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Introduction

Linear regression with non-sample information

In social science research, we often have some non-sample
information from prior studies regarding plausible parameter values or
intervals. We could follow the classical statistical approach, producing
point and interval estimates from an estimated regression model and
testing whether those estimates are in line with those derived from
similar models and/or other data.
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Introduction

As an alternative, if we were of a Bayesian persuasion, we might
choose to incorporate this non-sample information explicitly into the
estimation problem by means of an informative prior.

What I discuss today is a middle ground between those two
approaches, where we use classical statistical techniques but impose
constraints—either exact and stochastic—upon the estimation
problem.
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Introduction Exact non-sample information

Introducing exact non-sample information

As a starting point, consider the estimation of a linear regression
subject to one or more exact linear constraints on the parameter vector.
This can be viewed as

y = Xβ + ε

subject to
Rβ = r

where R is J × K and r is J × 1.

This constrained least squares estimator is that implemented by
Stata’s cnsreg command.
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Introduction Exact non-sample information

Each row of the constraint system imposes one restriction on the
parameter vector, reducing its effective dimensionality from the
unconstrained regression. The constraints, which are often adding-up
conditions or equality constraints, force the regression model to the
suboptimum defined by the constrained system. The constraints must
be linearly independent and consistent with each other.

From a textbook treatment of this Lagrangian optimization problem, we
can write the estimated parameter vector bRLS as:

bRLS = bOLS − (X′X)−1R′[R(X′X)−1R′]−1(RbOLS − r)

where bOLS is the vector of unconstrained OLS regression estimates.
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Introduction Exact non-sample information

The restricted least squares (RLS) estimator may be seen as a
corrected version of the OLS estimator in which the correction factor
for each parameter relates to the magnitude of the J × 1 discrepancy
vector m = (Rb− r).

To compare the unconstrained (OLS) and constrained (RLS) solutions,
we may form a F–statistic from the expression in the difference of
sums of squared residuals:

e′0e0 − e′e = (Rb− r)′[R(X′X)−1R′]−1(Rb− r)

where e0 and e are, respectively, the RLS and OLS residuals.
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Introduction Exact non-sample information

This gives rise to the F statistic

F [J,n − K ] =
(e′0e0 − e′e)/J

e′e/(n − K )

which can be transformed into

F [J,n − K ] =
(R2 − R2

0)/J
(1− R2)/(n − K )

In this context, the effect of the J restrictions on the parameter vector
may be viewed as either the loss in the least squares criterion or the
reduction in R2 caused by the restrictions. The numerator of either
expression is non-negative, as imposition of the restrictions cannot
increase R2 nor can it decrease the sum of squared residuals.
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Introduction Exact non-sample information

The limitation of this approach should be evident: constrained least
squares allows us to impose non-sample information on the estimation
process, but that is an ‘all or nothing’ choice. The constraints that are
imposed are imposed with certainty, as if we are absolutely certain of
their validity.

Although we can compare and formally test these constrained
estimates to their unconstrained counterparts, we must either utilize
the non-sample information or discard it. There is no middle ground.
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Introduction Stochastic non-sample information

Introducing stochastic non-sample information

As an alternative to the exact non-sample information (Rβ = r), we
might have stochastic non-sample information of the form:

r = Rβ + υ,

where R, r are defined as before, and υ is a J × 1 unobservable,
normally distributed random vector with mean δ and covariance matrix
Φ, with Φ known. In this context, δ measures the degree to which the
restrictions embodied in R, r fail to hold in the population model. If they
are thought to hold, δ = 0.
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Introduction Stochastic non-sample information

Stochastic non-sample information may take the form of the parameter
values obtained from a meta-analysis of our model, and some
measure of the degree of precision of those meta-estimates. In this
discussion, we will consider a limited form of information: that
embodied by parameter values and measures of precision that we are
willing to attribute to those values.

For simplicity, the measures of precision may be expressed as
standard errors, reflecting the confidence that we are willing to place
on each parameter’s non-sample value. In this rubric, Φ is taken to be
a positive semidefinite diagonal matrix. This allows non-sample
information to be present for a subset of the regression parameters.
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Historical context

Historical context

Before presenting the implementation of this estimator, let us consider
its historical context. It is known as the Theil–Goldberger mixed (TGM)
estimator, as introduced in their 1961 paper ‘On pure and mixed
statistical estimation in economics’ (Int. Ec. Rev.) and Theil’s 1963
paper ‘On the use of incomplete prior information in regression
analysis’ (JASA).

The authors’ use of mixed in this context is appropriately descriptive,
as the estimator they define indeed mixes sample and non-sample
information in a generalized least squares sense. Unfortunately, the
term nowadays is commonly applied to a quite different set of
estimation techniques (e.g., xtmixed and gllamm in Stata).
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Historical context

Interestingly, Theil and Goldberger point out that a limited form of their
suggested strategy of mixing sample and non-sample information was
actually proposed by Durbin in a 1953 paper in JASA, ‘A note on
regression when there is extraneous information about one of the
coefficients’. They also cite Richard Stone’s classic text on consumer
expenditure as proposing a maximum-likelihood version of the same
routine.
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Definition of the mixed estimator

Theil and Goldberger cast the problem as one of generalized least
squares, in which the linear statistical model contains both sample and
non-sample information:

[
y
r

]
=

[
X
R

]
β +

[
ε
υ

]
where the vector of errors (ε′, υ′)′ is multivariate Normal with
covariance matrix: [

Ω 0
0 Φ

]
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Definition of the mixed estimator

The Theil–Goldberger mixed estimator for this model may be written
as:

bTG = (X′Ω−1X + R′Φ−1R)−1(X′Ω−1y + R′Φ−1r)

with covariance matrix:

VCE(bTG) = [X′Ω−1X + R′Φ−1R]−1

Under the assumption of i .i .d . errors, Ω = σ2IT , and σ2 can be
replaced with its consistent OLS estimate s2 when computing Ω−1.
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Definition of the mixed estimator

In Theil’s 1963 paper, he develops the mixed estimator in order to
incorporate two types of non-sample information: statistical
information, in which prior research has produced plausible values for
coefficients, and a priori information, such as that resulting from
inequality constraints.

For the latter, he suggests that by placing appropriately chosen
measures of precision on coefficients, one can virtually guarantee that
the resulting estimate lies in the appropriate range. For instance, if the
coefficient β1 is thought to almost surely lie between 0 and 1, and
probably between 0.25 and 0.75, with an implied standard error of 1

4 ,
we could specify that

0.5 = β1 + υ; Eυ = 0; Eυ2 =
1

16
.
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Definition of the mixed estimator Extensions

In their 1961 paper, Theil and Goldberger suggest that the estimator
may be applied to linear combinations of coefficients about which there
is some a priori knowledge; for instance, in economics, constant
returns to scale (CRTS) in production requires that elasticities of a
Cobb–Douglas function sum to unity.

They also illustrate that this technique may also be applied to
two-stage least squares (2SLS) estimates, and outline a procedure by
which the σ2 estimate used to produce the covariance matrix of the
estimated parameters may be refined by iteration to convergence.

The implementation I present below has not yet been extended for
these three enhancements.
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Definition of the mixed estimator Compatibility of prior and sample information

In his 1963 paper, Theil proposes a formal test of the compatibility of
prior and sample information. Under the null hypothesis that the two
sets of information are in agreement, we have two estimators of the
vector Rβ: the prior estimator R and the OLS estimator bOLS. Under
the assumption that υ has zero mean and is normally distributed, he
derives the test statistic:

γ̂ = (r− RbOLS)′
[
s2[R(X′X)−1R′ + Φ

]−1
(r− RbOLS)

which he shows is distributed as χ2 under the null hypothesis, with
degrees of freedom equal to the rank of Φ.

Conway and Mittelhammer (Stud. Ec. Analysis, 1986, p. 89) point out
that a rejection of the null is a rejection of the unbiasedness of the prior
information: that is, that Eυ = 0.
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Definition of the mixed estimator Shares of prior and sample information

In the same paper, Theil proposes scalar measures of the shares of
prior sample information in the posterior precision of the TGM
estimates. To what degree are the mixed estimates merely reflecting
our subjective beliefs, as expressed by the priors? He shows that

θS =
1
K

tr s−2X′X
(

s−2X′X + R′Ψ−1R
)−1

expresses the share due to sample information, while θP = 1− θS
expresses the share due to prior information.

Christopher F Baum (BC / DIW) Theil–Goldberger ‘mixed’ estimation Stata Conference CHI‘11 18 / 39



Usage of the mixed estimator

In 1980, V. K. Srivastava published ‘Estimation of linear
single-equation and simultaneous-equation models under stochastic
linear constraints: An annotated bibliography’ (Intl. Stat. Rev.). After
more than two decades of research in this area, a modest number of
papers are listed, most of them focusing on the econometric theory of
the mixed estimator rather than its practical application.

One notable annotation: that of Swamy and Mehta (JASA, 1969),
summarized as ‘Assuming the disturbances to follow a normal
probability law, it is shown that the mixed estimator is unbiased with a
finite variance-covariance matrix and the gain in efficiency over the
least squares estimator ignoring the restrictions may be substantial in
small samples.’ (p. 81)
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Usage of the mixed estimator

However, in a 1983 J. Econometrics article, Swamy and Mehta criticize
the Theil–Goldberger approach, arguing that the ‘subjective
predictions which Theil employs in his mixed estimation procedure are
incorrectly equated to random variables.’ They also claim that the
standard errors of this procedure give ‘a spurious sense of precision to
the results.’ (pp. 388–389).

The mixed estimation technique has been employed by Mittelhammer
and coauthors (Am. J. Agric. Econ, 1980, 1988) and, more recently, in
a macroeconomic context, by Amato and Gerlach, ‘Modeling the
transmission mechanism of monetary policy in emerging market
countries using prior information’, BIS Papers No. 8, and by Gavin and
Kemme, ‘Using extraneous information to analyze monetary policy in
transition economics’, J. Int. Money Fin., 2009.
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Usage of the mixed estimator

Amato and Gerlach provide useful intuition for the workings of the
TGM, showing that the mixed estimate of the parameter vector β can
be written as a matrix weighted average of the prior vector and the
OLS estimates:

bmix = F bprior + (I− F) bOLS

where
F =

[
Σ−1

prior + Σ−1
OLS

]−1
Σ−1

prior

so that ‘the weight placed on the prior information depends on the
confidence the modeler attaches to it.’ (p. 266) The constrained least
squares estimator sets some of the diagonal elements of F to unity,
while if we have no prior information about certain coefficients, their
respective diagonal elements in F will be zero.
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Usage of the mixed estimator

The strength of the non-sample information also influences the degree
of precision of the mixed estimator. If we estimate a single parameter,

s2
mix =

1[
1

σ2
prior

+ 1
s2

OLS

]

From this expression, we can see that (i) as σ2
prior →∞, s2

mix → s2
OLS.

We may also note that 0 ≤ s2
mix ≤ s2

OLS, so that ‘the precision of the
mixed estimate is at least as high as the precision of the estimate
based solely on the data, with the former converging to the latter as
the degree of prior uncertainty increases.’ (Amato & Gerlach, p. 267)

This also implies that forecasts from the TGM model may be more
precise than those from OLS, taking the non-sample information into
account.

Christopher F Baum (BC / DIW) Theil–Goldberger ‘mixed’ estimation Stata Conference CHI‘11 22 / 39



Usage of the mixed estimator

The strength of the non-sample information also influences the degree
of precision of the mixed estimator. If we estimate a single parameter,

s2
mix =

1[
1

σ2
prior

+ 1
s2

OLS

]

From this expression, we can see that (i) as σ2
prior →∞, s2

mix → s2
OLS.

We may also note that 0 ≤ s2
mix ≤ s2

OLS, so that ‘the precision of the
mixed estimate is at least as high as the precision of the estimate
based solely on the data, with the former converging to the latter as
the degree of prior uncertainty increases.’ (Amato & Gerlach, p. 267)

This also implies that forecasts from the TGM model may be more
precise than those from OLS, taking the non-sample information into
account.

Christopher F Baum (BC / DIW) Theil–Goldberger ‘mixed’ estimation Stata Conference CHI‘11 22 / 39



Usage of the mixed estimator

The strength of the non-sample information also influences the degree
of precision of the mixed estimator. If we estimate a single parameter,

s2
mix =

1[
1

σ2
prior

+ 1
s2

OLS

]

From this expression, we can see that (i) as σ2
prior →∞, s2

mix → s2
OLS.

We may also note that 0 ≤ s2
mix ≤ s2

OLS, so that ‘the precision of the
mixed estimate is at least as high as the precision of the estimate
based solely on the data, with the former converging to the latter as
the degree of prior uncertainty increases.’ (Amato & Gerlach, p. 267)

This also implies that forecasts from the TGM model may be more
precise than those from OLS, taking the non-sample information into
account.

Christopher F Baum (BC / DIW) Theil–Goldberger ‘mixed’ estimation Stata Conference CHI‘11 22 / 39



Implementation

Implementation

I have developed a first version of the TGM estimator for Stata 11.2+
based upon the analytics given above. The command, tgmixed, is an
e-class (estimation) command, so that it leaves behind the information
needed for common post-estimation commands such as test,
lincom, predict and margins.
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Implementation Command syntax

The command syntax:

tgmixed depvar indepvars [if exp] [in range], prior(varname value se...)
[cov(var1 var2 value...)] [qui]

This specifies an OLS regression, with i .i .d . errors assumed at
present, where you have non-sample information on one or more of
the indepvars coefficients, given in prior(). For each of these
coefficients, you specify its variable name, its prior value, and its
standard error (se). The optional cov() option may be used to specify
prior covariances among pairs of coefficients from the indepvars list.
The qui option suppresses the unconstrained OLS estimates.
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Implementation Command syntax

By default, for purposes of comparison, the command displays the
unconstrained OLS estimates, followed by the parsed values of the
prior() and, if present, cov() options. The TGM estimates are then
displayed, along with the Theil compatibility statistic, which gauges the
degree of compatibility of sample and non-sample information.

Following estimation, the predict command may be used in- or
out-of-sample, with available options xb (the predicted values of the
dependent variable) and stdp (the standard errors of prediction.
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An empirical example

An empirical example

For an illustration of tgmixed, I reproduce the computations of Theil
(JASA, 1963) in which he makes use of 17 annual observations on
textile consumption in the Netherlands, 1923–1939. The raw data are
provided in the appendix to Theil and Nagar (JASA, 1961). The model
is

log ct = α + β1 log pt + β2 log Mt + ut

where ct is per capita textile consumption, pt is the deflated price index
for textiles, and Mt is real per capita income.
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An empirical example

Theil expresses prior beliefs about β1 and β2: that they should equal
−0.7 and 1.0, respectively, each with a standard error of 0.15. He also
specifies that the covariance between the estimated coefficients
should be set to −0.01.

These prior values may then be given to tgmixed using the prior()
and optional cov() options:

tgmixed lconsump lincome lprice, ///
prior(lprice -0.7 0.15 lincome 1 0.15) cov(lprice lincome -0.01)
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An empirical example

. tgmixed lconsump lincome lprice, prior(lprice -0.7 0.15 lincome 1 0.15) cov(l
> price lincome -0.01)

Unconstrained OLS estimates

Source SS df MS Number of obs = 17
F( 2, 14) = 266.11

Model .097576609 2 .048788305 Prob > F = 0.0000
Residual .002566775 14 .000183341 R-squared = 0.9744

Adj R-squared = 0.9707
Total .100143384 16 .006258962 Root MSE = .01354

lconsump Coef. Std. Err. t P>|t| [95% Conf. Interval]

lincome 1.143174 .1559813 7.33 0.000 .8086273 1.47772
lprice -.828862 .0361062 -22.96 0.000 -.9063022 -.7514218
_cons 1.373925 .3060511 4.49 0.001 .7175102 2.030339

Note that the data produce very precise estimates of both of the
elasticity values, with a point estimate for the income elasticity
considerably above unity.
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An empirical example

Prior coefficient values and standard errors
1 2

1 lprice lincome
2 -0.7 1
3 0.15 0.15

Prior covariances
1

1 lprice
2 lincome
3 -0.01

tgmixed reports the prior values placed on the coefficients and on
their covariance. Note that you need not express prior beliefs about all
of the coefficients.
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An empirical example

Theil-Goldberger mixed estimates
Number of obs = 17
R-squared = 0.9741
Root MSE = .01361

lconsump Coef. Std. Err. t P>|t| [95% Conf. Interval]

lincome 1.089357 .1033892 10.54 0.000 .8676092 1.311105
lprice -.8205463 .034965 -23.47 0.000 -.8955387 -.7455538
_cons 1.466644 .203478 7.21 0.000 1.030227 1.903061

Theil compatibility statistic = 0.8606 Pr > Chi2( 2) = 0.6503

Shares of posterior precision: sample info = 0.794 prior info = 0.206

The mixed estimates illustrate that the coefficients have been drawn
toward the non-sample values: more so for the income coefficient,
which had weaker sample information. The R2 has decreased
marginally, while the RMSE has increased by less than one per cent.
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An empirical example Forecast accuracy

The mixed point and interval estimates closely match those given in
Theil (1963). Likewise, the compatibility statistic of 0.86, with a large
p-value, matches his value and indicates that the sample and
non-sample information are compatible. Given the precise
unconstrained estimates, it is not surprising that the share of sample
information in the precision of the mixed estimates is almost 80
percent.

To illustrate the usefulness of the TGM estimator, I conduct a forecast
exercise for a model of the change in the log of US real investment
spending, 1959Q1–2007Q2, as a function of the change in log US real
GDP, the change in the log real wage and the change in the S&P500
stock market index. A constant is included to capture a trend in the
level series.
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An empirical example Forecast accuracy

. reg dlrinv dlrgdp dlrwage dspindex if tin(,2007q2)

Source SS df MS Number of obs = 193
F( 3, 189) = 62.58

Model .034651338 3 .011550446 Prob > F = 0.0000
Residual .0348847 189 .000184575 R-squared = 0.4983

Adj R-squared = 0.4904
Total .069536038 192 .000362167 Root MSE = .01359

dlrinv Coef. Std. Err. t P>|t| [95% Conf. Interval]

dlrgdp 1.566386 .1234444 12.69 0.000 1.32288 1.809892
dlrwage -.1399312 .1950992 -0.72 0.474 -.5247829 .2449204

dspindex .0541718 .0348277 1.56 0.122 -.0145292 .1228728
_cons -.005029 .0013609 -3.70 0.000 -.0077136 -.0023445

Although the model fits quite well for a first difference specification, the
coefficients for the log real wage and stock market index are estimated
quite imprecisely. This will weaken the forecast performance of the
model.
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An empirical example Forecast accuracy

I apply the TGM estimator, with non-sample point estimates of −0.2
and 0.05 for those variables’ coefficients. No prior is specified for the
real GDP coefficient. In a first specification, I provide standard errors
representing t-statistics of 2.0 for each coefficient. The TGM estimates
yield:

. tgmixed dlrinv dlrgdp dlrwage dspindex if tin(,2007q2), ///
> prior(dspindex 0.05 0.025 dlrwage -0.2 0.1)
...
Theil-Goldberger mixed estimates

Number of obs = 193
R-squared = 0.4982
Root MSE = .013588

dlrinv Coef. Std. Err. t P>|t| [95% Conf. Interval]

dlrgdp 1.577946 .116535 13.54 0.000 1.348069 1.807822
dlrwage -.1877885 .0889084 -2.11 0.036 -.3631688 -.0124082

dspindex .0510915 .0202723 2.52 0.013 .0111025 .0910805
_cons -.0050139 .0013579 -3.69 0.000 -.0076924 -.0023354

Theil compatibility statistic = 0.0806 Pr > Chi2( 2) = 0.9605

Shares of posterior precision: sample info = 0.638 prior info = 0.362
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An empirical example Forecast accuracy

Notice that the sample information is responsible for 64 percent of the
precision of the estimates, and the compatibility statistic indicates that
the non-sample information is reasonably similar to the sample
information. We may then produce point and interval static forecasts
for the out-of-sample period 2007Q3–2010Q3, and juxtapose them
with those from the unconstrained OLS estimates.
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An empirical example Forecast accuracy
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An empirical example Forecast accuracy

We may note that the TGM interval estimates are considerably
narrower for the downturn at the end of 2008, despite the relatively
weak prior. We respecify the prior to reflect t-statistics of 5.0 for the
two coefficients:

. tgmixed dlrinv dlrgdp dlrwage dspindex if tin(,2007q2), ///
> prior(dspindex 0.05 0.01 dlrwage -0.2 0.04)
...
Theil-Goldberger mixed estimates

Number of obs = 193
R-squared = 0.4981
Root MSE = .013589

dlrinv Coef. Std. Err. t P>|t| [95% Conf. Interval]

dlrgdp 1.580415 .1149993 13.74 0.000 1.353568 1.807262
dlrwage -.1976498 .039175 -5.05 0.000 -.2749262 -.1203735

dspindex .0502296 .0096069 5.23 0.000 .0312792 .0691801
_cons -.0050101 .0013568 -3.69 0.000 -.0076864 -.0023338

Theil compatibility statistic = 0.0978 Pr > Chi2( 2) = 0.9523

Shares of posterior precision: sample info = 0.529 prior info = 0.471
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An empirical example Forecast accuracy

The sample information is still responsible for 53 percent of the
precision of the TGM estimates. The two imprecisely estimated OLS
coefficients are now quite close to their prior values. A comparison of
the static ex ante forecasts versus their OLS counterparts yields:
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An empirical example Forecast accuracy
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Concluding remarks

Concluding remarks

There are many enhancements that may be added to the tgmixed
routine, including the ability to handle non-i .i .d . errors, time series and
factor variables’ varlists, general linear constraints on the parameters
and the ability to support least squares estimators beyond OLS.
Nevertheless, the preliminary routine, just over 200 lines of
code—most of it Mata—illustrates the ease of creating a new estimator
in Stata.

An important acknowledgement: the syntax parsing code makes use
of Ben Jann’s Mata routine mm_posof(), included in his incredibly
useful moremata package on SSC. If you use Mata, you should have
a copy of moremata.
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