Difference-in-Differences

Multidimensional RD 00000 Control Variables

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Multidimensional Regression Discontinuity and Regression Kink Designs with Difference-in-Differences

Rafael P. Ribas

University of Amsterdam

Stata Conference Chicago, July 28, 2016

Difference-in-Differences

Multidimensional RD 00000

Control Variables

Motivation

- Regression Discontinuity (RD) designs have been broadly applied.
- However, non-parametric estimation is restricted to simple specifications.
 - I.e., cross-sectional data with one running variable.
- Thus some papers still use parametric polynomial forms and/or arbitrary bandwidths. For instance,
 - Dell (2010, *Econometrica*) estimates a two-dimensional RD.
 - Grembi et al. (2016, *AEJ:AE*) estimates Difference-in-Discontinuities.
- The goal is to create a program (such as rdrobust) that accommodates more flexible specifications.

Difference-in-Differences

Multidimensional RD 00000

Control Variables 00

Motivation

- Regression Discontinuity (RD) designs have been broadly applied.
- However, non-parametric estimation is restricted to simple specifications.
 - I.e., cross-sectional data with one running variable.
- Thus some papers still use parametric polynomial forms and/or arbitrary bandwidths. For instance,
 - Dell (2010, *Econometrica*) estimates a two-dimensional RD.
 - Grembi et al. (2016, *AEJ:AE*) estimates Difference-in-Discontinuities.
- The goal is to create a program (such as rdrobust) that accommodates more flexible specifications.

Difference-in-Differences

 $\begin{array}{c} \mbox{Multidimensional RD} \\ \mbox{00000} \end{array}$

Control Variables

Overview

- The ddrd package is built upon rdrobust package, including the following options:
 - Difference-in-Discontinuities (DiD) and Difference-in-Kinks (DiK)
 - **2** Multiple running variables
 - Analytic weights (aweight)
 - Control variables
 - Heterogeneous effect through linear interaction (in progress).
- All options are taken into account when computing the optimal bandwidth, using ddbwsel.
 - The estimator changes, so does the procedure.

Difference-in-Differences

Multidimensional RD 00000 Control Variables

Difference-in-Discontinuity/Kink, Notation

• Let
$$\mu_t(x) = \mathbb{E}[Y|X=x,t]$$
 and $\mu_t^{(v)}(x) = \frac{\partial^v E[Y|X=x,t]}{(\partial x)^v}$.

• Then the conventional sharp RD/RK estimand is:

$$\tau_{v,t} = \lim_{x \to 0^+} \mu_t^{(v)}(x) - \lim_{x \to 0^-} \mu_t^{(v)}(x) = \mu_{t+}^{(v)} - \mu_{t-}^{(v)}$$

• The DiD/DiK estimand is:

$$\Delta \tau_v = \mu_{1+}^{(v)} - \mu_{1-}^{(v)} - \left[\mu_{0+}^{(v)} - \mu_{0-}^{(v)}\right]$$

Ribas, UvA

Regression Discontinuity

3 / 16

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへで

Difference-in-Differences

Multidimensional RD 00000 Control Variables

Optimal Bandwidth, h^*

• Two methods based on the mean square error (MSE):

$$h_{MSE}^* = \left[C(K)\frac{\operatorname{Var}(\hat{\tau}_v)}{\operatorname{Bias}(\hat{\tau}_v)^2}\right]^{\frac{1}{5}} n^{-\frac{1}{5}}$$

- Imbens and Kalyanaraman (2012), IK.
- Calonico, Cattaneo and Titiunik (2014), CCT.
- They differ in the way $Var(\hat{\tau}_v)$ and $Bias(\hat{\tau}_v)$ are estimated.
- For DiD/DiK, the trick is to replace τ̂_v by Δτ̂_v.
 That's what ddbwsel does.
- While ddrd calculates the robust, bias-corrected confidence intervals for $\Delta \hat{\tau}_v$, as proposed by CCT.

Ribas, UvA

Regression Discontinuity

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ● ● ●

Difference-in-Differences

Multidimensional RD 00000 Control Variables

Optimal Bandwidth, h^*

• Two methods based on the mean square error (MSE):

$$h_{MSE}^* = \left[C(K)\frac{\operatorname{Var}(\hat{\tau}_v)}{\operatorname{Bias}(\hat{\tau}_v)^2}\right]^{\frac{1}{5}} n^{-\frac{1}{5}}$$

- Imbens and Kalyanaraman (2012), IK.
- Calonico, Cattaneo and Titiunik (2014), CCT.
- They differ in the way $Var(\hat{\tau}_v)$ and $Bias(\hat{\tau}_v)$ are estimated.
- For DiD/DiK, the trick is to replace $\hat{\tau}_v$ by $\Delta \hat{\tau}_v$.
 - That's what ddbwsel does.
- While ddrd calculates the robust, bias-corrected confidence intervals for $\Delta \hat{\tau}_v$, as proposed by CCT.

Ribas, UvA

Regression Discontinuity

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ● ● ●

Application: Retirement and Payroll Credit in Brazil

- In 2003, Brazil passed a legislation regulating payroll lending.
 - Loans for which interests are deducted from payroll check (Coelho et al., 2012).
 - It represented a "kink" in loans to pensioners.

Application: Retirement and Payroll Credit in Brazil

- In 2003, Brazil passed a legislation regulating payroll lending.
 - Loans for which interests are deducted from payroll check (Coelho et al., 2012).
 - It represented a "kink" in loans to pensioners.

Ribas, UvA

Regression Discontinuity

Multidimensional RD 00000 Control Variables

Application: Retirement and Payroll Credit in Brazil

• Optimal bandwidth for Difference-in-Kink at age 60:

. ddbwsel borrower aged [aw=weight], time(time) c(60) deriv(1) all Computing CCT bandwidth selector. Computing IK bandwidth selector.

Bandwidth estimators for local polynomial regression

Cutoff c = 60	Left of c	Right of c
Number of obs, t = 0 Number of obs, t = 1 Order loc. poly. (p) Range of aged, t = 0 Range of aged, t = 1	20836 22609 2 3 29.996 29.996	4484 5828 2 3 29.999 29.996
Method h 	b 18.73484 11.01818	rho
11 14.40075	11.01010	1.312909

Number of obs	=	53757
NN matches	=	3
Kernel type	= Tria	ngular

イロト イヨト イヨト イヨト ヨー のくで

Application: Retirement and Payroll Credit in Brazil

• ddrd output:

. ddrd borrower aged [aw=weight], time(time) c(60) deriv(1) b('b') h('h') Preparing data. Calculating predicted outcome per sample. Estimation completed.

Estimates using local polynomial regression. Derivative of order 1.

Cutoff c = 60	Left of c	Right of c
+-		
Number of obs, $t = 0$	6117	3081
Number of obs, t = 1	7319	4001
Order loc. poly. (p)	2	2
Order bias (q)	3	3
BW loc. poly. (h)	12.457	12.457
BW bias (b)	18.735	18.735
rho (h/b)	0.665	0.665

NN matches	= 3
BW type	= Manual
Kernel type	= Triangular

27093

イロト イヨト イヨト イヨト ヨー のくで

Number of obs =

Outcome: borrower. Running Variable: aged.

Method	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Conventional		.0221	1.0362	0.300	020417	.066218
Robust		.03123	0.8680	0.385	034098	.088303

Difference-in-Differences

Multidimensional RD 00000 Control Variables

Difference-in-Kink

- What if there is no cutoff and aged is a continuous treatment?
- Shift in level represents the *first* difference, while change in the slope represents the *second* difference.
 - Difference-in-Difference with continuous treatment.

Difference-in-Differences

Multidimensional RD 00000 Control Variables

Difference-in-Kink

Estimating changes in the first derivative at any part of the function:

. ddrd borrower aged [aw=weight], time(time) c(60) deriv(1) nocut Preparing data. Computing bandwidth selectors. Calculating predicted outcome per sample. Estimation completed.

Estimates using local polynomial regression. Derivative of order 1.

Reference $c = 60$)	Time O	Time 1
Number of obs	+· s	8433	10395
Order loc. poly. (p))	2	2
Order bias (q))	3	3
BW loc. poly. (h)		11.489	11.489
BW bias (b))	16.813	16.813
rho (h/b)		0.683	0.683

NN matches	= 3
BW type	= CCT
Kernel type	= Triangular

53757

イロト イヨト イヨト イヨト ヨー のくで

Number of obs =

Outcome: borrower. Running Variable: aged.

Method	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Conventional Robust	.00473 .00528	.00161 .0022	2.9473 2.3988	0.003 0.016	.001585	.007879

Difference-in-Differences 0000000 Multidimensional RD •0000 Control Variables

Multidimensional RD, Notation

- Suppose X has k dimensions, i.e. $X = \{x_1, \dots, x_k\}$.
- Cutoff doesn't have to be unique.
- Let $\mathbf{c} = \{(c_{11}, \cdots, c_{n1}), \cdots, (c_{1L}, \cdots, c_{nL})\}$ be the cutoff hyperplane.

• It separates treated and control.

- z_i indicates whether *i* is "intended for treatment" (in the treated set) or not (in the control set).
- Trick: pick one point in c, say $\mathbf{c}_l = (c_{1l}, \cdots, c_{nl})$, and reduce X to one dimension by calculating the distance $d(\mathbf{x}_i, \mathbf{c}_l)$ for every *i*.
- The new running variable is:

$$r_i = (2 \cdot z_i - 1) \cdot d(\mathbf{x}_i, \mathbf{c}_l).$$

Ribas, UvA

Regression Discontinuity

10 / 16

イロト イロト イヨト イヨト ヨー のくで

Difference-in-Differences 0000000 Multidimensional RD •0000 Control Variables

Multidimensional RD, Notation

- Suppose X has k dimensions, i.e. $X = \{x_1, \dots, x_k\}$.
- Cutoff doesn't have to be unique.
- Let $\mathbf{c} = \{(c_{11}, \cdots, c_{n1}), \cdots, (c_{1L}, \cdots, c_{nL})\}$ be the cutoff hyperplane.

• It separates treated and control.

- z_i indicates whether *i* is "intended for treatment" (in the treated set) or not (in the control set).
- Trick: pick one point in c, say $c_l = (c_{1l}, \dots, c_{nl})$, and reduce X to one dimension by calculating the distance $d(\mathbf{x}_i, \mathbf{c}_l)$ for every *i*.
- The new running variable is:

$$r_i = (2 \cdot z_i - 1) \cdot d(\mathbf{x}_i, \mathbf{c}_l).$$

Ribas, UvA

Regression Discontinuity

10 / 16

イロト イロト イヨト イヨト ヨー のくで

Difference-in-Differences 0000000 Multidimensional RD •0000 Control Variables

Multidimensional RD, Notation

- Suppose X has k dimensions, i.e. $X = \{x_1, \dots, x_k\}$.
- Cutoff doesn't have to be unique.
- Let $\mathbf{c} = \{(c_{11}, \cdots, c_{n1}), \cdots, (c_{1L}, \cdots, c_{nL})\}$ be the cutoff hyperplane.

• It separates treated and control.

- z_i indicates whether *i* is "intended for treatment" (in the treated set) or not (in the control set).
- Trick: pick one point in c, say $\mathbf{c}_l = (c_{1l}, \cdots, c_{nl})$, and reduce X to one dimension by calculating the distance $d(\mathbf{x}_i, \mathbf{c}_l)$ for every *i*.
- The new running variable is:

$$r_i = (2 \cdot z_i - 1) \cdot d(\mathbf{x}_i, \mathbf{c}_l).$$

Ribas, UvA

Regression Discontinuity

Difference-in-Differences 0000000 Multidimensional RD •0000 Control Variables

Multidimensional RD, Notation

- Suppose X has k dimensions, i.e. $X = \{x_1, \dots, x_k\}$.
- Cutoff doesn't have to be unique.
- Let $\mathbf{c} = \{(c_{11}, \cdots, c_{n1}), \cdots, (c_{1L}, \cdots, c_{nL})\}$ be the cutoff hyperplane.

• It separates treated and control.

- z_i indicates whether *i* is "intended for treatment" (in the treated set) or not (in the control set).
- Trick: pick one point in c, say $\mathbf{c}_l = (c_{1l}, \cdots, c_{nl})$, and reduce X to one dimension by calculating the distance $d(\mathbf{x}_i, \mathbf{c}_l)$ for every *i*.
- The new running variable is:

$$r_i = (2 \cdot z_i - 1) \cdot d(\mathbf{x}_i, \mathbf{c}_l).$$

Ribas, UvA

Regression Discontinuity

10 / 16

Difference-in-Differences 0000000 Multidimensional RD 0000

Control Variables

Multidimensional RD

- With one running variable, r, I can apply the previous methods.
- ddrd includes the following distance functions:
 - Manhattan (L1)
 - Euclidean (L2)
 - Minkowski (Lp)
 - Mahalanobis
 - Latitude-Longitude
- Caveat: If cutoff isn't unique, $\hat{\tau}_v$, $\Delta \hat{\tau}_v$, and h^* depend on the chosen cutoff point.
 - The effect can be heterogeneous.
- Solution: Average effect from several different cutoffs.
 - Correlation between cutoffs should be taken into account (in progress).

Difference-in-Differences 0000000 Multidimensional RD 0000

Control Variables

Multidimensional RD

- With one running variable, r, I can apply the previous methods.
- ddrd includes the following distance functions:
 - Manhattan (L1)
 - Euclidean (L2)
 - Minkowski (Lp)
 - Mahalanobis
 - Latitude-Longitude
- Caveat: If cutoff isn't unique, $\hat{\tau}_v$, $\Delta \hat{\tau}_v$, and h^* depend on the chosen cutoff point.
 - The effect can be heterogeneous.
- Solution: Average effect from several different cutoffs.
 - Correlation between cutoffs should be taken into account (in progress).

Ribas, UvA

Regression Discontinuity

Difference-in-Differences 0000000 Multidimensional RD 0000

Control Variables

Multidimensional RD

- With one running variable, r, I can apply the previous methods.
- ddrd includes the following distance functions:
 - Manhattan (L1)
 - Euclidean (L2)
 - Minkowski (Lp)
 - Mahalanobis
 - Latitude-Longitude
- **Caveat**: If cutoff isn't unique, $\hat{\tau}_v$, $\Delta \hat{\tau}_v$, and h^* depend on the chosen cutoff point.
 - The effect can be heterogeneous.
- Solution: Average effect from several different cutoffs.
 - Correlation between cutoffs should be taken into account (in progress).

Ribas, UvA

Regression Discontinuity

11 / 16

Difference-in-Differences 0000000 Multidimensional RD 0000

Control Variables

Multidimensional RD

- With one running variable, r, I can apply the previous methods.
- ddrd includes the following distance functions:
 - Manhattan (L1)
 - Euclidean (L2)
 - Minkowski (Lp)
 - Mahalanobis
 - Latitude-Longitude
- **Caveat**: If cutoff isn't unique, $\hat{\tau}_v$, $\Delta \hat{\tau}_v$, and h^* depend on the chosen cutoff point.
 - The effect can be heterogeneous.
- Solution: Average effect from several different cutoffs.
 - Correlation between cutoffs should be taken into account (in progress).

Ribas, UvA

Regression Discontinuity

Difference-in-Differences

Multidimensional RD 00000

Control Variables

Application: The Effect of Prostitution on House Prices

• In Amsterdam, the canals are like natural borders of the red light district (RLD).

Ribas, UvA

Regression Discontinuity

Application: The Effect of Prostitution on House Prices

• ddrd output:

. ddrd lprice Lat Lon if time==0, itt(rldA) c(52.374611 4.901397) dfunction(Latlong) Computing Latlong distance Preparing data. Computing bandwidth selectors. Calculating predicted outcome per sample. Estimation completed.

Estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs =	53174
+-			NN matches =	3
Number of obs	99	124	BW type =	CCT
Order loc. poly. (p)	1	1	Kernel type =	Triangular
Order bias (q)	2	2		
BW loc. poly. (h)	7.445	7.445		
BW bias (b)	11.258	11.258		
rho (h/b)	0.661	0.661		

Outcome: lprice. Running Variable: Lat Lon.

Method		Std. Err.		P> z	[95% Conf.	Interval]
Conventional Robust	27857	.06379 .09626	-4.3669	0.000	403605	153544 115104

Ribas, UvA

Regression Discontinuity

13 / 16

Application: The Effect of Prostitution on House Prices

• ddrd output, with DiD:

. ddrd lprice Lat Lon, itt(rldA) time(time) c(52.374611 4.901397) dfunction(Latlong) Computing Latlong distance Preparing data. Computing bandwidth selectors. Calculating predicted outcome per sample. Estimation completed.

Estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of	с		er of obs =	
Number of obs, t = 0	86	90			rpe =	-
Number of obs, t = 1	60	47		Kerne	el type =	Triangular
Order loc. poly. (p)	1	1				
Order bias (q)	2	2				
BW loc. poly. (h)	6.937	6.937				
BW bias (b)	11.963	11.963				
rho (h/b)	0.580	0.580				
Outcome: lprice. Running	Variable:	Lat Lon.				
Method	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
Conventional	.3801	.1498	2.5374	0.011	.086495	.673705
Robust	.51914	.21802	2.3811	0.017	.091824	.946453

Ribas, UvA

Regression Discontinuity

14 / 16

Difference-in-Differences 0000000 Multidimensional RD 00000 Control Variables

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
 - And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):
 - Regress variables (x) and y on the running variable (r).
 - Estimate the coefficient vector β by regressing residuals of y on residuals of x.
 - Regress $(y \hat{\beta}' x)$ on the running variable (r).

Difference-in-Differences 0000000 Multidimensional RD 00000 Control Variables

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
 - And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):
 - Regress variables (x) and y on the running variable (r).
 - Estimate the coefficient vector β by regressing residuals of y on residuals of x.
 - Regress $(y \hat{\beta}' x)$ on the running variable (r).

Difference-in-Differences 0000000 Multidimensional RD 00000 Control Variables

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
 - And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):
 - **()** Regress variables (x) and y on the running variable (r).
 - Estimate the coefficient vector β by regressing residuals of y on residuals of x.

3 Regress $(y - \hat{\beta}' x)$ on the running variable (r).

Ribas, UvA

Regression Discontinuity

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Difference-in-Differences 0000000 Multidimensional RD 00000 Control Variables

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
 - And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):
 - **()** Regress variables (x) and y on the running variable (r).
 - **②** Estimate the coefficient vector β by regressing residuals of y on residuals of x.

3 Regress $(y - \hat{\beta}' x)$ on the running variable (r).

Difference-in-Differences 0000000 Multidimensional RD 00000 Control Variables

Control Variables

- In the previous example, we are interested in residents' willingness to pay for the location.
- However, house prices comprise both quality and location.
 - And house quality is also affected by amenities.
- Solution is to control for house characteristics.
- How?
- I apply the Frisch-Waugh theorem in 3 steps (McMillen and Redfearn, 2010):
 - **()** Regress variables (x) and y on the running variable (r).
 - **②** Estimate the coefficient vector β by regressing residuals of y on residuals of x.
 - **3** Regress $(y \hat{\beta}' x)$ on the running variable (r).

Application: The Effect of Prostitution on House Prices

• ddrd output, with control variables:

. ddrd lprice Lat Lon if time==0, itt(rldA) c(52.374611 4.901397) dfunction(Latlong) control(siz > e date1-date4 monumnt poorcnd luxury rooms floors kitchen bath centhet balcony attic terrace l > ift garage garden)

(...)

Estimates using local polynomial regression.

Cutoff $c = 0$	1	Left of c	Right of c
Number of obs Order loc. poly. (p) Order bias (q) BW loc. poly. (h) BW bias (b)		117 1 2 7.445 11.258	135 1 2 7.445 11.258
rho (h/b)		0.661	0.661

Number of obs	=	72434
NN matches	=	3
BW type	=	Manual
Kernel type	= T:	riangular

Outcome: lprice. Running Variable: Lat Lon.

Method	Std. Err.		P> z	20070 000000	Interval]
Conventional	.22619	-2.2422 -1.7025	0.025	950466 -1.32674	063836 .093267

Control variables: size date1 date2 date3 date4 monumnt poorcnd luxury rooms floors kitchen bath > centhet balcony attic terrace lift garage garden.