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Introduction

We derive the identification and estimation of a semiparametric
ACRF with sample selection in a high-dimensional covariate
environment.

» An average caus (ACR) is usually defined as the
expected differen n the outcomes of the treated, and
what these outcomes ¥ ave been in the absence of
treatment, especially for mﬂé}\galued treatment (Angrist and
Imbens, 1995) "’of)«&

» ACR has been widely applied ir?spr{é? ent effect literature
. . . . te
with many interesting apphcatlons@y 4§ drug dosage, hours
. . PR .
of exam preparation, cigarette smokiiy, &nd years of schooling
in the treatment effect literature (Abadie, 2003)

» high-dimensional covariates => model the endogenous
treatment in a more flexible way and justify the validity of IV



What we do?

We considers identification and estimation of a semiparametric
ACRF in a high-dimension framework with an application to US
Job Corps data:

» Propose the iden ) moment for ACRF with endogenous

treatment and deriv N,g:{ﬁ n orthogonal moments to
ié@;
W

estimate two semi-paranigg imators based on it: HDSS

and HDSS-series; 'Qo::&',
» Derived asymptotics for the pr&gp{@\estimators and both of
them are proved to be consistent S mptotically normal,

and Monte Carlo simulations demonsnfg?gthat ACRF
performs better than the existing IV estimators in many
empirically relevant scenarios;



What we do?

We considers identification and estimation of a semiparametric

ACRF in a high—dimen%‘ramework with an application to US

Job Corps data:
» Derive bounds on t(&?g@sed ACRF with one single IV with

more complex selection ism (i.e., the treatment status
. S
affects the selection proceSei:)oQ(g}a
» Apply the proposed methods ?@‘ data to evaluate the

. . 'Y .
causal response of residential con&or&-} and yields new
insights with consideration of heterog@n@us causal effects
with high-dimensional covariates.



Possible contributions

Our model owns four distinct features: high-dimensional setup,
nonparametric response fanction, sample selection, and nontrival

empirical findings. O ay
» contribute to the hi ional treatment effect literature
(Chernozhukov et al.,20¥8;F 3t al.,2022) by deriving a set of
Neyman orthogonal momenés three nuisance parameters and

utilizing the double machine I%mﬁ)}e}echmques to estimate the
proposed functional estimators;

» extend ACR to be ACRF which can B’e % on covariates and
estimate both of them in a unified frameg@o (Angrist and

Imbens,1995;Abadie,2003; Callaway et al., 2024);



Possible contributions

Our model owns four distinct features: high-dimensional setup,
nonparametric response function, sample selection, and nontrivial
empirical findings. Our may

» consider the identi d estimation of heterogeneous average
causal effect function i?}l le selection and derive bounds on
the ACRF with one single ich extends the treatment effect
bounds in Lee (2009), Chen agd‘ﬁgres (2015) and more recently
Bartalotti et al(2023); % ’)’Z&

» contribute to the broad literature or( ion of the effectiveness
of US Job Corps program (JC) and recéhttgpate on its reform
(Chen et al, 2018; Huber et al, 2020; Strlc*;?matter 2019;
Thrush,2018).
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Model Setting

Consider a sample selection model with heterogeneous treatment
function m(X1, D) and high-dimensional covariates X3

Y—s.y* (1)
Y* X1, D) + g(Xo) + U (2)
@é‘xz,x& V) 3)

S =S, €) (4)

() 8
> X; € R%: low dimensional cova%e% € RP: high-dimensional
covariates

/

» The m(Xy, D) and g(X3) are unknown?udqcﬁzns and separate
additive

» D(Xi, Xz, X3, V): the treatment equation and S(X1, Xz,¢): the
selection equation

» (U, V,¢) is joint errors which may be correlated with each others,
and X3 is an instrument variable for binary treatment D



Parameter of Interest

The parameter of interest is

G(Xl) = m(Xl, 1) —

which may vary by X%

ACR = E[0(X41)|S ;;/ Xl,
/§<
’(.,

» Parameter in Eq.(5) is an averag@&a
and Parameter in Eq.(6) is the aver

m(X17 0)7 (5)

m(X1,0)[S=1].  (6)

response function (ACRF)
eﬁsal response (ACR) for

blnary treatment (Angrist and Imbens, f@gﬁ&adle 2003;Callaway et

., 2024)

» ACRF could be regarded as a conditional average treatment effect
(CATE) under strong assumps (Y (1) — Y(0) is identical for all

individuals)



Identification of Parameter of Interest

Assumption 1

Given X1 and X, X3 is i? ndent of (U, V,¢).

Since S = 5(X1,X2,5),% ption implies that X3 is independent of
selection S and unobserve 5 neity U (i.e. the source of
endogeneity) for given values o Xo. This is an analog of exclusive
restriction.

A

Assumption 2

P(S = 1X1) > 0 with probability one. %z

(o)
For almost all possible values of X;, outcome Y?is observed (S = 1) with
positive probability. This allows us to identify the casual effect 6(x;) for
any given value of xj.



Assumption 3

Let (X1, X2, X3) = E[D|X1, X2, X3,S = 1]. The propensity score
function p( -) satisfies t

P(,U/(X]_,XQ,X3) 75 E &Xg:, |X1,X2, = ].]|X1 = X1,5 = 1) > 0.

@,:?3\
S

This assumption implies that X;&'J)}%ffects D. This is an analog
of relevant condition. ‘,

Summary of Assumptions 1 to 3: X3 c%;’%nously affect
treatment assignment D without altering"dj;‘) ample selection
mechanism S, this tells us that X3 is a valid instruments in our

context.



Identification of Parameter of Interest

E[Y|X1, X2, X3, S = 1]
=E[m(X1,0) + (m(Xq, m(X1,0))D + g(X2) + U| X1, X2, X3, S = 1]
=m(X,0) + (m(Xq, Xl, 0)) E[D|X1, X2, X3, S = 1] + g(X2)
+ E[U|X1, X, X3, S O, %y
=m(X1,0) + g(X2) + E[U\)@fg&}(@ S=1]
+ (m(X1,1) — m(X1,0))E[D% s&y@, =1]
=m(X1,0) + g(X2) + f(X1, X2) / *§‘
+ (m(X0,1) = m(X3,0)) EDIXq, Xo, 6. s@ 1]
=m(X1, Xo) + 0(X0) (X1, Xa, Xa)

The slope coefficient §(X1) is identified by exploring the ratio of
the variation in E[Y|X1, X2, X3, S = 1] to the variation in
(X1, X2, X3) caused exogenously by the change of X3.
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Neyman Orthogonal Moments

Recall:
E[Y|X1,X2,X3,5 = 1] = m(Xq, X2) + 0(X1) (X1, Xo, X3)

Conditioning on (X1, X2,8 = 1), by LIE:

E[Y[X1,X2,S=1] = )+ O(X1) (X1, X2),

where [i(X1, Xo) = E = 1]. Therefore,
s

(X1, X2) _h%@ 0(X0)7i(X1, X2),

where h(X1, Xo) = E[Y\Xl,xg,?o,—;%,
Also, Eq.(7) can be written as a mdtgé ndition

o H
E[Y — (X1, Xo) — DG(Xl)\Xl,?z,Z)e\ks —1]=o0.

Plug (8) into (9),

(7)

(9)

E[Y = h(X1, %) — 0(%) (D — i(X1, X)) [ X2, %o, X3, § = 1] = 0.

(10)



Neyman Orthogonal Moments

Since X3 is of high dimension, Neyman orthogonal moments can
be derived based on the identification strategy as follows

E[(mxl,xz,xa) - W))-

,é'z
23
[Y — h(X1,X2) — H(Xl)@*'ég(xl,xﬁ)} X1 =x1,S=1| =0
EHZ N
o,);‘:% (11)
%,
> It follows a similar idea as Examplgﬁtﬁ@(ﬁhernozhukov et al.
(2018) i

» There are three nuisance parameters g = (u(-), h(-),a(-)).

» We can verify the Neyman orthogonality condition holds with
respect to the nuisance parameters.



Estimation

Based on the Neyman orthogonal moment in Eq.(11), we can solve

E[(u(xl,x2, 7i(X1, X)) (Y = h(xl,xz))‘x1 —x,S = 1]

E[(M(le Xa, ‘x«%é;l\ X2)) (D — fi( X1, X2)) ‘Xl = Xz’lf): 1}
%o

» Note that the denominator is?n?r{%@ by Assumption 3.
» 0O(x1) is a ratio of two conditiona|°e39%§tion and a multiple
step procedure is proposed. 'o,)‘)

» Depends on different techniques used in the last step, we
proposed two estimators: HDSS and HDSS-series.



Estimation Procedure: HDSS
Step 1 For each k =1,2,..., K, we estimates within sample /¢

(i)

Let )~(3 be (X1, X2, X3) or a series of functions of (X1, Xz, X3).
Consider

P(D = 1|X1, X2, X3,S = 1) = A(X}0).

a can be estw the subsample /¢ by logistic regression

with ¢; pena ted by a_.
/
A X, X1 1) ‘,%?@xl,xz,xm =1l =A@ 0);

Let X2 be (X1, X3) or a* @ré@f functions of (X1, X2). Regress
Y on X, with £, penalty P@ %SO) and obtain

B(Xt, Xo: I5) = E[Y|/0 3%‘? e = X574
Similar to Step 1(i), we estimate O,)
P(D =1|X1, X2, S = 1) =~ N(X3v)

on the subsample /{ by logistic regression with ¢; penalty,
denoted by U_y. It yields

(X1, Xai §) = E[D|X1, X2, S = 1|1 = A(X3D_).



Estimation Procedure: HDSS

Step 2 Denote Kj(x1; X1i) = ﬁK(%)

S, SO - A Ki1X0)

0 () = 13
Ker(x1) i1, SiAfli - AD; - Kp(x1; X17) (43)
zs
where ‘P‘I»@éé}:«

A/J’I = H X1/7X21% @ X1/7X2Iv Ik)
A\/, — Y - h(X117X2 dé /
AD; : = Dy — f(Xaj, Xoi; I <, ?>

Which is denoted as High-dimensional sample selection
estimator, i.e., HDSS estimator.



Estimation Procedure: HDSS-series

To avoid the boundary bias introduced by nonparametric kernel
estimation, we also propose a series estimation procedure which is

more precise and robust to boundary points within the range of Xi.

E

pe(X) (1 xl,xzxza — h(X1, Xo)—
y

Zs.

0(%1) )

4

)

. S
%:;Hé

&

\ O

¢
Thus by series approximation 6(X;)

<

),

O

Ko

(x1),
A gkpk

(o)

=1
E | pie(X0) (1( X1, Xo, X3) — (X1, X2)) [Y - ?(839}2)—

Kn

> Bepilxa) (D = (X, %)) |

k=1

(14)

, X)) ’5:1] =0, k=1,2,...

5:1] ~0, k=12,...



Estimation Procedure: HDSS-series

Step 1 The same as HDSS estimator;

Step 2 Denote z,w;, g; and their estimates Z;, w;, g; as

p1(Xui) gu ~ ; (%) (1 — E(Xm Xai))
I e (Xu) (1 = ’?) pa (X)) (1 — fu(Xai, Xar))
PK, (Xll /1/ ,U/ le?@f é§'§ pK,,(Xli) (/_/Z — ﬁ()(l,'7 XQ,‘))

0 R
p1(X1,') ED, — ﬁ(Xli, X2i); oe‘% pl(Xli)(Dl' - E(th X2i))
p2(X1i) (Di — p(Xai, Xai) S y pz(Xu)(Di — p(Xai, X2i))
. W= .
C :
Pk, (X1i) (Di - ﬁ(Xli, XZi))
G = Y — h(Xu, Xar)-

w; =

PKH(Xli)(Di - (X, X2i))

qi = Yi — h(Xui, Xai);



Estimation Procedure: HDSS-series

Step 2 Continued
Then Eq.(14) is eqv t to E[zi(q; — w!/BK")] = 0. A series
estimator is ¢
e
Bk = ( g; W) (Zsi/z\iai) (15)

1
~ = OOQ/OE:‘:@ i=1
05eries(X1) =P W (16)

AL
In practise, the polynomial order K, i Dy leave-one-out
Cross-Validation. We denote this estima‘lﬂ& HDSS-series
estimator.
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Asymptotics for HDSS Estimator (1)
Under assumptions 1-3, sample splitting, kernel estimation and first stage
converge rate assumptions, we obtain following asymptotic linear
representation for ACRF based on kernel estimation:

If Assumptions 1 to 6 hold € T is an interior point, then

sup ‘é\Ker(Xl —0(x1) ’ */%‘d: (Iog /(nhdl))1/2>7
x€T 4\

@\Ke,(xl) —0(x1) — h°B(x1) = xl)‘ﬂ’% PS(;g,-:l/,-l) K(Xli h_ Xl) + Ro(x1)
’f’

where nP = p(Xui, Xai, Xai) — M(X111X2I) ‘/
v =Y — h(Xai, Xai) — 6(Xu:) (D — i(Xus, zo),

0
sup | Ro(o)| = o, (° -+ (log(n)/ (?h‘“))l/2>'

xeT

B(x1) and V(x1) are defined in our paper.

Note that E[nPvY| X1, Si = 1] = 0 by the Neyman orthogonal moment.
The asymptotic linear representation above implies an asymptotic normal
distribution.



Asymptotics for HDSS Estimator (II)

To reduce boundary bias, we assume a subset T of supp(Xi) that
excludes the boundary area and propose a trimmed average casual
response estimator as follows

@T,Ker = % Z 5,‘1(X1,' S T) é\Ker(Xli)y

where nrs =37 Si1(

If Assumptions 1 to 7 hold and nh ‘z«z then
&,

Vn(ACRT ker — ACH@@%(O o2),
where 06 .ql
2 D y 2 l(X].l ET)%;QS 1(X1,)
Taer = P(S =1) E{n7"} P(X1 € T|S = 1)2V(X1;)2
Var( Xli |X1,' eT,S = 1)
P(X1€T,5=1)

s,:l]

The variance consists of : (i) estimation of 6(Xy;); (ii) taking-average of-0( Xi:).



Asymptotics for HDSS-series Estimator (I)
Theorem 3

If Assumptions 1 to 4, Assumptions 8 to 9 hold, then

(1) SUP5, e 2 [O5eries () — 0(x1)| = Op (K *Co(Kn)? + Go(Kn)/+/7) = 05 (1).

(ii) Denote iG,K,,(Xl) as,
To.k,(1) =p"" ()’ ,Z Zw) ‘12522’{q,—w6“"}2)

(w;s,w,z’) %é%

Q
If x1 satisfies that liminf,_ o HPCo K)Zl)H %% 0, then

V.6, (x1) ™ (Bseries(x1) — 0(x1) — §n(xl)) 45 #(0,1),

where B,(x1) = O(K, *Co(Ka)?) is a bias term defined in our paper.

This thm presents both consistency and asymptotic normality of
HDSS-series est. A standard t-test is applicable for.inference.here.



Asymptotics for HDSS-series Estimator (II)

Our suggested series estimator of average causal response is

e Z,]:]_ Sié\Series(Xli)
ACRgepies = = = ,
I T
VN

Var X1, )|Si= 1

/»‘ P(S;=1)
. 1 k  Kagy \/ ? e Kn2
=\ ns Z 5,p (Xll) n- Z QM/ lel {ql - WI /8 } :
i=1
(I‘I_1 Z S,W,/z\,/) B (nS Z S PKn fﬂ?—‘r — Z S {GSenes Xl/) B 95}
i=1
where ns = 7 S, S=n"'Y" S, andfs=ng"> " SiO5eries(X11). I

Assumption 1 to Assumption 4, Assumption 8 to Assumption 10 hold, then
ﬁ(A(C]RSe,,-es - A(CR) N A(0,Xacr) and Soer 25 Yoo a5 1 — 00.

Theorem 4

ras
Denote ¥ ., = E [Si{nPViY}zq(Xlgg



Comments: HDSS v.s. HDSS-series

» As for the estimation of ACRF 6(x1), both estimators are
asymptotic norma tributed. However, kernel-based HDSS
estimator has to%the boundary area of supp(X1) while
HDSS-series estima®®r ¥asents more robustness near the

@&\
o\\

0. 9%,

» The asymptotic variance of b(ﬁh‘%ators for ACR have two
components: (i) The first part is’@g of the estimation of

0(-); (ii) The second part is the va a@ﬁ:@from averaging

6(X1i). Moreover, both estimators havé \/n—convergent rates.



A Short Note for Efficiency

» According to Theore
trimming and ass
estimators for A
Y oer = 02.,. This ¢

2 and Theorem 4, if we ignore
| regular assumptions hold, both
e the same asymptotic variance, i.e.

Qé%ﬂfled algebraically.

» If we further assume that tﬁgg‘g},no sample selection, this
asymptotic variance is also th a S semiparametric
efficient variance for average Imea? &elssmn function, see
Graham and de Xavier Pinto(2022) 6%u®ur approach attains
this efficiency in a high-dimensional seﬁmg
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Monte Carlo Settings

We consider the following DGP with a benchmark case
Y=S5xY"

TD+3X1 +4X3 + U (DGP1)
1D+ X{D, g(X2) =3Xo1 + 4X3
{){%3«1 +2X» + 3X3}
S= 1{% ‘X1 + X2}
W
where  Xi; = (0.5X21 + W)/V 1.25%%\{@%1) and is correlated with X1;
with  Xo ~ N(0,%,), (i,/)-th elemegﬁ‘ «,P&\p“*jl (Default: p = 0.6)
and W ~ N(0,1), ?%@\1)

U 0 o2 0.50,70’2
€ 0 05 0 o2

With 62 = 02 = 62 = 1.




Monte Carlo Settings

The true function of 6 @lhe average causal response estimator
(ACR) is / P
g

E[0(X)|S = 1] = 2&[0 S 1]+ E[X2|S = 1].
’(sl ),
Note that Corr(Xy, Xo1) # 0, thus wgq(g ¥pare results of the proposed

method with nonpara 2SLS estimators. ‘/Q %
[T
%< >



Monte Carlo Settings

We also investigate several scenarios with exponential decaying
coefficients on high-dimensional X3, binary X3, and discrete Xi:
> DGP2: Y* = X; +2X1D + X12D + Zf:1(0.8)j_1X2j + U with
m(X1, D) = Xq 4 XZD, g(X2) = P_1(0.8Y 71 Xy;
» DGP3: Binary IV, ,ﬁ(gomla/ (0.5)
» DGP4: Discrete X; wi é‘ prob of 1/3
PF(X1:0) Pr(X1—1 % &(1—2)~1/3

% f'
0, 05Xo1+W < — \/g‘/g&ﬁ
X1=41, f <05X + W< ﬂ@ld is correlated with X»1.
2, 0.5X21 + W > %. ’)

Simulation tables: The first row of each panel reports the Bias and
the second row reports the RMSE. Replicate 100 times.



Simulation Results for DGP 1

Table: ACRF with High Dimension Sample Selection Model by DGP 1

D) NPIV-oracle NPIV-lasso __HDSS-nonorth __HDSS___HDSS-series
ACR 0028 0.216 0310 ~0.056 0,015
0226 0313 0542 0351 0.243
Xp =1 -0.079 -0.552 -1.083 0.195 0.201
0353 0.732 2,635 0.470 0.486
0.063 0.110 -0.118 0.035 0.006
N =500, p = 100 0.190 0.474 0216 0.234
0.071 -0.318 -0.038 -0.032
0215 0526 0235 0211
-0.200 -0.622 -0.172 -0.065
0.302 0.826 0368 0.278
N 0172 0574 0.068 0.072
f’? o 0264 7.626 0.489 0.230
X1 % 9,665 -1.459 0.231 0.280
3 &va 2319 0513 0.554
X1 =0 0.071 Q, f 0.007 0.087 0.044
N = 500, p = 200 0181 o 0.391 0.212 0.199
X, =05 0073 Qd ‘,@ -0.260 -0.005 0.008
0.191 % l,fb 0.496 0.215 0.169
X1 =1 0.030 - )? 0.701 -0.136 -0.029
0222 0 } 90 0335 0273
ACR ~0.019 0.214 */ g 0.022 ~0.001
0.109 0241 g " 0.356 0.105
X = —1 -0.062 -0.220 04 3 ql 0.038 0.077
0.187 0.336 475 o}o.zzv 0.206
X1 =0 0.042 0.111 14 0.021 -0.016
N = 2000, p = 100 0.093 0.151 [ ;Qo 0.107 0.084
X; =05 0.023 -0.025 0.273 -0.038 -0.022
0.101 0.126 0.353 0.135 0.102
X =1 -0.042 -0.358 0.735 0.132 -0.043
0.129 0.395 0.794 0.220 0.140
ACR ~0.010 0.229 0.056 0178 0.008
0.105 0.251 1.253 2364 0.095
Xp =1 -0.068 -0.311 -0.450 0.027 0.080
0.180 0.376 0.592 0.221 0.216
X =0 0.048 0.115 0.115 0.026 -0.001
N = 2000, p = 200 0.094 0.160 0.242 0.105 0.088
X; =05 0.037 -0.002 -0.244 -0.033 -0.015
0.107 0.115 0329 0.129 0.112
X1 =1 -0.019 -0.337 -0.687 -0.118 -0.042
0.124 0.368 0.751 0.203 0.137




Simulation Results for DGP 2

Table: ACRF with High Dimension Sample Selection Model by DGP 2

NPIVooracle __NPIV-lasso___HDSS-nonorth __HDSS ___HDSS-series
ACR 0.039 0.218 ~0.366 ~0.074 0.034
0.474 0321 0597 0349 0.250
X = —1 -0.008 -0.552 -1.014 0.166 0.152
0776 0729 2.488 0.455 0.482
X, =0 0.038 0133 -0.101 0.028 0.018
N =500, p = 100 0.223 0.485 0.241 0.227
0.090 -0.327 -0.042 -0.034
0234 0529 0239 0233
-0.193 -0.681 0.176 -0.083
0394 0.871 0.386 0316
0.175 0349 0.046 0.066
0270 5.903 0.409 0.251
/) A Y
?\ 674 1532 0178 0216
&2 2596 0512 0529
X =0 0.038 0.094 0.055
N = 500, p = 200 0.378 0.218 0.211
X; =05 d ‘,@ -0.245 0.010 0.016
0 l,;} 0.510 0.223 0.181
X =1 P ,8 0.741 -0.134 -0.035
0.5 } 25 0352 0.295
ACR 0220 S T ~0.044 ~0.020
0247 € 030 0.108
0219 04 2 <l 0.037 0075
0335 4539 @Np0.227 0205
X1 =0 . 0.137 [14 0.017 -0.019
N = 2000, p = 100 0202 0.174 0.2@0 0.106 0.085
X, =05 -0.018 -0.004 -0.273 -0.037 -0.026
0.244 0.129 0354 0134 0.104
X =1 0.017 -0.354 -0.795 -0.138 -0.046
0312 0392 0.852 0225 0.152
ACR 0.017 ~0.208 0.033 0200 0.011
0.207 0233 1.389 2.490 0.096
X = —1 -0.130 -0.311 -0.408 0.021 0.072
0473 0377 0.567 0226 0218
X1 =0 -0.047 0.145 0.137 0.027 -0.000
N = 2000, p = 100 0.196 0.186 0.255 0.113 0.092
X = 0.5 0.009 0.025 -0.248 -0.034 -0.015
0229 0125 0333 0132 0113
X1 =1 0.075 -0.325 -0.731 -0.117 -0.040
0307 0360 0.790 0.205 0.149




Simulation Results for DGP 3

Table: ACRF with High Dimension Sample Selection Model by DGP 3

0(X1) NPIV-oracle NPIV-lasso HDSS-nonorth HDSS HDSS-series
ACR -0.035 -0.378 -1.827 0.174 -0.019
0.292 0.456 11.126 4911 0.457
X; = -1 -0.023 -0.365 -5.223 0.200 0.010

0.361 0.565 21.627 0.676 0.534
0.050 0.036 -0.881 0.008 0.111

N = 500, p = 100

0.091 1.457 0.278 0.332
-0.129 -0.988 -0.113 0.028
0.253 1.304 0.459 0.446
-0.533 -0.666 -0.060 -0.126
0.695 1718 0.978 0.852
ACR 0. 0321 0.140 9,360 0.036
26 f’e\_ 0.406 4558 102.737 0.458
X1 3’0@ 'f‘- 530 -42.147 0.203 0.059
0.4 &v 361.237 0.611 0.638
X1 =0 0.075 @ 4 -0.086 0.074 0.177
N = 500, p = 200 0235 o . 17.385 0.316 0.376
X1 =05 0.065 -0.057
0.287
X1 =1 0.021
0385
ACR ~0.044
0.169
X = —1 0.042
0.191
X1 =0 0.034
N = 2000, p = 100 0126
X; =05 -0.021
0.169
X =1 -0.110
0.251
ACR 0.006
0.151
X; =1 0.019
0.173
X1 =0 0.058
N = 2000, p = 200 0.127
X1 =05 0.024
0.154
X1 =1 -0.045




Simulation: HDSS(Trimmed) v.s. HDSS(Not trimmed)

Table: Estimation ACR based on HDSS with Trimming

Design Sample Size im (p) HDSS HDSS-trimmed
Bias RMSE Bias RMSE

500 -0.049 0.350 -0.078 0.226

DGP1 500 0 0.078 0.491 0.001 0.232
2000 -0.052 0.359 -0.062 0.132

2000 w QA 0.192 2.365 -0.020 0.100

500 lq, ‘( 0.074 0.349 -0.104 0.244

DGP2 500 200: ﬂ)46 0.409 -0.017 0.237
2000 100 ’o 0.349 -0.051 0.128

2000 200 & 2.490 -0.028 0.105

500 100 4.911 -0.209 0.493

DGP3 500 200 Jﬁ 2. 737 -0.136 0.447
2000 100 »0 3 -0.138 0.302

2000 200 -1.003 OA ‘ﬁp -0.073  0.265

Notes: The construction of trimmed ew or is as follow:
if the Non-trimmed HDSS estimator = niean (A;/B;), then
the trimming level is defined as mean(B;) * h* x n~/2, and we
dropped the observations with |B;| < trimming level. Replicate
100 times.



Simulation Results for DGP 4

Table: ACRF with High Dimension Sample Selection Model by DGP 4

6(X1) NPIV-oracle  NPIV-lasso___HDSS-nonorth __ HDSS __ HDSG-series
ACR -0.027 0.119 -0.979 -0.011 -0.011
0.214 0.319 1.006 0.232 0.232
0.059 -4.907 0.158 0.158
0.146 5.093 0.315 0.315
N =500, p = 100 0.348 0.951 -0.027 -0.027
0.443 1.006 0.194 0.194
-0.065 -1.061 -0.086 -0.086
0.560 1.197 0.361 0.361

0.223 -0.992 0.015 0.015
0.352 1.018 0.212 0.212

-5.983 0.181 0.181
6.288 0.317 0.317
N = 500, p = 200 1152 -0.023 -0.023
1227 0.246 0.246
-1.002 -0.160 -0.160

1.162 0.397 0.397
0.012 0.012
0.106 0.106
-
{ 0.082 0.082
o} 0.137 0137
N = 2000, p = 100 0.008 0.008
3? 0.095 0.095
503 -0.024 -0.024
0.139 0.139
0.013 0.013
0.109 0.109
X, =0 0.015 0.068 -2.155 0.082 0.082
0.116 0.121 2.178 0.132 0.132
N =2000,p =200  x; =1 -0.018 0.234 0.448 -0.003 -0.003
0.108 0.264 0.469 0.093 0.093
X, =2 -0.019 -0.045 -0.508 -0.033 -0.033

0.139 0.224 0.579 0.164 0.164
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Application: Residential Component in Job Corps Program

> We apply the proposed methods to explore the average causal
effect of residential component and its heterogeneity within
the Job Corps progragm (JC) in US using the National Job
Corps Study (NJ a.

> After enrolling in .%ézl), participants are provided a
residential choice base@ g gheir preferences. Enrollees can
choose to reside in the trﬁ:né\center or to live at home and
commute to the training ce%@sf‘%ry day (i.e., D=0or 1).

» We use the prediction of resideﬁvgé%se as |V for the
self-selected residential componentSgng/gclude
high-dimensional controls following S&pthet and Burghardt
(2007).

» About 13 percent of participants chose to be nonresidential
and resided at home (Schochet et al., 2008).



Application: Heterogeneous Effects by Age
We investigate the ACRF with continuous covariate Xi, i.e., age,
of earning at 16th quarter and cigarette occurrence at 48th month
after randomization.

Figure: ACRPﬁnings at 16th Quarter by Age
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Application: Heterogeneous Effects by Age

Figure: ACRF of Cigarette Occurrence at 48th Month by Age

Effects on cigarette at 48th month




Application: Heterogeneous Effects by Gender
We investigate the ACRF with binary covariate X3, i.e., gender, of
earning at 16th quarter and cigarette occurrence at 48th month
after randomization.

Table; F Estimates by Gender
Gender a 6 Cigarm48
2

Female 1"6145%:\ 0.080**
[-51.6,1%%] 'éﬁgp.oozo.m]
Male -18.4 %"?'059*
[-61.6,24.7] ‘@, .@510.154]

% <?>

ACR  -18.7 (145) 0.066%(0.032)

Notes: The point-wise 95% confidence in-
tervals are in brackets and standard errors
in parentheses for ACR. x x x = p < 0.01;
xk = p < 0.05; * = p < 0.10.



Application: Heterogeneous Effects by Ethnicity
We also investigate the ACRF with discrete covariate Xi, i.e.,
ethnicity, of earning at 16th quarter and cigarette occurrence at
48th month after randomization.

Table: Estimates by Ethnicity

Ethnicit Egnal6 Cigarm48
Z%

White fé&‘ 0.041
[21.9; @&;}40 156,-0.074]

Black —23. O 070**

[2.6, 496] -~ 0%0106]
Hispanic -15.3
[29.5,-60.1] [o 2@.1 003

Notes: The point-wise 95% confidence in-
tervals are reported in the brackets. Stan-
dard errors are reported in parentheses for
ACR. xxx = p < 0.01; xx = p < 0.05;
* = p < 0.10.



Application: Residential Component in Job Corps Program

» The residential component has a negative but insignificant

effects on the earng however, a positive (detrimental) and
significant effect rlsky behavior outcome.

» The significant detr §ffect on the the cigarette
occurrence varies by agé”g r and ethnicity. Younger
female group and Black youﬁtg%%,more vulnerable to this
detrimental effect. @,}‘

» Overall, the ACR of residential c t is negligible on

earnings but significant and detriments % risky behavior
outcomes such as cigarette occurrence.
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Extension



Partial identification when D affects sample selection

D is also allowed to enter S, which yields a partial identi result:

S = S(Xl,XQ, D,E) = Se(Xl,X27X3, V,z’f).

If the selection equation in Eq.(4) is rep y %@\(Xl, Xs, ?XE)XAsiz(u;rpt:o'g(é an(fltholi yxf) s;p;é(Y )0
and p(Xy, X2, X3) = = 1|X1, X2, X3 e >

bounded with ymin = miny,cy y and ymax = y?g

with probability one, then 6(x1) is partially ide

er region
[015(1), 605 ()] = [6m(x1) — v(x1), O n)«‘fqmg‘

[(H(Xl Xa, X3) — p(X4, &%

E [(M(Xh Xo, X3) — (X1, Xz)) Ef&

X1, X2)|X1:x1 5:1]

2)) ’X1 =x1,5 = 1]

2@&_“,5_1

E[ (10 %, X5) = X1, X)) (D — Z(xl,X’{S) | =5 =1]

Om(x1) =

E[[10x. 30, 36) — 0 )| - B0,

v(xy) =

)

1 — p(X1, Xo)p(X1, X2, X3)

BD(X1, X2, X3) = min {1, } * (Ymax — Ymin),

p(X1, X2)p(X1, X2, X3)

where p(X1, Xp) = P(S = 1| Xy, X3).



Conclusion

» This paper identifies and estimates a semiparametric ACR,
first proposed by Angrist and Imbens (1995) and
Abadie(2003), with sample selection in a high-dimensional
covariate environm

» The proposed A own to be consistent and
asymptotically norfig. Mapte Carlo simulations demonstrate
that ACRF performs b@@é‘ an the existing IV estimators

_ 4 I
(such as NPIV-lasso). "¢ /.9:@

» The empirical study evaluate2u terogeneous effect of the
residential component in US Jo  program with

proposed ACRF and ACR, and ylelgé n@{»maghts with a large
set of controls.

> We also relax the selection-on-observables assump on
selection process, and derive bounds on the proposed ACRF
with one single IV with selection-on-unobservables (i.e., D
affects the selection process).



Thank You!

yahong.zhGu@mail.shufe.edu.cn
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