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Overview

Main goal: learn about treatment effect of policy or intervention.

o If treatment randomization available, easy to estimate treatment effects.

o If treatment randomization not available, turn to observational studies.

> Instrumental variables.

> Selection on observables.

o Regression discontinuity (RD) designs.

> Simple and objective. Requires little information, if design available.
> Might be viewed as a “local” randomized trial.
> Easy to falsify, easy to interpret.

> Careful: very locall



Overview of RD packages

https://sites.google.com/site/rdpackages

o rdrobust package: estimation, inference and graphical presentation using local
polynomials, partitioning, and spacings estimators.
> rdrobust: RD inference (point estimation and CI; classic, bias-corrected, robust).
> rdbwselect: bandwidth or window selection (IK, CV, CCT).

» rdplot: plots data (with “optimal” block length).

o rddensity package: discontinuity in density test at cutoff (a.k.a. manipulation testing)
using novel local polynomial density estimator.
> rddensity: manipulation testing using local polynomial density estimation.

> rdbwdensity: bandwidth or window selection.

e rdlocrand package: covariate balance, binomial tests, randomization inference
methods (window selection & inference).
» rdrandinf: inference using randomization inference methods.
> rdwinselect: falsification testing and window selection.
> rdsensitivity: treatment effect models over grid of windows, CI inversion.

> rdrbounds: Rosenbaum bounds.


https://sites.google.com/site/rdpackages

Randomized Control Trials

e Notation: (Y;(0),Y;(1), X;),i=1,2,...,n.

Treatment: T; € {0, 1}, T; independent of (Y;(0),Y;(1), X;).

o Data: (v;,7;,X;),i=1,2,...,n, with
v Y;(0) if T, =0
T vi() T, =1

o Average Treatment Effect:

Tae = B[Yi (1) - Yi(0)] = BIY|T = 1] - B[Y;|T = 0]

o Experimental Design.



Sharp RD design

Notation: (Y;(0),Y;(1),X;), i =1,2,...,n, X; continuous

o Treatment: T; € {0,1}, T; = 1(X; > z).

e Data: (5,13, X;),i=1,2,...,n, with
y Y;(0) if Ty =0
T vi() T =1

o Average Treatment Effect at the cutoff:

z|T z1&

e Quasi-Experimental Design: “local randomization” (more later)
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Empirical Illustration: Cattaneo, Frandsen & Titiunik (2015, JCI)

o Problem: incumbency advantage (U.S. senate).

o Data:
Y, = election outcome.
T; = whether incumbent.
X; = vote share previous election (Z = 0).

Z; = covariates (demvoteshlagl, demvoteshlag2, dopen, etc.).

o Potential outcomes:
Y;(0) = election outcome if had not been incumbent.

Y; (1) = election outcome if had been incumbent.

e Causal Inference:

Yi(0) £Yi|Ti=0  and  Yi(1) £Yi|Ti =1



Graphical and Falsification Methods

Always plot data: main advantage of RD designs!

Plot regression functions to assess treatment effect and validity.

Plot density of X; for assessing validity; test for continuity at cutoff and elsewhere.

Important: use also estimators that do not “smooth-out” data.

RD Plots (Calonico, Cattaneo & Titiunik, JASA):

>

Two ingredients: (i) Smoothed global polynomial fit & (ii) binned discontinuous
local-means fit.

Two goals: (i) detention of discontinuities, & (ii) representation of variability.
Two tuning parameters:
* Global polynomial degree (kn).

* Location (ES or QS) and number of bins (Jy).



Manipulation Tests & Covariate Balance and Placebo Tests

o Density tests near cutoff:

> Idea: distribution of running variable should be similar at either side of cutoff.
» Method 1: Histograms & Binomial count test.

» Method 2: Density Estimator at boundary.

* Pre-binned local polynomial method — McCrary (2008).

* New tuning-parameter-free method — Cattaneo, Jansson and Ma (2015).

e Placebo tests on pre-determined/exogenous covariates.

> Idea: zero RD treatment effect for pre-determined/exogenous covariates.

> Methods: global polynomial, local polynomial, randomization-based.

o Placebo tests on outcomes.

> Idea: zero RD treatment effect for outcome at values other than cutoff.

> Methods: global polynomial, local polynomial, randomization-based.



Estimation and Inference Methods

e Global polynomial approach (not recommended).
e Robust local polynomial inference methods.

> Bandwidth selection.
> Bias-correction.

> Confidence intervals.

e Local randomization and randomization inference methods.

> Window selection.
> Estimation and Inference methods.

> Falsification, sensitivity and related methods



Conventional Local-polynomial Approach

o Idea: approximate regression functions for control and treatment units locally.
e “Local-linear” estimator (w/ weights K (-)):
—hn < X; <ZT: T<X; <hp:
Yi=a +(X;—%)-B_+e_; Yi=oy+ (X —2)- By +e4
> Treatment effect (at the cutoff): Fepp = g — &—
e Can be estimated using linear models (w/ weights K (-)):

n:a+TSRD'Ti+(Xi*-'E)'Bl +Ti'(Xi*j)"Yl + €4, *hnSXiShn

o Once hy chosen, inference is “standard”: weighted linear models.

> Details coming up next.



Conventional Local-polynomial Approach

o How to choose hn?

Imbens & Kalyanaraman (2012, ReStud): “optimal” plug-in,

hik = Crc - n~1/°

e Calonico, Cattaneo & Titiunik (2014, ECMA): refinement of IK

heer = Ceer - n =1/

o Ludwig & Miller (2007, QJE): cross-validation,

n
hey = arg m}in‘z;w(Xi) (Yi — iy (X3, h))?
im

o Key idea: trade-off bias and variance of 7spp(hrn). Heuristically:

1 Bias(7srp) = |h and 1 Var(#smp)



Local-Polynomial Methods: Bandwidth Selection

o Two main methods: plug-in & cross-validation. Both MSE-optimal in some sense.

o Imbens & Kalyanaraman (2012, ReStud): propose MSE-optimal rule,
Val’(‘f'sm))

sz = Cidg - n ™1/ G = C(K) - gz 3
SRD

> IK implementation: first-generation plug-in rule.
» CCT implementation: second-generation plug-in rule.

» They differ in the way Var(#spp) and Bias(7spp) are estimated.

o Imbens & Kalyanaraman (2012, ReStud): discuss cross-validation approach,

CVs () = > 1(X_ 5 < X; < X4 5) (Vi — (X5 h))?,

hey = arg r}?>1r01 CVs (h), Z

where
> fip p(z;h) and i_ ,(x; k) are local polynomials estimates.

> §€(0,1), X_ 5] and X (5] denote §-th quantile of {X; : X; < Z} and {X; : X; > 7}

> Our implementation uses § = 0.5; but this is a tuning parameter!



Conventional Approach to RD

o “Local-linear” estimator (w/ weights K (-)):

—hn <X; <ZT: T< X; < hp:

Yi=a_+(X;—%)-B_+e—; Yi=ap +(Xi —%) B4 +et

> Treatment effect (at the cutoff): Fspp = &g — &—

o Construct usual t-test. For Hg : 7spp = 0,

. Tseo Gy — G-

T(hn) = —= = —= =
Voo \WNin+Von

~d N(O, 1)

o 95% Confidence interval:

I(hn) = [%m + 1.96~\/€}



Bias-Correction Approach to RD

o Note well: for usual t-test,

N T
T'(huse) = SRD

~4N(B,1) # N(O0,1), B>0

Vn

> Bias B in RD estimator captures “curvature” of regression functions.

o Undersmoothing/“Small Bias” Approach: Choose “smaller” hy,... Perhaps ﬁn = 0.5-511(?

— Not clear guidance & power loss!

o Bias-correction Approach:

#sro — B
VVn

= 95% Confidence Interval: fbc(hn, bn) = [ (‘T'sm) - én) + 1.96- vV, ]

T (B, b)) = ~g N(0,1)

How to choose b,? Same ideas as before... b, = C.n—17

[
(a3



Robust Bias-Correction Approach to RD

e Recall:
# . #srp — B
— TSR ~q N(0,1) and TP (hp, bp) = e n o ~q N(0,1)

> B, is constructed to estimate leading bias B.

o Robust approach:

o Robust bias-corrected t-test:
7srp — B Fspp — B
SRD n _ TSRD n ~g N(O,l)

Trbc(hn,bn) — > . _
V Vn + Wn /\7‘%&:

= 95% Confidence Interval:
¢ (hy,, b)) = [ (%sm—én) + 1.96-\/\7>‘;L°} , Vb =V, + W,



Local-Polynomial Methods: Robust Inference

o Approach 1: Undersmoothing/“Small Bias”.

I(hy) = [%m + 1.96.@}

o Approach 2: Bias correction (not recommended).

1" (hp, by) = { (?SRD - én) + 1.96- \/\Z}

e Approach 3: Robust Bias correction.

frbc(hr“bn) = |: (’FSRD — én) + 1.96- \7n +VA\/” ]



Local-randomization approach and finite-sample inference

o Popular approach: local-polynomial methods.

> Approximates regression function and relies on continuity assumptions.

> Requires: choosing weights, bandwidth and polynomial order.

o Alternative approach: local-randomization + randomization-inference

> Gives an alternative that can be used as a robustness check.

» Key assumption: exists window W = [—hy,, hy,] around cutoff (—h,, < Z < h,,) where

T; independent of (Y;(0),Y;(1)) (for all X, € W)

> In words: treatment is randomly assigned within W.

> Good news: if plausible, then RCT ideas/methods apply.

> Not-so-good news: most plausible for very small windows (very few observations).
> One solution: employ small window but use randomization-inference methods.

> Requires: choosing randomization rule, window and statistic.



Local-randomization approach and finite-sample inference

e Recall key assumption: exists W = [—hp, hy] around cutoff (—h, < Z < hy,) where

T; independent of (Y;(0),Y;(1)) (for all X; € W)

o How to choose window?

> Use balance tests on pre-determined/exogenous covariates.

> Very intuitive, easy to implement.

o How to conduct inference? Use randomization-inference methods.

@ Choose statistic of interest. E.g., t-stat for difference-in-means.
O Choose randomization rule. E.g., number of treatments and controls given.

© Compute finite-sample distribution of statistics by permuting treatment assignments.



Local-randomization approach and finite-sample inference

e Do not forget to validate & falsify the empirical strategy.

@ Plot data to make sure local-randomization is plausible.

@ Conduct placebo tests.

(e.g., use pre-intervention outcomes or other covariates not used select W)

@ Do sensitivity analysis.

e See Cattaneo, Frandsen and Titiunik (2015) for introduction.

o See Cattaneo, Titiunik and Vazquez-Bare (2015) for further results and
implementation.



