Multidimensional Regression Discontinuity and Regression Kink Designs with Difference-in-Differences

Rafael P. Ribas
University of Amsterdam
Stata Conference
Chicago, July 28, 2016

Motivation

- Regression Discontinuity (RD) designs have been broadly applied.
- However, non-parametric estimation is restricted to simple specifications.
- I.e., cross-sectional data with one running variable.
- Thus some papers still use parametric polynomial forms and/or arbitrary bandwidths. For instance,
- Dell (2010, Econometrica) estimates a two-dimensional RD.
- Grembi et al. (2016, AEJ:AE) estimates Difference-in-Discontinuities.
- The goal is to create a program (such as rdrobust) that accommodates more flexible specifications.

Motivation

- Regression Discontinuity (RD) designs have been broadly applied.
- However, non-parametric estimation is restricted to simple specifications.
- I.e., cross-sectional data with one running variable.
- Thus some papers still use parametric polynomial forms and/or arbitrary bandwidths. For instance,
- Dell (2010, Econometrica) estimates a two-dimensional RD.
- Grembi et al. (2016, AEJ:AE) estimates Difference-in-Discontinuities.
- The goal is to create a program (such as rdrobust) that accommodates more flexible specifications.

Overview

- The ddrd package is built upon rdrobust package, including the following options:
(1) Difference-in-Discontinuities (DiD) and Difference-in-Kinks (DiK)
(2) Multiple running variables
(3) Analytic weights (aweight)
(1) Control variables
© Heterogeneous effect through linear interaction (in progress).
- All options are taken into account when computing the optimal bandwidth, using ddbwsel.
- The estimator changes, so does the procedure.

Difference-in-Discontinuity/Kink, Notation

- Let $\mu_{t}(x)=\mathbb{E}[Y \mid X=x, t]$ and $\mu_{t}^{(v)}(x)=\frac{\partial^{v} E[Y \mid X=x, t]}{(\partial x)^{v}}$.
- Then the conventional sharp RD/RK estimand is:

$$
\tau_{v, t}=\lim _{x \rightarrow 0^{+}} \mu_{t}^{(v)}(x)-\lim _{x \rightarrow 0^{-}} \mu_{t}^{(v)}(x)=\mu_{t+}^{(v)}-\mu_{t-}^{(v)}
$$

- The DiD/DiK estimand is:

$$
\Delta \tau_{v}=\mu_{1+}^{(v)}-\mu_{1-}^{(v)}-\left[\mu_{0+}^{(v)}-\mu_{0-}^{(v)}\right]
$$

Optimal Bandwidth, h^{*}

- Two methods based on the mean square error (MSE):

$$
h_{M S E}^{*}=\left[C(K) \frac{\operatorname{Var}\left(\hat{\tau}_{v}\right)}{\operatorname{Bias}\left(\hat{\tau}_{v}\right)^{2}}\right]^{\frac{1}{5}} n^{-\frac{1}{5}}
$$

- Imbens and Kalyanaraman (2012), IK.
- Calonico, Cattaneo and Titiunik (2014), CCT.
- They differ in the way $\operatorname{Var}\left(\hat{\tau}_{v}\right)$ and $\operatorname{Bias}\left(\hat{\tau}_{v}\right)$ are estimated.
- For DiD/DiK, the trick is to replace $\hat{\tau}_{v}$ by $\Delta \hat{\tau}_{v}$.
- While ddrd calculates the robust, bias-corrected confidence intervals for $\Delta \hat{\tau}_{v}$, as proposed by CCT.

Optimal Bandwidth, h^{*}

- Two methods based on the mean square error (MSE):

$$
h_{M S E}^{*}=\left[C(K) \frac{\operatorname{Var}\left(\hat{\tau}_{v}\right)}{\operatorname{Bias}\left(\hat{\tau}_{v}\right)^{2}}\right]^{\frac{1}{5}} n^{-\frac{1}{5}}
$$

- Imbens and Kalyanaraman (2012), IK.
- Calonico, Cattaneo and Titiunik (2014), CCT.
- They differ in the way $\operatorname{Var}\left(\hat{\tau}_{v}\right)$ and $\operatorname{Bias}\left(\hat{\tau}_{v}\right)$ are estimated.
- For $\mathrm{DiD} / \mathrm{DiK}$, the trick is to replace $\hat{\tau}_{v}$ by $\Delta \hat{\tau}_{v}$.
- That's what ddbwsel does.
- While ddrd calculates the robust, bias-corrected confidence intervals for $\Delta \hat{\tau}_{v}$, as proposed by CCT.

Application: Retirement and Payroll Credit in Brazil

- In 2003, Brazil passed a legislation regulating payroll lending.
- Loans for which interests are deducted from payroll check (Coelho et al., 2012).
- It represented a "kink" in loans to pensioners.

Application: Retirement and Payroll Credit in Brazil

- In 2003, Brazil passed a legislation regulating payroll lending.
- Loans for which interests are deducted from payroll check (Coelho et al., 2012).
- It represented a "kink" in loans to pensioners.

Application: Retirement and Payroll Credit in Brazil

- Optimal bandwidth for Difference-in-Kink at age 60:

```
. ddbwsel borrower aged [aw=weight], time(time) c(60) deriv(1) all
Computing CCT bandwidth selector.
Computing IK bandwidth selector.
Bandwidth estimators for local polynomial regression
```


Number of obs	$=$	53757
NN matches	$=$	3
Kernel type	$=$	Triangular

Application: Retirement and Payroll Credit in Brazil

- ddrd output:

. ddrd borrower aged [aw=weight], time(time) $c(60)$ deriv(1) b('b') $h(' h$ ')
Preparing data.
Calculating predicted outcome per sample.
Estimation completed.
Estimates using local polynomial regression. Derivative of order 1.

Cutoff $c=60$	Left of c	Right of c	Number of obs $=$	27093	
Number of obs, $t=0$	6117	3081	NN matches	$=$	3
Number of obs, $t=1$	7319	4001	BW type	Manual	
Order loc. poly. (p)	2	2			
Order bias (q)	3	3			
BW loc. poly. (h)	12.457	12.457			
BW bias (b)	18.735	18.735			

Outcome: borrower. Running Variable: aged.

Method I	Coef.	Std. Err	z	$\mathrm{P}>\|z\|$	[95\% Conf.	Interval]
Conventional \|	. 0229	. 0221	1.0362	0.300	-. 020417	. 066218
Robust I	. 0271	. 03123	0.8680	0.385	-. 034098	. 088303

Difference-in-Kink

- What if there is no cutoff and aged is a continuous treatment?
- Shift in level represents the first difference, while change in the slope represents the second difference.
- Difference-in-Difference with continuous treatment.

Difference-in-Kink

Estimating changes in the first derivative at any part of the function:

Multidimensional RD, Notation

- Suppose X has k dimensions, i.e. $X=\left\{x_{1}, \cdots, x_{k}\right\}$.
- Cutoff doesn't have to be unique.
- Let $\mathrm{c}=\left\{\left(c_{11}, \cdots, c_{n 1}\right), \cdots,\left(c_{1 L}, \cdots, c_{n L}\right)\right\}$ be the cutoff hyperplane.
- z_{i} indicates whether i is "intended for treatment" (in the treated set) or not (in the control set).
- Trick: pick one point in c, say $\mathrm{c}_{l}=\left(c_{1 l}, \cdots, c_{n l}\right)$, and reduce X to one dimension by calculating the distance $d\left(\mathbf{x}_{i}, \mathbf{c}_{l}\right)$ for every i.
- The new running variable is:

$$
r_{i}=\left(2 \cdot z_{i}-1\right) \cdot d\left(\mathbf{x}_{i}, \mathbf{c}_{l}\right)
$$

Multidimensional RD, Notation

- Suppose X has k dimensions, i.e. $X=\left\{x_{1}, \cdots, x_{k}\right\}$.
- Cutoff doesn't have to be unique.
- Let $\mathbf{c}=\left\{\left(c_{11}, \cdots, c_{n 1}\right), \cdots,\left(c_{1 L}, \cdots, c_{n L}\right)\right\}$ be the cutoff hyperplane.
- It separates treated and control.
- z_{i} indicates whether i is "intended for treatment" (in the treated set) or not (in the control set).
- Trick: pick one point in \mathbf{c}, say $\mathrm{c}_{l}=\left(c_{1 l}, \cdots, c_{n l}\right)$, and reduce X to one dimension by calculating the distance $d\left(\mathbf{x}_{i}, \mathbf{c}_{l}\right)$ for every i.
- The new running variable is:

$$
r_{i}=\left(2 \cdot z_{i}-1\right) \cdot d\left(\mathbf{x}_{i}, \mathbf{c}_{l}\right) .
$$

Multidimensional RD, Notation

- Suppose X has k dimensions, i.e. $X=\left\{x_{1}, \cdots, x_{k}\right\}$.
- Cutoff doesn't have to be unique.
- Let $\mathbf{c}=\left\{\left(c_{11}, \cdots, c_{n 1}\right), \cdots,\left(c_{1 L}, \cdots, c_{n L}\right)\right\}$ be the cutoff hyperplane.
- It separates treated and control.
- z_{i} indicates whether i is "intended for treatment" (in the treated set) or not (in the control set).
- Trick: pick one point in \mathbf{c}, say $\mathbf{c}_{l}=\left(c_{1 l}, \cdots, c_{n l}\right)$, and reduce X to one dimension by calculating the distance $d\left(\mathbf{x}_{i}, \mathbf{c}_{l}\right)$ for every i.
- The new running variable is:

Multidimensional RD, Notation

- Suppose X has k dimensions, i.e. $X=\left\{x_{1}, \cdots, x_{k}\right\}$.
- Cutoff doesn't have to be unique.
- Let $\mathbf{c}=\left\{\left(c_{11}, \cdots, c_{n 1}\right), \cdots,\left(c_{1 L}, \cdots, c_{n L}\right)\right\}$ be the cutoff hyperplane.
- It separates treated and control.
- z_{i} indicates whether i is "intended for treatment" (in the treated set) or not (in the control set).
- Trick: pick one point in \mathbf{c}, say $\mathbf{c}_{l}=\left(c_{1 l}, \cdots, c_{n l}\right)$, and reduce X to one dimension by calculating the distance $d\left(\mathbf{x}_{i}, \mathbf{c}_{l}\right)$ for every i.
- The new running variable is:

$$
r_{i}=\left(2 \cdot z_{i}-1\right) \cdot d\left(\mathbf{x}_{i}, \mathbf{c}_{l}\right) .
$$

Multidimensional RD

- With one running variable, r, I can apply the previous methods.
- ddrd includes the following distance functions:
- Caveat: If cutoff isn't unique, $\hat{\tau}_{v}, \Delta \hat{\tau}_{v}$, and h^{*} depend on the chosen cutoff point.
- Solution: Average effect from several different cutoffs.

Multidimensional RD

- With one running variable, r, I can apply the previous methods.
- ddrd includes the following distance functions:
- Manhattan (L1)
- Euclidean (L2)
- Minkowski (Lp)
- Mahalanobis
- Latitude-Longitude
- Caveat: If cutoff isn't unique, $\hat{\tau}_{v}, \Delta \hat{\tau}_{v}$, and h^{*} depend on the chosen cutoff point.
- Solution: Average effect from several different cutoffs.

Multidimensional RD

- With one running variable, r, I can apply the previous methods.
- ddrd includes the following distance functions:
- Manhattan (L1)
- Euclidean (L2)
- Minkowski (Lp)
- Mahalanobis
- Latitude-Longitude
- Caveat: If cutoff isn't unique, $\hat{\tau}_{v}, \Delta \hat{\tau}_{v}$, and h^{*} depend on the chosen cutoff point.
- The effect can be heterogeneous.
- Solution: Average effect from several different cutoffs.

Multidimensional RD

- With one running variable, r, I can apply the previous methods.
- ddrd includes the following distance functions:
- Manhattan (L1)
- Euclidean (L2)
- Minkowski (Lp)
- Mahalanobis
- Latitude-Longitude
- Caveat: If cutoff isn't unique, $\hat{\tau}_{v}, \Delta \hat{\tau}_{v}$, and h^{*} depend on the chosen cutoff point.
- The effect can be heterogeneous.
- Solution: Average effect from several different cutoffs.
- Correlation between cutoffs should be taken into account (in progress).

Application: The Effect of Prostitution on House Prices

- In Amsterdam, the canals are like natural borders of the red light district (RLD).

Application: The Effect of Prostitution on House Prices

- ddrd output:

```
. ddrd lprice Lat Lon if time==0, itt(rldA) c(52.374611 4.901397) dfunction(Latlong)
Computing Latlong distance
Preparing data.
Computing bandwidth selectors.
Calculating predicted outcome per sample.
Estimation completed.
Estimates using local polynomial regression.
\begin{tabular}{r|rrrrr} 
Cutoff \(c=0\) & Left of \(c\) & Right of \(c\) & Number of obs \(=\) & 53174 \\
Number of obs & 99 & 124 & NN matches & \(=\) & 3 \\
Order loc. poly. (p) & 1 & 1 & BW type & \(=\) & CCT \\
Order bias (q) & 2 & 2 & & & \\
BW loc. poly. (h) & 7.445 & 7.445 & & \\
BW bias (b) & 11.258 & 11.258 & &
\end{tabular}
```

Outcome: lprice. Running Variable: Lat Lon.

Method I	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf	Interval]
Conventional \|	-. 27857	. 06379	-4.3669	0.000	-. 403605	-. 153544
Robust \|	-. 30377	. 09626	-3.1557	0.002	-. 492442	-. 115104

Application: The Effect of Prostitution on House Prices

- ddrd output, with DiD:

```
. ddrd lprice Lat Lon, itt(rldA) time(time) c(52.374611 4.901397) dfunction(Latlong)
Computing Latlong distance
Preparing data.
Computing bandwidth selectors.
Calculating predicted outcome per sample.
Estimation completed.
```

Estimates using local polynomial regression.

Cutoff $c=0$ \| Left of c Right of c			Number of obs $=$	$=\quad 49055$
			NN matches	3
Number of obs, $\mathrm{t}=0 \mathrm{l}$	86	90	BW type	CCT
Number of obs, $t=1$ \|	60	47	Kernel type	= Triangular
Order loc. poly. (p) \|	1	1		
Order bias (q) \|	2	2		
BW loc. poly. (h) \|	6.937	6.937		
BW bias (b) \|	11.963	11.963		
rho (h/b) \|	0.580	0.580		

Outcome: lprice. Running Variable: Lat Lon.

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
- And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
- And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
- And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):
(1) Regress variables (x) and y on the running variable (r). (Estimate the coefficient vector β by regressing
on residuals of x.
Regress $\left(y-\hat{\beta}^{\prime} x\right)$ on the running variable (r).

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
- And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):
(1) Regress variables (x) and y on the running variable (r).
(2) Estimate the coefficient vector β by regressing residuals of y on residuals of x.

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
- And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):
(1) Regress variables (x) and y on the running variable (r).
(2) Estimate the coefficient vector β by regressing residuals of y on residuals of x.
(3) Regress $\left(y-\hat{\beta}^{\prime} x\right)$ on the running variable (r).

Application: The Effect of Prostitution on House Prices

- ddrd output, with control variables:

. ddrd lprice Lat Lon if time==0, itt(rldA) c(52.374611 4.901397) dfunction(Latlong) control(siz $>$ e date1-date 4 monumnt poorcnd luxury rooms floors kitchen bath centhet balcony attic terrace 1 > ift garage garden)
(...)

Estimates using local polynomial regression.

Cutoff $c=0$ l Left of c Right of c				Number of obs $=$NN matches $=$BW typeKernel type $=$		$\begin{array}{r} 72434 \\ 3 \\ \text { Manual } \end{array}$
Number of obs	117135					
Order loc. poly. (p)	1					Manual Triangular
Order bias (q)	$2 \quad 2$			Kernel type =		
BW loc. poly. (h)	$7.445 \quad 7.445$					
BW bias (b)	11.258 11.258					
rho (h/b)	0.661	0.661				
Outcome: lprice. Running Variable: Lat Lon.						
Method I	Coef.	Std. Err	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval]
Conventional	-. 50715	. 22619	-2.2422	0.025	-. 950466	-. 063836
Robust	-. 61673	. 36225	-1.7025	0.089	-1.32674	. 093267

Control variables: size date1 date2 date3 date 4 monumnt poorcnd luxury rooms floors kitchen bath $>$ centhet balcony attic terrace lift garage garden.

