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Evolution of the AIPW estimator

We will talk about the AIPW-style estimator (Robins and Rotnitzky
1995) in causal inferences.

Estimating ATE and ATET for cross-sectional data:
▶ Low-dimensional/parametric settings (Robins and Rotnitzky 1995)

▶ High-dimensional/semiparametric settings (Farrell 2015 and
Chernozhukov et al. 2018)

Difference-in-differences for panel data:
▶ Homogeneous ATET (Sant’Anna and Zhao 2020)

▶ Heterogeneous ATET (Callaway and Sant’Anna 2021)

Heterogeneous treatment effects (Semenova and Chernozhukov
2021, Knaus 2022, and Kennedy 2023)
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The AIPW estimators in Stata

Estimating ATE and ATET for cross-sectional data:
▶ Low-dimensional/parametric settings (teffects aipw)

▶ High-dimensional/semiparametric settings (telasso)

Difference-in-differences for panel data:
▶ Homogeneous ATET (user-written drdid)

▶ Heterogeneous ATET (xthdidregress and hdidregress)

Heterogeneous treatment effects (I will show some examples)
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Example: 401(k) eligibility effects

We want to know the average treatment effects (ATE) of the 401(k)
eligibility on the personal net financial assets (Chernozhukov et al.
2018):

ATE = E[Y (1)− Y (0)]

where
Treatment is 401(k) eligibility status

Outcome is the personal net financial assets

Y (1) ≡ potential outcome if being eligible for 401(k)

Y (0) ≡ potential outcome if being not eligible for 401(k)

Fundamental missing data problem: only one of Y (1) or Y (0) is
observed for each individual.
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Key assumptions to identify the ATE

Conditional independence: Conditional on a set of control
variables, the potential outcomes are independent of the
treatment assignment.
=⇒ We can use the observed outcome in the treated group as a
proxy to estimate the treated potential outcome in the control
group, and vice versa.
=⇒ Use E [Y |treat = 1,X ] to estimate E [Y (1)|treat = 0,X ]

Overlap: There is always a positive probability that any given unit
is treated or untreated.
=⇒ We can always find similar units (same value of X ) in both
treated and control groups.

I.I.D: identically independent distributed observations.
=⇒ Unit i does not interfere with unit j (∀i ̸= j)
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The model in a potential-outcome framework

The model is

y = g(τ,x) + u, E[u|x, τ ] = 0
τ = m(x) + v , E[v |x, τ ] = 0

where
y is the observed outcome
τ is the treatment status (1 treated, 0 untreated)
g(1,x) ≡ E[Y (1)|x] and g(0,x) ≡ E[Y (0)|x]
m(x) ≡ Pr[τ = 1|x] (propensity score)

ATE = E[Y (1)−Y (0)] = E[E[Y (1)|x]−E[Y (0)|x]] = E[g(1,x)−g(0,x)]
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The AIPW (Robins and Rotnitzky 1995) estimator

ATE = E [Y (1,x)AIPW − Y (0,x)AIPW ]

where

Y (1,x)AIPW = g(1,x) +
τ(y − g(1,x))

m(x)

Y (0,x)AIPW = g(0,x) +
(1 − τ)(y − g(0,x))

1 − m(x)

Notice that
ATE = E[g(1,x)− g(0,x)]

The red terms are Agumented terms using the Inverse of Probability
Weighting; thus AIPW was born.
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Example: 401(k) eligibility
. webuse assets
(Excerpt from Chernozhukov and Hansen (2004))

. describe

Contains data from https://www.stata-press.com/data/r18/assets.dta
Observations: 9,913 Excerpt from Chernozhukov and

Hansen (2004)
Variables: 10 15 Jun 2022 14:15

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

assets float %9.0g Net total financial assets
age byte %9.0g Age
income float %9.0g Household income
educ byte %9.0g Years of education
pension byte %16.0g lbpen Pension benefits
married byte %11.0g lbmar Marital status
twoearn byte %9.0g lbyes Two-earner household
e401k byte %12.0g lbe401 401(k) eligibility
ira byte %9.0g lbyes IRA participation
ownhome byte %9.0g lbyes Homeowner

Sorted by: e401k

Outcome: assets Treatment: e401k
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teffects aipw

. egen incomecat = cut(income), group(5)

. global controls educ age i.(pension married twoearn ira ownhome incomecat)

. teffects aipw (assets $controls) (e401k $controls)

Iteration 0: EE criterion = 2.445e-21
Iteration 1: EE criterion = 1.154e-23

Treatment-effects estimation Number of obs = 9,913
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: logit

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8019.463 1152.038 6.96 0.000 5761.51 10277.42

POmean
e401k

Not eligi.. 13930.46 817.613 17.04 0.000 12327.97 15532.96
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The double robustness
The AIPW estimator is doubly robust: only one of the treatment or
outcome model needs to be correctly specified for consistent
estimation of ATE.

Suppose that only the treatment model is correctly specified. Let
ĝ(τ,x) be an incorrect outcome model.

E[Y (1,x)AIPW |x] = ĝ(1,x) + E
[
τ(y − ĝ(1,x))

m(x)
∣∣x
]

Then E
[
τ(y−ĝ(1,x))

m(x)

∣∣x
]

is

Pr[τ = 1|x] ∗ E
[

y − ĝ(1,x)
m(x)

∣∣x, τ = 1
]
+ Pr[τ = 0|x] ∗ 0

= m(x)E
[

y − ĝ(1,x)
m(x)

∣∣x, τ = 1
]
= E[y |x, τ = 1]− ĝ(1,x)
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The double robustness (continued)

E[Y (1,x)AIPW |x] = ĝ(1,x) + E[y |x, τ = 1]− ĝ(1,x)
= E[y |x, τ = 1]
= E[Y (1)|x, τ = 1]
= E[Y (1)|x]

where the last equality comes from the assumption of conditional
independence. Similarly, E[Y (0,x)AIPW |x] = E[Y (0)|x].
Thus,

E[Y (1,x)AIPW − Y (1,x)AIPW ] = E[E[Y (1)− Y (0)|x]] = E[Y (1)− Y (0)]

even if the outcome model is incorrectly specified.
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More vs. fewer variables

We want to estimate the treatment effects of 401(k) eligibility on
financial assets, but we have the following dilemma:

On the one hand, we think a simple specification may not be
adequate to control for the related confounders. So we need more
variables or flexible models.
=⇒

▶ Adding interactions among variables as controls.
▶ Generating B-splines of continuous variables as controls.
▶ There are many raw variables.

On the other hand, flexible models decrease the power to learn
about the treatment effects. So we need fewer variables or simple
models. =⇒ The model may not converge!
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Set controls

. //---- orthogonal polynomial ----//

.

. orthpoly age, degree(6) generate(_orth_age*)

. orthpoly income, degree(8) generate(_orth_inc*)

. orthpoly educ, degree(4) generate(_orth_educ*)

.

. //---- define controls ---------//

.

. global cvars _orth*

. global fvars pension married twoearn ira ownhome

. global controls2 $cvars i.($fvars) c.($cvars)#i.($fvars) ///
> i.($fvars)#i.($fvars)

There are 248 controls and 9913 observations.
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Include all the controls?

. cap noi teffects aipw (assets $controls2) (e401k $controls2)
treatment model has 5 observations completely determined; the model, as
specified, is not identified

Including too many controls will violate the overlap assumption!

In practice, to avoid conflicts, researchers usually do some sort of
model selection, but they conduct inference as if there is no model
selection or assuming the selected model is correct!

▶ It is mostly dangerous! Very! (Leeb and Pötscher 2005, 2008)
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Conflits between the C.I. and overlap assumptions

Conditional independence: E(y(τ)|x, τ) = E(y(τ)|x).
Dependent on a set of control variables, the potential outcome is
independent of the treatment assignment.
Overlap: m0(z) > 0. There is always a positive probability that
any given unit is treated or untreated.

Conflicts
The more covariates we have, the easier the CI assumption is
satisfied.
Certain specific values of covariates may not be observed in some
treatment groups, which means the violation of the overlap
assumption.
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Honestly solve the conflicts
We need to select variables that matter to outcome and treatment.
We only need some of them!

The inference should be robust to model-selection mistakes. We
admit that we made the model selection and that we may select
the wrong variables. =⇒ Neyman orthognality
A Neyman orthogonal moment condition is defined as

E [ψ(W ; θ0, η0)] = 0
D0[η − η0] = 0

where

Dr [η − η0] = ∂r {E [ψ(W ; θ0, η0 + (η − η0)r)]}

for all r ∈ [0,1). When Dr is evaluated at r = 0, we denote it as
D0[η − η0]
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Treatment effects + lassos

ATE = E [Y (1,x)AIPW − Y (0,x)AIPW ]

where

Y (1,x)AIPW = g(1,x) +
τ(y − g(1,x))

m(x)

Y (0,x)AIPW = g(0,x) +
(1 − τ)(y − g(0,x))

1 − m(x)

We use lasso-type techniques to predict g(1,x), g(0,x), and m(x).
It is just a version of teffects aipw with lassos.
It is doubly robust, i.e., either the outcome or treatment model can
be misspecified.
It is Neyman orthogonal; it is robust to model-selection mistakes
(Not RA or IPW estimators).
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telasso

. telasso (assets $controls2) (e401k $controls2)

Estimating lasso for outcome assets if e401k = 0 using plugin method ...
Estimating lasso for outcome assets if e401k = 1 using plugin method ...
Estimating lasso for treatment e401k using plugin method ...
Estimating ATE ...

Treatment-effects lasso estimation Number of observations = 9,913
Outcome model: linear Number of controls = 248
Treatment model: logit Number of selected controls = 29

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8408.417 1259.405 6.68 0.000 5940.029 10876.81

POmean
e401k

Not eligi.. 13958.04 874.6395 15.96 0.000 12243.78 15672.31

On average, being eligible for a 401(k) will increase financial assets by
$8408.
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Double machine learning

Double machine learning means cross-fitting + resampling.

Why do we need it?

Cross-fitting relaxes the requirements in the sparsity assumption.

▶ Without cross-fitting, the sparsity assumption requires

s2
g + s2

m ≪ N

where sg and sm are the number of actual terms in the outcome
and treatment models, respectively.

▶ With cross-fitting, the sparsity assumption requires

sg ∗ sm ≪ N

Resampling reduces the randomness in cross-fitting.
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Basic idea of double machine learning

ATE =E
(

g(1,x) +
τ (y − g(1,x))

m(z)

)

− E
(

g(0,x) +
(1 − τ) (y − g(0,x))

1 − m(z)

)

Basic idea
1 Split sample into auxiliary part and main part;
2 All the machine-learning techniques are applied to the auxiliary

sample;
3 All the post-lasso residuals are obtained from the main sample;
4 Switch the role of auxiliary sample and main sample, and do

steps 2 and 3 again;
5 Solve the moment equation using the full sample.
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2-fold cross-fitting (I)
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2-fold cross-fitting (II)
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Cross-fitting

. telasso (assets $controls2) (e401k $controls2), xfolds(5) rseed(123)

Cross-fit fold 1 of 5 ...
Estimating lasso for outcome assets if e401k = 0 using plugin method ...
Estimating lasso for outcome assets if e401k = 1 using plugin method ...
Estimating lasso for treatment e401k using plugin method ...

(... output omitted ...)

Treatment-effects lasso estimation Number of observations = 9,913
Number of controls = 248
Number of selected controls = 43

Outcome model: linear Number of folds in cross-fit = 5
Treatment model: logit Number of resamples = 1

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8244.876 1521.009 5.42 0.000 5263.754 11226

POmean
e401k

Not eligi.. 14271.34 921.0897 15.49 0.000 12466.03 16076.64
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Cross-fitting + resampling

. telasso (assets $controls2) (e401k $controls2), xfolds(5) resample(3) rseed(1
> 23)

Resample 1 of 3 ...
Cross-fit fold 1 of 5 ...
Estimating lasso for outcome assets if e401k = 0 using plugin method ...
Estimating lasso for outcome assets if e401k = 1 using plugin method ...
Estimating lasso for treatment e401k using plugin method ...
(... output omitted ...)

Treatment-effects lasso estimation Number of observations = 9,913
Number of controls = 248
Number of selected controls = 47

Outcome model: linear Number of folds in cross-fit = 5
Treatment model: logit Number of resamples = 3

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8132.74 1434.918 5.67 0.000 5320.353 10945.13

POmean
e401k

Not eligi.. 14175.17 907.9799 15.61 0.000 12395.56 15954.78
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Heterogeneous treatment effects

So far, we focus on measuring the ATE, but a single mean is not
good enough to summarize the treatment effects.

We want to understand the driving mechanism underlying the
treatment effects. =⇒ Who is benefitting more or less?

For example, we want to know how the treatment effects of 401(k)
eligibility vary with education or income categories.
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Another look at the AIPW estimator

Γ(x) ≡ Y (1,x)AIPW − Y (0,x)AIPW = E[treatment effects|x]

ATE = E [Γ(x)]

ATET = E
[
Γ(x)

∣∣∣∣τ = 1
]

Then, the ATE over the subgroups G = g is just

E
[
Γ(x)

∣∣∣∣G = g
]

Similarly, the ATE over a specific value of continuous variable Z = z is

E
[
Γ(x)

∣∣∣∣Z = z
]
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Estimating strategies

Group ATE

E
[
Γ(x)

∣∣∣∣G = g
]

1 We already have an estimate of Γ(x) after teffects aipw or
telasso =⇒ use predict ..., te to construct Γ(x).

2 Run regress Γ(x) i.G

ATE over a continuous variable

E
[
Γ(x)

∣∣∣∣Z = z
]

1 Run npregress series Γ(x) Z.
See discussions in Semenova and Chernozhukov (2021), Knaus
(2022), and Kennedy (2023).

32 / 40



Example: Treatment effects for each income group

. // ---- fit model ----//

. qui teffects aipw (assets $controls) (e401k $controls)

.

. // ---- predict treatment effects ---- //

. predict myte, te

.

. // ---- income group ---- //

. table incomecat, stat(min income) stat(max income) ///
> stat(median income) nototal

Minimum value Maximum value Median

incomecat
0 0 17196 12240
1 17214 26523 21735
2 26526 37275 31482
3 37296 53841 44379
4 53844 242124 69612

33 / 40



Example: Treatment effects for each income group
. regress myte ibn.incomecat, noconstant

Source SS df MS Number of obs = 9,913
F(5, 9908) = 17.06

Model 1.1208e+12 5 2.2416e+11 Prob > F = 0.0000
Residual 1.3020e+14 9,908 1.3141e+10 R-squared = 0.0085

Adj R-squared = 0.0080
Total 1.3132e+14 9,913 1.3247e+10 Root MSE = 1.1e+05

myte Coefficient Std. err. t P>|t| [95% conf. interval]

incomecat
0 3748.291 2575.567 1.46 0.146 -1300.345 8796.927
1 1035.475 2573.619 0.40 0.687 -4009.343 6080.293
2 5509.986 2574.918 2.14 0.032 462.6239 10557.35
3 8749.087 2574.268 3.40 0.001 3702.997 13795.18
4 21052.43 2574.268 8.18 0.000 16006.34 26098.51

.

. test 4.incomecat = 3.incomecat = 2.incomecat, mtest(bonferroni)

( 1) - 3.incomecat + 4.incomecat = 0
( 2) - 2.incomecat + 4.incomecat = 0

F(df,9908) df p > F

(1) 11.42 1 0.0015*
(2) 18.22 1 0.0000*

All 10.14 2 0.0000

* Bonferroni-adjusted p-values
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Example: Treatment effects over education

. npregress series myte educ, knots(3)
warning: you have entered variable educ as continuous but it only has 18

distinct values. The estimates may differ substantially if you
inadvertently include a discrete variable as continuous

Computing approximating function

Computing average derivatives

Cubic B-spline estimation Number of obs = 9,913
Number of knots = 3

Robust
myte Effect std. err. z P>|z| [95% conf. interval]

educ 2693.11 1388.459 1.94 0.052 -28.22017 5414.441

Note: Effect estimates are averages of derivatives.

The marginal effect of education (in years) on the 401(k) eligibility treatment effects is
$415.
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Example: Treatment effects over education

. margins, at(educ = (9(1)16))

Adjusted predictions Number of obs = 9,913
Model VCE: Robust

Expression: Mean function, predict()
1._at: educ = 9
2._at: educ = 10
3._at: educ = 11
4._at: educ = 12
5._at: educ = 13
6._at: educ = 14
7._at: educ = 15
8._at: educ = 16

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 7691.175 2469.007 3.12 0.002 2852.011 12530.34
2 7029.716 2555.966 2.75 0.006 2020.115 12039.32
3 6426.178 1964.316 3.27 0.001 2576.19 10276.17
4 6100.159 1337.229 4.56 0.000 3479.238 8721.08
5 8770.296 2000.363 4.38 0.000 4849.656 12690.94
6 13506.69 2914.037 4.64 0.000 7795.283 19218.1
7 15056.14 3805.146 3.96 0.000 7598.191 22514.09
8 8165.443 3415.943 2.39 0.017 1470.317 14860.57
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Example: Treatment effects over education
. marginsplot

Variables that uniquely identify margins: educ
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Example: Linear projection of treatment effects

. regress myte educ age income i.(married ownhome twoearn)

Source SS df MS Number of obs = 9,913
F(6, 9906) = 5.54

Model 4.3743e+11 6 7.2904e+10 Prob > F = 0.0000
Residual 1.3025e+14 9,906 1.3148e+10 R-squared = 0.0033

Adj R-squared = 0.0027
Total 1.3068e+14 9,912 1.3185e+10 Root MSE = 1.1e+05

myte Coefficient Std. err. t P>|t| [95% conf. interval]

educ -160.0135 459.9507 -0.35 0.728 -1061.61 741.5834
age 257.0527 119.0901 2.16 0.031 23.61187 490.4934

income .2175988 .0589338 3.69 0.000 .1020766 .3331211

married
Married -3021.45 3203.746 -0.94 0.346 -9301.445 3258.545

ownhome
Yes 3750.313 2695.386 1.39 0.164 -1533.193 9033.818

twoearn
Yes 100.0405 3194.365 0.03 0.975 -6161.566 6361.647

_cons -9110.624 8088.33 -1.13 0.260 -24965.4 6744.149
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Summary

AIPW estimator in the classical settings (teffects aipw).

High-dimensional controls (telasso).

Use AIPW scores to estimate the heterogeneous treatment
effects. (Note: In the ideal case, we can construct the AIPW
scores using cross-fitting. It would require some programming.)

In the heterogeneous DID settings, AIPW also plays an important
role. (See xthdidregress and hdidregress from last year’s
talk.)
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Proofs for Neyman orthognality and double robustness of

the AIPW ATE estimator

Di Liu

StataCorp
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0.1 Proof for ATE score is Neyman orthogonal

We need to prove the moment condition is zero at true parameters, and also this moment condition

is robust to machine learning mistakes.

Step 1: we need to prove E[ψ(W ; θ0, η0)] = 0

Proof.

E[ψ(W ; θ0, η0)] =E [(g0(1, X)− g0(0, X))] + E
[
D (Y − g0(1, X))

m0(X)

]

− E
[
(1−D) (Y − g0(0, X))

1−m0(X)

]
− θ0

Where the second and third term are zero. The second term is

E
[
D (Y − g0(1, X))

m0(X)

]
=Pr(D = 0) ∗ 0 + Pr(D = 1)E

[
D (Y − g0(1, X))

m0(X)

∣∣∣∣D = 1

]

=Pr(D = 1)E
[
E
(
D (Y − g0(1, X))

m0(X)

∣∣∣∣D = 1, X

)]

=Pr(D = 1)E
[

D

m0(X)
E
(
Y − g0(1, X)

∣∣∣∣D = 1, X

)]

Notice E
(
Y − g0(1, X)

∣∣∣∣D = 1, X

)
= 0, so E

[
D(Y−g0(1,X))

m0(X)

]
= 0.

1



The third term is

E
[
(1−D) (Y − g0(0, X))

1−m0(X)

]
=Pr(D = 0)E

[
1 (Y − g0(0, X))

1−m0(X)

∣∣∣∣D = 0

]
+ Pr(D = 1) ∗ 0

=Pr(D = 0)E
[
E
(
1 (Y − g0(0, X))

1−m0(X)

∣∣∣∣D = 0, X

)]

=E
[

1

1−m0(X)
E
(
Y − g0(0, X)

∣∣∣∣D = 0, X

)]

Notice that E
(
Y − g0(0, X)

∣∣∣∣D = 0, X

)
= 0, so E

[
(1−D)(Y−g0(0,X))

1−m0(X)

]
= 0.

By the definition of θ0 = E [g0(1, X)− g0(0, X)], so E [ψ(W ; θ0, η0)] = 0.

Step 2: we need to prove D0[η − η0] = 0

Proof.

E[ψ (W ; θ, η0 + (η − η0)γ)] =E[(g0(1, X) + (g(1, X)− g0(1, X))γ)]

− E[(g0(0, X) + (g(0, X)− g0(0, X))γ)]

+ E
[
D (Y − (g0(1, X) + (g(1, X)− g0(1, X))γ))

(m0(X) + (m(X)−m0(X))γ)

]

− E
[
(1−D) (Y − (g0(0, X) + (g(0, X)− g0(0, X))γ))

1− (m0(X) + (m(X)−m0(X))γ)

]

− θ

Under some regularity conditions, the derivative and expectation operator are interchangeable.

So D0[η − η0] is

D0[η − η0] =∂γ {E[ψ (W ; θ, η0 + (η − η0)γ)]}
∣∣∣∣
γ=0

=E[(g(1, X)− g0(1, X))]− E[(g(0, X)− g0(0, X))]

− E
[
D(g(1, X)− g0(1, X))

m0(X)

]

− E
[
D(Y − g0(1, X))(m(X)−m0(X))

m0(X)2

]

+ E
[
(1−D)(g(0, X)− g0(0, X))

1−m0(X)

]

− E
[
(1−D)(Y − g0(0, X))(m(X)−m0(X))

(1−m0(X))2

]
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Notice that

E
[
D(g(1, X)− g0(1, X))

m0(X)

]
=E

{
E
[
D(g(1, X)− g0(1, X))

m0(X)

∣∣∣∣X
]}

=E
{
E(D|X)

(g(1, X)− g0(1, X))

m0(X)

}

=E
{
m0(X)

(g(1, X)− g0(1, X))

m0(X)

}

=E [(g(1, X)− g0(1, X))]

similarly

E
[
(1−D)(g(0, X)− g0(0, X))

1−m0(X)

]
= E [(g(0, X)− g0(0, X))]

Now

E
[
D(Y − g0(1, X))(m(X)−m0(X))

m0(X)2

]

= Pr(D = 0) ∗ 0 + Pr(D = 1)E
[
D(Y − g0(1, X))(m(X)−m0(X))

m0(X)2

∣∣∣∣D = 1

]

= Pr(D = 1)E
{
E
[
D(Y − g0(1, X))(m(X)−m0(X))

m0(X)2

∣∣∣∣D = 1, X

]}

= Pr(D = 1)E
{
D(m(X)−m0(X))

m0(X)2
E
[
Y − g0(1, X)

∣∣∣∣D = 1, X

]}

But E
[
Y − g0(1, X)

∣∣∣∣D = 1, X

]
= 0, so E

[
D(Y−g0(1,X))(m(X)−m0(X))

m0(X)2

]
= 0.

Similarly,

E
[
(1−D)(Y − g0(0, X))(m(X)−m0(X))

(1−m0(X))2

]

= Pr(D = 1) ∗ 0 + Pr(D = 0)E
[
(1−D)(Y − g0(0, X))(m(X)−m0(X))

(1−m0(X))2

∣∣∣∣D = 0

]

= Pr(D = 0)E
{
E
[
(1−D)(Y − g0(0, X))(m(X)−m0(X))

(1−m0(X))2

∣∣∣∣D = 0, X

]}

= Pr(D = 0)E
{
(1−D)(m(X)−m0(X))

(1−m0(X))2
E [Y − g0(0, X)|D = 0, X]

}

But E
[
Y − g0(0, X)

∣∣∣∣D = 0, X

]
= 0, so E

[
(1−D)(Y−g0(0,X))(m(X)−m0(X))

(1−m0(X))2

]
= 0

So indeed, D0[η − η0] = 0
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0.2 Unconfoundness and overlap assumptions

Assumption 1. Unconfoundness assumption: Conditional on X, the treatment assignment

mechanism is independent of the potential outcome. A weaker version of this assumption is

the conditional mean independence. Which is

E(y0|X,D) = E(y0|X) (1)

E(y1|X,D) = E(y1|X) (2)

That is g0(0, X) = E(y0|X) and g1(1, X) = E(y1|X).

Assumption 2. Overlap assumption: 0 < Pr(D|X) < 1.

These two assumptions are needed for identification of our estimators.

• The unconfoundness assumption allows us to use E(y|X,D = 0) to replace E(y0|X), and

use E(y|X,D = 1) to replace E(y1|X). This means we can use the observed outcome to

learn the conditional mean of the potential outcome.

• The overlap assumption allows θ = E(E(y1|X)− E(y0|X))

The observed outcome y can be written as y = y0 +D(y1 − y0).

E(y|X,D) = E(y0 +D(y1 − y0)|X,D)

= E(y0|X,D) +D[E(y1|X,D)− E(y0|X,D)]

= E(y0|X) +D[E(y1|X)− E(y0|X)]

where the third equality comes from the unconfoundness assumptions. If D = 1, E(y|X,D =

1) = E(y1|X); if D = 0, E(y|X,D = 0) = E(y0|X).

Notice that in order to compute ATE or ATET, we need g0(1, X) = E(y1|X). By uncon-

foundness assumption, we can use the observed outcome variable moment E(y|X,D = 1) to get

E(y1|X).

The ATE is an expecation over population, so the overlap assumption guarantees that θ =

E(E(y|X,D = 1)− E(y|X,D = 0)) is identifiable.
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0.3 Proof for ATE estimator is doubly robust

Proof.

θ0 =

[
E(g0(1, X)) + E

(
D(Y − g0(1, X))

m0(X)

)]

−
[
E(g0(0, X)) + E

(
(1−D)(Y − g0(0, X))

1−m0(X)

)]

Let’s consider two scenarios. First, assume that the outcome model is correctly specified, so

g0(0, X) = E(Y |X,D = 0) and g0(1, X) = E(Y |X,D = 1). Then the second term and and the

fourth term are zero. They have already been proved in the proof of Neyman orthogonality in

0.1. So θ0 is indeed ATE.

Second, assume that the only the propensity score model is correctly specified, so E(D|X) =

m0(X).

E
(
D(Y − g0(1, X))

m0(X)

)
= Pr(D = 1)E

[
E
(
(Y − g0(1, X))

m0(X)

∣∣∣∣X,D = 1

)]

= Pr(D = 1)E
[

1

m0(X)
(E(Y |X,D = 1)− g0(1, X))

]

= E
[

D

m0(X)
(E(Y1|X)− g0(1, X))

]

= E
[
E(D|X)

m0(X)
(E(Y1|X)− g0(1, X))

]

= E(Y1)− E(g0(1, X))

Similarly, we can prove that E
(

(1−D)(Y−g0(0,X))
1−m0(X)

)
= E(Y0)− E(g0(0, X)). So again θ0 = E(Y1)−

E(Y0).

The above proof also sheds light on how to compute the potential outcome. To preserve

the double robustness, we need to compute E(Y1) and E(Y0) by inverse probability adjustment.

Specifically,

E(Y1) = E(g0(1, X)) + E
(
D(Y − g0(1, X))

m0(X)

)

E(Y0) = E(g0(0, X)) + E
(
(1−D)(Y − g0(0, X))

1−m0(X)

)
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