binscatter: Binned Scatterplots in Stata

Michael Stepner

MIT

August 1, 2014

- Binned scatterplots are an informative and versatile way of visualizing relationships between variables
- They are useful for:
 - Exploring your data
 - Communicating your results
- Intimately related to regression
 - Any coefficient of interest from an OLS regression can be visualized with a binned scatterplot
- Can graphically depict modern identification strategies
 - RD, RK, event studies

Familiar Ground

Scatterplots:

- Are the most basic way of visually representing the relationship between two variables
- Show every data point
- Become crowded when you have lots of observations
 - Very informative in small samples
 - Not so useful with big datasets

Source: National Longitudinal Survey of Women 1988 (nlsw88)

Linear regression:

- Gives a number (coefficient) that describes the observed association
 - "On average, 1 extra year of job tenure is associated with an \$m higher wage"
- Gives us a framework for inference about the relationship (statistical significance, confidence intervals, etc.)

. reg wage tenure

Source	SS	df 		MS		Number of obs F(1 2229)	=	2231 72 66
Model Residual	2339.38077 71762.4469	1 2229	2339. 32.19	38077 49066		Prob > F R-squared	= =	0.0000
Total	74101.8276	2230	33.22	95191		Root MSE	=	5.6741
wage	Coef.	Std. H	Err.		P> t	[95% Conf.	In	terval]
tenure _cons	.1858747 6.681316	.02180)54 315	8.52 37.69	0.000	.1431138 6.333702	7	2286357

binscatter: step-by-step introduction

Let's walk through what happens when you type:

. binscatter wage tenure

. binscatter wage tenure

binscatter: Summary

- To create a binned scatterplot, binscatter
 - Groups the x-axis variable into equal-sized bins
 - Computes the mean of the x-axis and y-axis variables within each bin
 - Oreates a scatterplot of these data points
 - Oraws the population regression line
- binscatter supports weights
 - weighted bins
 - weighted means
 - weighted regression line

Binscatter and Regression: intimately linked

- Consider two random variables: Y_i and X_i
- The conditional expectation function (CEF) is

$$\mathbb{E}[Y_i|X_i=x]\equiv h(x)$$

- The CEF tells us the mean value of Y_i when we see $X_i = x$
- The CEF is the best predictor of Y_i given X_i
 - in the sense that it minimizes Mean Squared Error

• Suppose we run an OLS regression:

$$Y_i = \alpha + \beta X_i + \epsilon$$

- We obtain the estimated coefficients $\hat{\alpha},\,\hat{\beta}$
 - Regression fit line: $\hat{h}(x) = \hat{\alpha} + \hat{\beta}x$

Regression CEF Theorem:

- The regression fit line $\hat{h}(x) = \hat{\alpha} + \hat{\beta}x$ is the best linear approximation to the CEF, $h(x) = \mathbb{E}[Y_i|X_i = x]$
 - in the sense that it minimizes Mean Squared Error

A typical binned scatterplot shows two related objects:

- a non-parametric estimate of the CEF
 - the binned scatter points
- the best linear estimate of the CEF
 - the regression fit line

Interpreting binscatters

binscatters: informative about standard errors

- If the binned scatterpoints are tight to the regression line, the slope is precisely estimated
 - regression standard error is small

- If the binned scatterpoints are dispersed around the regression line, the slope is imprecisely estimated
 - regression standard error is large

 Dispersion of binned scatterpoints around the regression line indicates statistical significance

- R^2 tells you what fraction of the *individual* variation in Y is explained by the regressors
- A binned scatterplot collapses all the individual variation, showing only the mean within each bin

- The same binscatter can be generated with:
 - enormous variance in Y|X = x
 - or almost no individual variance
- because binscatter only shows $\mathbb{E}[Y|X = x]$

binscatters: informative about functional form

- Many different forms of underlying data can give the same regression results
- Some examples from Anscombe (1973)...

Anscombe (1973): Dataset 1

Anscombe (1973): Dataset 3

Anscombe (1973): Dataset 4

Years of Schooling

• Suppose the true data generating process is logarithmic

 $wage_i = 10 + log(tenure_i) + \epsilon_i$

Now forget that I ever told you that...

You're just handed the data.

• Run a linear regression:

 $wage_i = \alpha + \beta tenure_i + \epsilon_i$

. reg wage tenure

Source	SS	df	MS		Number of obs	=	500
+					F(1, 498)	= 281	.25
Model	317.940139	1	317.940139		Prob > F	= 0.0	000
Residual	562.975924	498	1.13047374		R-squared	= 0.3	609
+					Adj R-squared	= 0.3	596
Total	880.916063	499	1.76536285		Root MSE	= 1.0	632
wage	Coef.	Std. E	rr. t	P> t	[95% Conf.	Interv	al]
tenure _cons	.1841569 10.28268	.01098	11 16.77 47 106.89	0.000	.1625819 10.09369	.2057 10.47	318 168

. binscatter wage tenure

. binscatter wage tenure

- If the underlying CEF is smooth, binscatter provides a consistent estimate of the CEF
 - As N gets large, holding the number of quantiles constant, each binned scatter point approaches the true conditional expectation

. binscatter wage tenure in 1/500

. binscatter wage tenure in 1/5000

. binscatter wage tenure in 1/5000000

- Binned scatterplots are informative about standard errors
- **2** Binned scatterplots are not informative about R^2
- **③** And binned scatterplots are informative about functional form

How many bins?

What is the "best" number of bins to use?

- Default in binscatter is 20
 - in my personal experience, this default works very well
- Optimal number of bins to accurately represent the CEF depends on curvature of the underlying CEF
 - which is unknown (that's why we're approximating it!)
 - ► a smooth function can be well approximated with few points
 - a function with complex local behaviour requires many points to approximate its shape

Let's play a quick game of... What function is it?

Round 1:

Round 1: Linear

Round 2:

Round 2: Cubic

Round 3:

Round 3:

Round 3: Sinusoidal

binscatter: Multivariate Regression

- The use of binned scatterplots is not restricted to studying simple relationships with one x-variable
- binscatter can use partitioned regression to illustrate the relationship between two variables while controlling for other regressors

Partitioned regression: FWL theorem

• Suppose we're interested in the relationship between y and x in the following multivariate regression:

$$y = \alpha + \beta x + \Gamma Z + \epsilon$$

- **Option 1:** Run the full regression with all regressors, obtain $\hat{\beta}$
- Option 2: Partitioned regression

 - **2** Regress x on Z \Rightarrow residuals $\equiv \tilde{x}$
 - **3** Regress \widetilde{y} on $\widetilde{x} \Rightarrow \text{coefficient} = \hat{\beta}$
- The $\hat{\beta}$ obtained using full regression and partitioned regression are identical

binscatter: Applying partitioned regression

• We're interested in the relationship between wage and tenure, but want to control for total work experience:

wage = $\alpha + \beta$ tenure + γ experience + ϵ

• Could directly apply partitioned regression:

- . reg wage experience
- . predict wage_r, residuals
- . reg tenure experience
- . predict tenure_r, residuals
- . binscatter wage_r tenure_r
- The procedure is built into binscatter:
 - . binscatter wage tenure, controls(experience)

. binscatter wage tenure

. binscatter wage tenure, controls(experience)

by-variables

- binscatter will plot a separate series for each group
 - each by-value has its own scatterpoints and regression line
 - the by-values share a common set of bins
 - constructed from the unconditional quantiles of the x-variable

. binscatter wage age, by(race)

. binscatter wage age, by(race) absorb(occupation)

RD and RK designs

- Binned scatterplots are very useful for illustrating regression discontinuities (RD) or regression kinks (RK)
- Consider a wage schedule where the first 3 years are probationary
 - After 3 years, receive a salary bump
 - After 3 years, steady increase in salary for each additional year

RD design

RD design

. binscatter wage tenure, discrete line(none)

RD design

. binscatter wage tenure, discrete rd(2.5)

- The firm decides to cap the wage schedule after 15 years of tenure
 - No more salary increases past 15 years

RK design

RK design

. binscatter wage tenure, discrete line(none)

RK design

. binscatter wage tenure, discrete rd(2.5 14.5)

RD and RK designs

Important caution:

- The rd() option in binscatter only affects the regression lines
 - It does not affect the binning procedure
 - A bin could contain observations on both sides of the discontinuity, and average them together

Implications:

- Doesn't matter with discrete x-variable and option discrete
 - No binning is performed, each x-value is its own bin
- With continuous x-variable, need to manually create bins
 - Use xq() to specify variable with correctly constructed bins
 - ► A future version of binscatter respect RDs when binning

Event Studies

binscatter makes it easy to create event study plots.

Suppose we have a panel of people, with yearly observations of their wage and employer:

- We observe when people change employers
- For each person with a job switch
 - Define year 0 as the year they start a new job
 - So year -1 is the year before a job switch
 - Year 1 is the year after a job switch

. binscatter wage eventyear, line(connect) xline(-0.5)

Now suppose we also know whether they were laid off at their previous job.

Does the wage experience of people who are laid off differ from those who quit voluntarily?

- . binscatter wage eventyear, line(connect) xline(-0.5)
- > by(layoff)

Final Remarks

- binscatter is optimized to run quickly and efficiently in large datasets
- It can be installed from the Stata SSC repository
 - ssc install binscatter
- These slides and other documentation is posted on the binscatter website:

www.michaelstepner.com/binscatter

Examples of binscatter used in research

- Chetty, Raj, John N Friedman, and Emmanuel Saez. 2013. "Using Differences in Knowledge Across Neighborhoods to Uncover the Impacts of the EITC on Earnings." *American Economic Review*, 103 (7): 2683–2721.
- Chetty, Raj, John N. Friedman, and Jonah Rockoff. 2014. "Measuring the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates." *American Economic Review, forthcoming.*
- Chetty, Raj, John N. Friedman, and Jonah Rockoff. 2014. "Measuring the Impacts of Teachers II: Teacher Value-Added and Student Outcomes in Adulthood." *American Economic Review, forthcoming.*
- Chetty, Raj, John N. Friedman, Soren Leth-Petersen, Torben Nielsen, and Tore Olsen. 2013. "Active vs. Passive Decisions and Crowdout in Retirement Savings Accounts: Evidence from Denmark." *Quarterly Journal* of Economics, forthcoming.

- Angrist, Joshua D. and Jörn-Steffen Pischke. 2008. Mostly Harmless Econometrics: An Empiricist's Companion, Princeton, NJ: Princeton University Press.
- **Anscombe, F. J.** 1973. "Graphs in Statistical Analysis." *The American Statistician, 27* (1): 17.
- Chetty, Raj. 2012. "Econ 2450a: Public Economics Lectures." Lecture Slides, Harvard University. http://www.rajchetty.com/index.php/lecture-videos.