mbsmoke]
     smoker
                     3625
```

poparms example

• poparms estimates

```
. lincom _b[mean:1.mbsmoke] - _b[mean:0.mbsmoke]
( 1) - [mean]0bn.mbsmoke + [mean]1.mbsmoke = 0
```

	-					
bweight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	-220.2692	29.24745	-7.53	0.000	-277.5931	-162.9452
	20:1.mbsmoke]]Obn.mbsmoke +					
bweight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	-222	34.18932	-6.49	0.000	-289.0098	-154.9902
	30:1.mbsmoke]]Obn.mbsmoke +					
bweight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	-215	29.51215	-7.29	0.000	-272.8427	-157.1573

- Abadie, Alberto, David M. Drukker, Jane Leber Herr, and Guido W. Imbens. 2004. "Implementing matching estimators for average treatment effects in Stata," *Stata journal*, 4(3), 290–311.
- Abadie, Alberto and Guido Imbens. 2012. "Matching on the estimated propensity score," .
- Abadie, Alberto and Guido W. Imbens. 2006. "Large sample properties of matching estimators for average treatment effects," *Econometrica*, 235–267.
- ———. 2011. "Bias-corrected matching estimators for average treatment effects," *Journal of Business and Economic Statistics*, 29(1), 1–11.
- Angrist, J. D. and J.-S. Pischke. 2009. *Mostly Harmless Econometrics: An Empiricist's Companion*, Princeton, NJ: Princeton University Press.
- Bang, Heejung and James M. Robins. 2005. "Doubly robust estimation in missing data and causal inference models," *Biometrics*, 61(4), 962–973.
- Cameron, A. Colin and Pravin K. Trivedi. 2005. *Microeconometrics: Methods and applications*, Cambridge: Cambridge University Press.

- Cattaneo, Matias D., David M. Drukker, and Ashley D. Holland. 2013. "Estimation of multivalued treatment effects under conditional independence," *Stata Journal*, 13(3), ??
- Cattaneo, M.D. 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," *Journal of Econometrics*, 155(2), 138–154.
- Drukker, David M. 2014. "Quantile treatment effect estimation from censored data by regression adjustment," Tech. rep., Under review at the *Stata Journal*, http://www.stata.com/ddrukker/mqgamma.pdf.
- Heckman, James and Salvador Navarro-Lozano. 2004. "Using matching, instrumental variables, and control functions to estimate economic choice models," *Review of Economics and statistics*, 86(1), 30–57.
- Heckman, James J. 1997. "Instrumental variables: A study of implicit behavioral assumptions used in making program evaluations," *Journal of Human Resources*, 32(3), 441–462.
- Hirano, Keisuke, Guido W. Imbens, and Geert Ridder. 2003. "Efficient estimation of average treatment effects using the estimated propensity score," *Econometrica*, 71(4), 1161–1189.

- Holland, Paul W. 1986. "Statistics and causal inference," *Journal of the American Statistical Association*, 945–960.
- Horvitz, D. G. and D. J. Thompson. 1952. "A Generalization of Sampling Without Replacement From a Finite Universe," *Journal of the American Statistical Association*, 47(260), 663–685.
- Imbens, Guido W. 2000. "The role of the propensity score in estimating dose-response functions," *Biometrika*, 87(3), 706–710.
- ——. 2004. "Nonparametric estimation of average treatment effects under exogeneity: A review," Review of Economics and statistics, 86(1), 4–29.
- Imbens, Guido W. and Jeffrey M. Wooldridge. 2009. "Recent Developments in the Econometrics of Program Evaluation," *Journal of Economic Literature*, 47, 5–86.
- Lunceford, Jared K and Marie Davidian. 2004. "Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study," *Statistics in medicine*, 23(19), 2937–2960.
- Quade, Dana. 1982. "Nonparametric Analysis of Covariance by Matching," *Biometrics*, 38(3), 597–611.

- Robins, James M. and Andrea Rotnitzky. 1995. "Semiparametric Efficiency in Multivariate Regression Models with Missing Data," *Journal of the American Statistical Association*, 90(429), 122–129.
- Robins, James M., Andrea Rotnitzky, and Lue Ping Zhao. 1994. "Estimation of Regression Coefficients When Some Regressors Are Not Always Observed," *Journal of the American Statistical Association*, 89(427), 846–866.
- ———. 1995. "Analysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data," *Journal of the American Statistical Association*, 90(429), 106–121.
- Rosenbaum, P. and D. Rubin. 1983. "Central Role of the Propensity Score in Observational Studies for Causal Effects," *Biometrika*, 70, 41–55.
- Rubin, Donald. 1973. "Matching to Remove Bias in Observational Studies," *Biometrics*, 29, 159–183.
- Rubin, Donald B. 1974. "Estimating causal effects of treatments in randomized and nonrandomized studies." *Journal of educational Psychology*, 66(5), 688.

- ———. 1977. "Assignment to Treatment Group on the Basis of a Covariate," *Journal of Educational and Behavioral statistics*, 2(1), 1–26.
- Tsiatis, Anastasios A. 2006. *Semiparametric theory and missing data*, New York: Springer Verlag.
- Vittinghoff, E., D. V. Glidden, S. C. Shiboski, and C. E. McCulloch. 2012. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models, New York: Springer, 2 ed.
- Wooldridge, Jeffrey M. 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," *Portuguese Economic Journal*, 1, 117–139.
- ———. 2007. "Inverse probability weighted estimation for general missing data problems," *Journal of Econometrics*, 141(2), 1281–1301.
- ——. 2010. Econometric Analysis of Cross Section and Panel Data, Cambridge, Massachusetts: MIT Press, second ed.