异质性与内生性同行效应模型及Stata应用

王群勇(南开大学数量经济研究所 & 经济行为与政策模拟实验室)

2024年8月20号, 南开大学, 天津

计量经济学前沿方法暨第八届Stata中国用户大会

内容

同行效应

异质性同行效应: snreghnet

内生性同行效应: snregenet

同行效应

linear-in-means model:

$$y_i = lpha + \gamma x_i + \delta rac{1}{d_i} \sum_{j \in N_i} x_j + \lambda rac{1}{d_i} \sum_{j \in N_i} y_j + \epsilon_i \, .$$

其中, d_i 为i的邻居数量。

 γ : 个体效应 (individual effect)

 δ : 情景效应 (contexture effect)

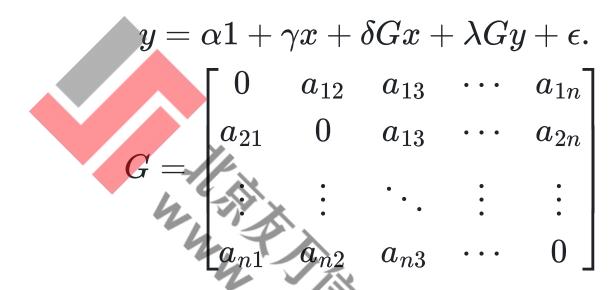
 λ : 内生同行效应 (endogenous peer effect

设 x_i 包含k个变量,模型共包含2k+2个参数。

严格外生: $E(\epsilon_i|x,G)=0$,模型中x与G是外生的。

内生: $E(\epsilon_i|x,G) \neq 0$?

关系矩阵



权重矩阵的元素为0或1,表示是否存在连接

如果权重矩阵做归一化(行和为1),即相当于同行的均值的影响(linear-in-means)。 权重矩阵本身相当于同行的加总的影响(称之为Linear-in-sums模型)。

权重矩阵的不同的规范化得到不同的结果,具有不同的含义。比如,吸烟行为的同行效应。个体*i*有一个朋友,每天吸10支烟。个体*j*有两个朋友、每个朋友每天吸10支烟。

其他统计量 (linear-in-*)

可以采用其他指标(中位数、标准差、最小值、最大值、分位数等):

$$y = \alpha 1 + \gamma x + \delta s(G, x) + \lambda s(G, y) + \epsilon.$$

其中, s(G,x), s(G,y)表示x和y的统计指标 (标准差、最大值、最小值、分位数等)。

同行效应

模型

$$y = \alpha 1 + \gamma x + \lambda G y + \epsilon,$$

$$y = (I - \lambda G)^{-1} (\alpha + \gamma x + \epsilon).$$

$$E(y|x) = \alpha (I - \lambda G)^{-1} 1 + \gamma (I - \lambda G)^{-1} x,$$
(1)

令 $C_k = \gamma_k (I - \lambda G)^{-1}$, C_{ij} 体现个体j的 x_k 对个体i的E(y|x)的边际效应;

第i行体现其他个体对个体i的边际影响,第j列体现个体j对其他个体的边际影响。i行的均值体现其他个体对个体i的平均边际效应,j列的均值体现个体j对其他个体的平均边际效应。

 C_k 的非对角线元素的均值即为 x_k 的平均间接效应。

当权重矩阵的行(列)和为1时, C_k 的各行(列)之和为常数。

同行效应的工具变量估计

由
$$(I - \lambda G)^{-1} = I + \lambda G + \lambda^2 G^2 + \cdots$$
,可得,
$$E(y|x) = \alpha (I - \lambda G)^{-1} 1 + \gamma (I - \lambda G)^{-1} x$$
$$= \tilde{\alpha} 1 + \tilde{\gamma}_0 x + \tilde{\gamma}_1 G x + \tilde{\gamma}_2 G^2 x + \tilde{\gamma}_3 G^3 x + \cdots$$

因此, (Gx,G^2x,G^3x,\cdots) 是Gy的合适的工具变量。 G^kx 表示k阶同行的x的均值。

类似地,对于模型

$$y = \alpha 1 + \gamma x + \delta G x + \lambda G y + \epsilon,$$

$$E(y|x) = \tilde{\alpha} 1 + \tilde{\gamma}_0 x + \tilde{\gamma}_1 G x + \tilde{\gamma}_2 G^2 x + \tilde{\gamma}_3 G^3 x + \cdots$$

$$(2)$$

因此, (G^2x,G^3x,\cdots) 是Gy的合适的工具变量。 G^kx 表示k阶同行的x的均值。

定理: 设网络G是连接的,且 $\delta+\gamma\lambda\neq0$,那么模型(1)是可识别的当且仅当 (I,G,G^2) 线性独立。模型(2)是可识别的当且仅当 (I,G,G^2,G^3) 线性独立。

极大似然估计

其它有效的工具变量: 二阶同行的 x 的和 (或方差等统计量)。

极大似然估计:

$$ln(L) = -rac{n}{2} \ln(2\pi) - rac{1}{2} \ln|\Omega| - rac{1}{2} \epsilon' \Omega^{-1} \epsilon.$$

其中,
$$\Omega = \sigma^2 (I - \lambda G)^{-1} (I - \lambda G')^{-1}$$
.

只有外生变量的加权均值的情况,可以直接用OLS估计:

$$y = \alpha 1 + \gamma x + \delta G x + \epsilon.$$

内容

同行效应

异质性同行效应: snreghnet

内生性同行效应: snregenet

Ch Ch

异质性同行效应

Beugnot et al. (2019), (Bramoullé 2013; Arduini et al. 2019a,b):

- 男性与女性对其他人的影响不同;
- 受到男同行的影响与女同行的影响不一样。

异质性同行效应 (BP模型)

设 $\Lambda = \operatorname{diag}(\lambda_0 + \lambda_1 z_i)$ 表示由向量构成的对角矩阵,第一种形式(列异质性)

$$oldsymbol{y} = lpha [I - \Lambda G]^{-1} 1 + \gamma x + \epsilon.$$

其中, ΛG 是将向量 $(\lambda_0 + \lambda_1 z_i)$ 分别与G的每一列进行元素相乘。 λ_1 衡量了个体对同行的外溢效应的大小。 λ_1 越大,表明个体对同行的影响越大(或者对同行越有用)。

第二种形式 (行异质性)

$$y = lpha [I - G\Lambda]^{-1} 1 + \gamma x + \epsilon.$$

其中, $G\Lambda$ 是将向量 $(\lambda_0 + \lambda_1 z_i)$ 分别与G的每一行进行元素相乘。 λ_1 衡量了个体受到同行的影响, λ_1 越高,表明个体越容易受到同行的影响(或者越能充分利用同行效应)。

如果 $\lambda = 0$,模型退化为同质模型。

异质性同行效应 (BLP模型)

列异质性:

$$y = (I - \Lambda G)^{-1}(\alpha + \gamma x + \epsilon).$$

行异质性:

$$y = (I - G\Lambda)^{-1}(\alpha + \gamma x + \epsilon)$$

附:集中对数似然函数

线性回归模型:

$$y=xeta+u, \epsilon\sim N(0,\sigma^2I_n).$$

 y_i 的似然函数(概<mark>率密度函数</mark>)为:

$$f(y_i|\beta,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - x_i\beta)'(y_i - x_i\beta)}{2\sigma^2}\right).$$

 (y_1,\cdots,y_n) 的对数似然函数为:

$$lnf(y|eta,\sigma^2) = -rac{n}{2} ext{ln}(2\pi\sigma^2) - rac{(y-xeta)'(y-xeta)}{2\sigma^2}.$$

将 $\sigma^2 = \epsilon' \epsilon/n$ 带入,可得:

$$lnf(y|eta) = -rac{n}{2} ln \left(2\pi rac{\epsilon' \epsilon}{n}
ight) - rac{\epsilon' \epsilon}{2\epsilon' \epsilon/n} = -rac{n}{2} ln (2\pi + 1) - rac{n}{2} ln (\sigma^2).$$

ML估计

一般的空间回归模型:

$$egin{aligned} y &= xeta + W_x x \gamma + \lambda W_y y + u = X_a \xi + \lambda W_y y + u \ u &=
ho W_u + \epsilon, \epsilon \sim N(0, \sigma^2 I_n). \end{aligned}$$

其中, $X_a=(x,W_xx)$, $\xi=(eta',\gamma')'$.

简化模型为:

$$y=(I_n-\lambda W_y)^{-1}X_a\xi+(I_n-\lambda W_y)^{-1}(I_n-\rho W_u)^{-1}\epsilon.$$
 $\epsilon=(I_n-\rho W_u)[(I_n-\lambda W_y)y-X_a\xi]$,似然函数为:

$$lnf(y|\xi,\lambda,
ho,\sigma^2) = -rac{n}{2} - rac{n}{2} \ln(\sigma^2) + \ln|I_n - \lambda W_y| + \ln|I_n -
ho W_u| - rac{1}{2\sigma^2}\epsilon'\epsilon$$

ML估计

如果已知 (λ, ρ) ,

$$(I_n - \rho W_u)(I_n - \lambda W_y)y = (I_n - \rho W_u)X_a\xi + \epsilon,$$

给定 (λ, ρ) , ξ 的ML估计量为

$$\hat{\xi} = [X_a'(I_n -
ho W_u)'(I_n -
ho W_u)X_a]^{-1}X_a'(I_n -
ho W_u)'(I_n -
ho W_u)y, \ \hat{\sigma}^2 = rac{\epsilon'\epsilon}{n},$$

将其带入似然函数,得到集中对数似然函数

$$lnf_c(y|\lambda,
ho) = -rac{n}{2}[\ln(2\pi)+1] - rac{n}{2}\ln(\sigma^2(\lambda,
ho)) + \ln|I_n-\lambda W_y| + \ln|I_n-
ho W_u|.$$

对 lnf_c 求极值,得到 $(\hat{\lambda},\hat{
ho})$,进而得到 $(\hat{\xi},\hat{
ho})$.

利用格点搜索法设置 (λ, ρ) 的初始值。

SAR的ML估计

对于SAR模型,给定 λ , ξ 的ML估计量为

$$\hat{\xi} = (X_a'X_a)^{-1}X_a'(I_n - \lambda W_y)y$$

$$\hat{\sigma}^2 = \frac{1}{n}[(I_n - \lambda W_y)y - X_a\hat{\xi}(\lambda, \rho)]'[(I_n - \lambda W_y)y - X_a\hat{\xi}(\lambda, \rho)]$$

将其带入似然函数,得到集中对数似然函数

$$lnf_c(y|\lambda,
ho) = -rac{n}{2}[\ln(2\pi)+1] - rac{n}{2}\ln(\sigma^2(\lambda)) + \ln|I_n-\lambda W_y|.$$

对 lnf_c 求极值,得到 $\hat{\lambda}$,进而得到 $\hat{\xi}$.

利用格点搜索法设置入的初始值。

存在孤点情况下的SAR估计

如果存在部分孤点,设SAR的 $W_y = G$,可以分解为

$$G = egin{pmatrix} G_1 & 0 \ 0 & 0 \end{pmatrix}, (I - \lambda G)^{-1} = egin{pmatrix} (I - \lambda G_1)^{-1} & 0 \ 0 & I \end{pmatrix}.$$

设对应的样本量分别为 (n_1, n_0) ,残差分别为 (ϵ_1, ϵ_0) ,似然函数为 (n_1, n_0) 两部分的似然函数之和,

$$egin{align} \ln(L) &= -rac{n_1}{2}[\ln(2\pi) + 1] - rac{n_1}{2}\ln(\sigma^2(\lambda)) + \ln|I_{n_1} - \lambda G_1| \ &- rac{n_0}{2}[\ln(2\pi) + 1] - rac{n_0}{2}\ln(\sigma^2). \end{align}$$

异质性同行效应模型: Stata

```
snreghnet varlist [if] [in], [ rowx (varname) colx (varname) wmata (matrix)
vce (string) bs (50) vbias (varname) nolog level (95) ]
```

. regeneth les gender nowhite seniority nchair, xin(gender nowhite) wmata(W) bs(0) nolog Regression with heterogenous social network: log-likelihood -609.5367 Number of obs 416 AIC 1233.0734 R-squared 0.2331 Adj R-squared BIC 1261.2882 0.2200 1244.2295 Root MSE HQIC 1.0575 Coefficient Std. err P> | z | les [95% conf. interval] .2022444 gender -.3001238 0.138 -.6965157 .096268 nowhite .2648866 0.326 -.7792938 -.2601256 .2590426 seniority .0121537 .0210623 0.083 -.0027586 .0448833 nchair 2.519157 .2527532 0.000 2.02377 3.014544 .877124 .101598 .6779955 1.076252 0.000 cons xin 0.58 0.561 .1987791 gender .083848 .1442002 .3664751 .4302499 nowhite .1728883 -0.53 .2474599 -.091395 .007637 .0597171 0.13 0.898 .1094064 .1246803 _cons

内容

同行效应

异质性同行效应: snreghnet

内生性同行效应: snregenet

具有内生社会网络的回归模型

模型(Battaglini, M., Sciabolazza, V.L. and Patacchini, E., 2020):

$$y = \alpha + \lambda G y + \gamma x + \epsilon, \epsilon_i = \sigma_\epsilon^2$$

其中, G是内生的。

内生网络的第一阶段估计

内生关系的简化模型(Fafchamps and Gubert, 2007)为

$$g_{ij} = \delta_0 + \delta_1 w_{ij} + \sum_k \delta_k |x_{k,i} - x_{k,j}| + \eta_{ij}, E(\eta_{ij}) = \sigma_\eta^2.$$

其中, $E(\epsilon_i\eta_{i,j})=\sigma_{\epsilon\eta},w_{ij}$ 表示外生网络(比如,同学关系)。

上述模型假定关系是独立的,忽略了网络结构特征。Fafchamps, Leij, and Goyal (2010)建议模型中加入(i,j)的最短距离,Graham (2015)建议加入(i,j)的共同邻居的数量:

$$g_{ij} = \delta_0 + \delta_1 w_{ij} + \sum_k \delta_k |x_{k,i} - x_{k,j}| + \delta_2 s_{ij} + \eta_{ij}$$

Graham(2016)提出另外一种改进,在模型中加入(i,j)的固定效应:

$$g_{ij} = \delta_0 + \delta_1 w_{ij} + \sum_k \delta_k |x_{k,i} - x_{k,j}| + \zeta_i + \zeta_j + \eta_{ij}$$

内生网络的第二阶段估计

$$y=(I-\lambda G)^{-1}(lpha+\gamma x+\psi \xi+\epsilon), \xi_i=\sum_{j
eq i}\eta_{ij}.$$

其中, $\psi\xi$ 为选择效应。

采用非线性最小二乘估计。但在两步估计中,第二步中的标准差是错误的,采用自举法得到第二步估计量的分布。

假定模型的结构误差 ϵ 是i.i.d., 但简化误差 $u=(I-\lambda G)^{-1}\epsilon$ 不是i.i.d., 因此不能直接对u做自举,而需要对 ϵ 做自举。

由 $u=\lambda Gu+\epsilon$, $\epsilon=(I-\lambda G)u$ 。设模型的拟合值为 \hat{y} ,残差为 \hat{u} ,那么 $\hat{\epsilon}=(I-\lambda G)\hat{u}$,

对 $\hat{\epsilon}$ 自举得到 ϵ^* , 进而得到 u^* 和自举的因变量 $y^* = \hat{y} + u^*$ 。

自举R次,即得到估计量的近似分布和标准差。

Stata: 内生网络的第一阶段估计

```
netregress mata-matrix, [gen (newvar) frame (string) framepbeta (strin) iters (50) equal (varlist) absdiff (varlist) diff (varlist) sum (varlist) product (varlist) ratio (varlist) logdiff (varlist) receiver (varlist) sender (varlist) partner dist ] 其中, mata-matrix为mata中的邻接矩阵(可以由 snimport 从Excel导入到mata).

gen 为生成残差矩阵的行和(即 snregenet 内生网络回归中的偏差修正项)
```

frame 指定数据框保存由网络和变量转换过来的所有向量, framepbeta 指定数据框保存随机置换估计系数, iters 为随机置换次数。

equal, absdiff 等设定变量转换的函数。在Fafchamps and Gubert(2007)全部采用absdiff 函数。用户也可以定义自己的函数。

partner , dist : 分别表示(i,j)共同邻居的数量(Graham, 2015),(i,j)的最短距离 (Fafchamps, Leij, and Goyal, 2010). 济学前沿方法暨第八届Stata中国用户大会

24

Stata: 内生网络的两阶段估计

snregenet varlist, weight (matrix-list) [vbias (varname) bs (50)]

其中, weight 为 spmatrix 定义的矩阵; vbias 为偏差修正项,由 netregress 生成的修正变量; wmata 为mata中与 weight 相同的权重矩阵,如果不设定,那么程序在mata复制 weight 矩阵。 bs 为自举次数。

如果没有设定 vbias , 或者 bs(0) , 那么 snregenet 执行空间自回归模型。

. netregress W alumni, equal(gender - min_leader) iters(0) gen(eta) partner dist
Net regression (Quadratic assignment procedure with permutation s.e. Iters = 0):

W	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
partner	0	(omitted)				
dist	0046254	.0000201	-229.60	0.000	0046648	0045859
alumni	.0030896	.000373	8.28	0.000	.0023584	.0038207
gender	.0000101	.0000221	0.46	0.646	0000331	.0000534
nowhite	0000817	,0000262	-3.11	0.002	0001332	0000303
party	0000102	.0000203	-0.50	0.615	0000499	.0000295
seniority	0000669	.0000322	-2.08	0.038	00013	-3.74e-06
margin	0000988	.0007631	-0.13	0.897	0015945	.0013969
dw	0000525	.0002536	-0.21	0.836	0005496	.0004446
<pre>deleg_size</pre>	000069	.0000391	-1.76	0.078	0001456	7.66e-06
nchair	0000636	.0000358	1.77	0.076	0001338	6.65e-06
maj_leader	1.44e-06	.0000529	0.03	0.978	0001023	.0001052
min_leader	00002	.0000424	-0.47	0.637	0001031	.0000631
_cons	.0094013	.0000838	112.16	0.000	.009237	.0095656

. regenet les gender - min_leader, weights(Wmat) nolog vbias(eta) bs(50)
Social (spatial) regression with endogenous weight matrix (bootstrap s.e. = 50)

les	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
ystar						
gender	.0392018	.1363194	0.29	0.774	2279792	.3063829
nowhite	.0262985	.1700493	0.15	0.877	306992	.359589
party	7929605	.1457345	-5.44	0.000	-1.078595	5073262
seniority	.0386345	.0114976	3.36	0.001	.0160997	.0611694
margin	3174639	.2437449	-1.30	0.193	7951952	.1602674
dw	174865	.2701505	-0.65	0.517	7043502	.3546202
deleg_size	0061762	.0034976	-1.77	0.077	0130315	.000679
nchair	2.159525	.2845548	7.59	0.000	1.601808	2.717242
maj_leader	.5116833	.3091746	1.65	0.098	0942877	1.117654
min_leader	081104	.3335814	-0.24	0.808	7349116	.5727036
eta	.0132462	.2254203	0.06	0.953	4285694	.4550618
_cons	1.403505	.2625516	5.35	0.000	.8889133	1.918096
Wmat				(0)	15/5	
ystar	0107856	.1740404	-0.06	0.951	3518986	.3303273
	•				7 7 1	

异质性: 权重网络分解

设个体分为两组(比如,两个党派、弱连接与强连接等),相应地G分为

$$G = egin{bmatrix} G_{11} & G_{12} \ G_{21} & G_{22} \end{bmatrix} = egin{bmatrix} G_{11} & 0 \ 0 & G_{22} \end{bmatrix} + egin{bmatrix} 0 & G_{12} \ G_{21} & 0 \end{bmatrix} = G_1 + G_2.$$

模型为

$$y = \left(I - (\lambda_1 G_1 + \lambda_2 G_2)\right)^{-1} (\lambda x + \epsilon)$$

其中, λ_1 提现了组内的同行效应, λ_2 提现了组间的同行效应。

