rdlocrand: Inference in RD Designs Under Local Randomization

Matias Cattaneo University of Michigan

Rocío Titiunik University of Michigan Gonzalo Vazquez-Bare University of Michigan

https://sites.google.com/site/rdpackages

Stata Conference - Chicago

July 28, 2016

- Regression discontinuity designs (RDDs) are one of the most popular methods for causal inference.
- RDDs can be interpreted as a local experiment in a window around the cutoff.
- rdlocrand analyzes RDDs using tools from classical randomized experiments literature:
 - rdwinselect: window selection
 - rdrandinf: randomization inference
 - rdsensitivity: sensitivity analysis
 - rdrbounds: Rosenbaum bounds

Regression Discontinuity Designs: motivation

- Many programs or policies are assigned based on whether a score (running variable) X exceeds a threshold c:
 - Scholarship to students above a certain test score.
 - Subsidy to households above a poverty threshold.
- RDDs exploit the discontinuity in the probability of treatment assignment at the cutoff.
 - Sharp design: $D_i = \mathbb{1}(X_i \ge c)$.
- Intuition: in a "small" window around the cutoff, units above and below are comparable.

RDD: intuition

RDD: intuition

Inference in classical randomized experiments

- RDDs as randomized experiments around the cutoff.
 - Key assumption: existence of a window in which this is true.
- Inference in classical experiments:
 - Fixed (nonrandom) potential outcomes.
 - Known assignment mechanism.
- Randomization (finite sample) p-value:
 - Choose a statistic T (e.g. difference in means),
 - Calculate T for all permutations of treatment assignment,
 - Find $\mathbb{P}(T \geq T_{obs})$.
- In Stata:

permute d stat = $(r(mu_1)-r(mu_2))$: ttest y, by(d).

. rdrandinf demvoteshfor2 demmv, wl(-.75) wr(.75) Selected window = [-.75 ; .75] Running permutation test... Permutation test complete.

Inference for sharp design

Left of c	Right of c
595	702
15	22
42.808	52.497
7.042	7.742
-0.750	0.750
	Left of c 595 15 42.808 7.042 -0.750

Number of obs	=		1390
Order of poly	=		0
Kernel type	=		uniform
Reps	=		1000
Window	=	set	by user
HO: tau	=		0.000
Randomization	=	fixed	margins

Outcome: demvoteshfor2. Running variable: demmv.

		Finite sample		Large sample		
Statistic	Т	P> T	P> T	Power vs d =	3.52	
Diff. in means	9.689	0.001	0.000		0.300	

Randomization inference with rdrandinf

Choosing the window with rdwinselect

. rdwinselect demmv \$covariates, wmin(.5) wstep(.125) reps(10000)

Window selection for RD under local randomization

Cutoff $c = 0.00$	Left of c	Right of c	Number of obs	=	1390
			Order of poly	=	0
Number of obs	640	750	Kernel type	=	uniform
1th percentile	6	8	Reps	=	10000
5th percentile	32	38	Testing method	=	rdrandinf
10th percentile	64	75	Balance test	=	ttest
20th percentile	128	150			
	Bal. test	Var. name	Bin. test		
Window length /2	p-value	(min p-value)	p-value	Obs <c< td=""><td>Obs>=c</td></c<>	Obs>=c
0.500	0.268	demvoteshlag2	0.230	9	16
0.625	0.435	dopen	0.377	13	19
0.750	0.268	dopen	0.200	15	24
0.875	0.150	dopen	0.211	16	25
1.000	0.069	dopen	0.135	17	28
1.125	0.037	dopen	0.119	19	31
1.250	0.062	dopen	0.105	21	34
1.375	0.141	dmidterm	0.539	30	36
1.500	0.092	dmidterm	0.640	34	39
1.625	0.113	dmidterm	0.734	37	41

Variable used in binomial test (running variable): demmv

Covariates used in balance test: presdemvoteshlag1 population demvoteshlag1 demvoteshlag2 > demwinprv1 demwinprv2 dopen dmidterm

Largest recommended window is [-.75; .75] with 39 observations (15 below, 24 above).

Choosing the window with rdwinselect

Sensitivity analysis with rdsensitivity

□ ▶ 《♬ ▶ 《 볼 ▶ 《 볼 ▶ 볼 | ≌ 《 Q ↔ 13/16 . rdrbounds demvoteshfor2 demmv, gammalist(.8 1 1.2) wlist(.5 .75 1) reps(1000) Calculating randomization p-values...

			์พ =		0.500	0.750	1.000
	Bernoulli p-value				0.012	0.001	0.000
Runnin	g sensitivi	ty analy:	sis		0 500	0 750	1 000
gamma	exb(Bamma)		w -		0.500	 0.750	1.000
0.80	2.23	lower be	ound		0.006	0.001	0.000
		upper b	ound		0.068	0.015	0.002
1.00	2.72	lower be	ound		0.004	0.001	0.000
		upper b	ound		0.106	 0.034	0.006
1.20	3.32	lower be	ound		0.003	0.001	0.000
		upper b	ound		0.168	0.060	0.017

- Alternative statistics: Kolmogorov-Smirnov, rank sum.
- Polynomial adjustment of potential outcomes.
- Randomization-based confidence intervals for treatment effect.
- Companion R functions with same capabilities.
- See Cattaneo, Titiunik and Vazquez-Bare (2016): Inference in Regression Discontinuity Designs under Local Randomization. *Stata Journal 16(2): 331-367.*

Thank you!

Additional material

- rdwinselect performs hypothesis tests for a large set of covariates.
- Multiple testing leads to overrejection \rightarrow "err on the safe side" (smaller windows).
 - Local randomization assumption only credible in a small window.
- rdwinselect can also test all covariates jointly using Hotelling's T^2 test.
 - Typically leads to much larger windows.

- Strongest version of local randomization assumption states that potential outcomes do not depend on the score inside the window:
 - Exclusion restriction: $Y_i(d, x) = Y_i(d)$.
- This assumption may be too strong in some scenarios.
- rdlocrand allows the user to state a polynomial model for the potential outcomes to eliminate the dependence on *X*.
 - E.g. use a linear model to remove the slope.