A
S S CC social science
computing cooperative

Research Computing

University of Wisconsin — Madison

@) Post-estimation Parameter

Recentering and Rescaling
Doug Hemken

SS((social science
computing cooperative

-

Hello.

| was drawn into the problem of recentering and rescaling parameters a couple of
years ago, when one of our post-docs came to me with a simulation she wanted help
with.

She was writing for a Psychology journal that required all results to include
standardized coefficients, so she needed to simulate both her original model and the

standardized one.

She had her original model, and the descriptive statistics, but she had changed
Universities and no longer had access to the data.

A main point of her model was it’s interaction term.

Her model was simple enough that it could be solved with high-school algebra, but it
got me interested in the bigger question.

- Recentered polynomial regression
@ (change of basis)

3 Original Centered

5,000

..
..

4,000

3,000
3,000

y= o+ Box+ P’ - y=phor phxe i
weight = 999 + 13 3"displacement . weight = 3126 + 8. 2"displacement
-0.013*displacement’ 7 -0.013*displacement’

. '- .
. g .
hd

500 -100

2,000
2,000

100 300

200 300 400 0 100 200
Displacement (cu. in.) Adisplacement (cu. in.)

[» weignt gbs) Fitted values | [« weignt os) Fitted values

e

Recentering and rescaling data can be thought of as just a change of coordinates, or a
change of basis.

Looking at a graph like this one, it is fairly intuitive that the relationships among the
data points, and with the fitted line have not changed, but we have changed how the
axis is labeled.

Here, the predicted values and the residuals are exactly the same.
A change of basis in the data induces a natural and intuitive change of basis for the

parameters as well. So there is a linear transformation that takes our parameters,
expressed in the original terms, and converts them to the new basis.

Recentered polynomial regression
(change of basis)

. estimates table Original Centered, se

Variable | Original Centered
________________ fmmmmm———————————————————
displacement | 13.292618 8.2613721

| 2.1114091 . 49321693
I

c.displacement#|

c.displacement | -.01275042 -.01275042
| .00461032 .00461032

I
_cons | 999.27223 3125.5442
| 211.52293 54.591876

legend: b/se

Just looking at the numerical results, it is less intuitive that the Centered coefficients
are a linear transformation of the Original ones.

But they are.
And we can write this linear transformation as a matrix.

| have written a little Stata code that generates this matrix, and uses it as a post-
estimation command to center and standardize model coefficients.

Math — Linear Algebra of
Recentering and Rescaling

* Building Blocks — Simple regression models
Recentering
Rescaling

* Adding Interactions — Factorial regression models
Full factorial
Partial

» Adding Categorical terms
Untransformed

Recentering via contrasts

» Group like terms — Polynomial models

| want to outline the math first, and then sketch the Stata programming.
And this will be a hand-waving overview.

We’ll start with

Simple regression recentering

» Given a model

y =Po+pix
» And a recentering constant
Ax=x —pu

» Then the recentered model
y = B + Biax

» Has parameters given by

BA=[(1) ‘;]B,or

%)=]

Recentering parameters in the simplest regression model is very simple.

Precision matrices

 Let the parameter transformation be given by
_[1 nu
B [0 1

» Given the precision matrix for the original model, V,
then the precision matrix of the recentered model is

V, = CVC'

The change to the precision matrix is equally simple.

If we call the parameter transformation matrix C, we can use it to change the basis for
the precision matrix this way.

In all the transformations that follow, this is how we deal with the precision matrix, so
| won’t talk about it any more.

But this is kind of a useful matrix.

(@) Recentering y

+ Given
Yy =Bo+pix
Ax = x — U,
Ay:y _uy
* Then

Ay = B2 + ppax

o s

BAy= 1 oy [ﬁo+”}’]
0 1 B

Recentering y only changes the intercept in the model, and we could write this a
couple of different ways.

The real point is that it doesn’t change the parameter transformation matrix, and we
won’t need to consider it much further.

Simple regression rescaling

» Given a model
y=po+pix

» And a rescaling constant
z=x/o

* Then the rescaled model
y=p;+pBiz

*+ Has parameters given by

Py gle

Rescaling a simple regression is as simple as recentering.

The matrix looks like this.

10

) Rescaling y

* From

y=Po+px
z = x/0y

Vs = Y/ay

+ To
ys=ﬁgy+ﬁlzz

o Is

=2l o

Rescaling y again has no effect within the transformation matrix, it is just a scalar
transformation of the whole thing.

So we won’t worry about y in what remains.

11

Standardizing x

« Combine the two simpler transformations
Std — 1 0]y1 I
S [0 a] [0 1]B

Standardizing is just centering and then rescaling.

12

Factorial model recentering

» Given
Y = Bo + B1x1 +P2x; +P12%1 X
Axy =x; —pgand Ax, =x, — U,

* Then

y = Bo + B{Ax; + BPAx, + BlAx; Ax,
(variable-wise centered, not term-wise centered)

* Is given by
1w pp wp][Po
a_[1 K 1 mp_|0 1 0 p 1
8 ‘[o 1]®[o 1]B' 0 0 1 u [|B
o 0o o 1 1B,

Factorial models add interaction terms, and this is where we start to build.

Variable-wise recentering.

4

We combine our building blocks with a “direct product” or “Kronekcer product”.

There is a theorem about change of basis in tensors that underlies this step.
The resulting linear transformation has a characteristic pattern.

(It also implies a particular order to our vector of parameters.)

13

@) Kronecker (“direct”) products

* Let
a4 a _Ithy Bs
A= [a3 a4] and B = [b3 b4]
» Then
_[a4B ay;B
488 = [a3B a,B

a,by ab, a,b; a,b,
a,b; a,by azb; ayb,
as;b, asb, aub; aub,
asb; asb, aub; aub,

If you don’t work with Kronecker products a lot, let me remind you of how this
operation works.

Each element of the first matrix is used as a scalar to multiply by the second matrix,
and they are arranged as a partitioned matrix.

@) Factorial model rescaling

+ Given

Y = Bo + Prx1 +Bax2 +P12%1 X2
Zy =Xx1/0yand z, = x, /0,

» Then
y =B + Bizy + B3z, + Bla2a 2,

* Is given by
1 0 1. 0
Z
o _[0 02]®[0 01]3
1 0 0 0 118
Bz = 0 o, O 0 || B

0 0 o, 0 |[p
0 0 0 o0,115,

Rescaling transformations work the same way as recentering transformations, and we
can again use both together to generate standardizing transformations.

Three-way recentering

+ Given
Y = Bo + Prx1 +Baxs +P12%1 X5 + P3xz + Praxixz +
Bazxax3 + Pr23X1X2X3
Axy = X1 — Mg, B3 = X; — Pp, AX3 = X3 — U3

* Then
A 1 /13] @ [1 ﬂ2]® [1 MI]B

1 1y | uluz M3 Maps Haps Mypops][o]
0.1 .0 u [0 3 0 taps || Ao
00 1 p», [0 O Hs mpz || B2

= 0 0 0 1 0 0 0 Uz P12
00 0 0 1 u pp |l b
00 0 0 0 1 0 w |Bs
00 0 0 0 0 1 1 |[Bs
oo 0 0o 0 o0 o 1 g

A bigger factorial design just extends the process.

(Point! 1..2..3)

16

@) Partial Factorial

Suppose a model has only 2" order interaction terms

Thisis y = Bo + B1x1 +B2Xz +B12X1%; + B3x3 + B131'11’3A+ Ba3x2x3 + B123x1X2X3
with 153 = 0. In our centered model, likewise, we have f7,; = 0

Then we can simplify our notation:

1 oy pp mada Mz maps Moz popops)| Po

01T 0 m 0 pu 0 o By

0 0 1 pu 0 O U3 " B>

00 0 1 0 0 0 u Bi2

0 0 o0 0 i T Uz 1y Bs

00 0 0 o0 1 0 Bi3

00 0 0 0 0 1 B2z

0 0 0 0 0 0 0 1 ﬁ123
1 w1 M2 MaMa M3 M3 Hop3 Bo
01 0 u 0 p3 0 | A
00 1 u 0 0 us || B2

— simplifiesas|0 0 0 1 0 0 0 ||Biz
0 0 0 0 1 w || B3
00 0 0 o0 1 0 ||Bis
00 0 0 0 O 1 B,

Many models are less than full factorial: among other things we want to be able to

consider models that are specified with an odd number of terms, and not just even
numbers!

We get these transformations by whittling down the full factorial transformation.

Here, if we set the three-way interaction to 0, we essentially zero out a column of our
transformation matrix. We can simplify by removing both the column from the
matrix and the parameter from the parameter vector.

If we do that, we are left with a row of nothing but zeros. So we can further simplify
by dropping that row, and the parameter that is produces.

17

Additive models again

* Suppose a model has only |** order terms, like
¥ = Po+ Brxy +Pax;

« Thisis

¥ = Bo + Brxy +B2X; +B12X1 X + B3x3 + Py3X1 X3 + BaaXaX3 + Biaz X1 X X3, With many zeres.

» Then we can vastly simplify our notation:

1wy pp s Pz Mafiz fofz Pafofts Bo
0 2 0 7% 0 M3 0 Ha 3 b1
0 0 1 y 0 0 Uz s B2 1wy py wsl[Po
0 0 0 1 0 0 0 U3 Biz[0 1 0 of|B
0 0 O 0 1 e "y Myl B3 00 1 0|5k
g 10 "0 0 0 1 0 T Bi3 0 0 0 115
00 0 0 0 0 1 wy || Bzs
00 0 0 0 0 0 1 i

An additive model, then, comes out something like this.

Notice the characteristic pattern: none of the first order terms change, only the
intercept, the zero-th order term, is changed.

Factor variables

« Suppose g is a factor with three categories, and x;and
X, are as before

y = Bo + Bix1 + Baxy + Braxix; + ﬁglgl +
31g191x1 * ﬁ2g191x2 * 3129191x1x2 + ﬁgzgz o
Big, 92%1 + Bag, 92%2 + Pr2g, 92X1 %2

.regress y i.g##ic.x1##fc.x2

With reference coding (this is also a direct sum),

1 0 0
A ® 1w, ®1 M

Now let’s think about the intercept, or multiple intercepts.

If we start with reference coding, and use indicators for out categories, we may not
want to recenter or rescale.

Then our transformation matrix is just expanded into block diagonal form, and our
direct product is equivalent to a direct sum.

19

@) Block diagonal, or direct sum

1w WU Mo 0 0 0 O 0 0 0 O
0 1 0 0 0 0 O 0 0 0 O
0 0 1 0 0 0 O 0 0 0 O
0 0 0 1 0 0 0 O 0 0 0 O
0 0 0 O 1wy p s 0 0 0 O
0 0 0 O 0 1 0 0 0 0 O
0 0 0 O 0 0 1 0 0 0 O
0 0 0 O 0 0 0 1 | 0 0 0 0
0 0 0 O 0 0 0 O 1 W py Mo
0 0 0 O 0 0 0 O 0 1 0
0 0 0 O 0 0 0 O 0o 0 1
0 0 0 O 0 0 0 O 0 0 0 1

So with three categories and two continuous variables, if | want to leave the model
reference coded my transformation matrix looks like this.

One way to think of this is that | can create the transformation matrix for my
covariates, and reuse it.

20

@) Factor Grand Mean Centering

To transform from reference coding to grand mean centered
coding, the transformation matrix depends on the number of
categories:

Two categories are centered by
[1 1/2]
0 -1/2

Three categories

1 1/3 1/3
0 2/3 -1/3
0 —-1/3 2/3

Four categories

1/4 1/4 1/4
3/4 -1/4 —1/4
-1/4 3/4 -1/4
-1/4 -1/4 3/4

O OO

We could also consider other approaches to coding categorical variables.

| haven’t built this into my little package, so I'm just mentioning that there is nothing

that requires us to stick with reference coding.

21

Grand Mean transformation

* For n categories:

1 1/n 1/n 7
n=1

0 ~ =1/n —1/n
—=1/n :

0 1 n—1

S %

| think it is useful to think about how this matrix relates to the “data centering”
matrix you find in textbooks.

Polynomial terms

» Now consider a model of the form
y=PBo+Bix +[312x2

* Which we will rewrite as
Yy =Po+ Bix+ Praxx

* In Stata we could specify such a model as

regress y c.x##fc.x

Finally we turn to polynomial models.

We can recast the polynomial terms as interactions.
(This is something you cannot do in R, by the way.)

Notice that we have only 1 first order term instead of the usual 2 terms that we see in
other factorial models.

u.,n

What we have done is collected our “x” terms.

23

Polynomial Terms

+ Here we’'ll need to collect terms

IfA=[(1) 1] then

1w o iy
_101 0
PR = 0 0 1
0 0 0 1

» However, this is a matrix that starts with two 8;and

returns two 2.
A

of 2 A om mam][bo
T[]0 1 0 oy ||B
AT10 0 1w ||A
1A2 0 0 0 dl 12

So we will need to collect terms in our transformation matrix.

Begin with the usual Kronecker operation for a factorial model.

Polynomial Terms
Letting one f; = 0, we simplify our matrix to

A
Po 1 Ii1ll1
Bf(_lo 1

Bt |10 0 u1

. 0 0 312

12
* But from here,we need to collect our ﬁl terms

1.0 0 0 1 ul ﬂllﬂl Uy 1
0 110 ‘1 1 2,41

0001
So
Lo
B®=o 1 2u|B
0 0 1

We start to simplify like we did with the partial factorial models.

However, now zeroing out a column no longer leaves us with any rows of zeros.
This transformation still produces two B2 terms.

So we collect those terms: we add them together.

This is the result.

There are more terms to collect in higher order models, but this is the basic idea.

25

Math Summary

* We have building blocks for:
Continuous variables
Categorical variables
Polynomial terms
* We can combine them as:
Factorial models
Subsets of terms from factorial models

* (As long as no higher-order terms appear without their related
lower-order terms)

26

Programming — Stata

+ Given a model in Stata, we want to

Identify variables, variable types, variables’ polynomial degree (macro list
functions and _ms_parse parts)

Collect recenteringand rescaling constants (tabstat)

Form factorial transformation matrices for continuous/polynomial
terms (Kronecker matrix operator, #)

Build complete model transformation matrices by filling constants into
the appropriate slots (matrix extraction and substitution)

Use the results (estimates store and estimates table)

('m not going to go through these in order, but just highlight those parts | thought
were obscure yet critically useful.)

27

@) Kronecker product terms

¢ In the matrix language, Kronecker products make it
easy to track terms

. matrix list A

A[2,2]

= weight
rl 1 3019.4595
r2 0 > !
. matrix list B
B[2,2]

displacement

r1 1 197.2973
r2 0 1

. matrix C = B#A

One issue with these transformation matrices is keeping track of which rows and
which columns relate to which parameters.

In the matrix language, Stata’s Kronecker operator makes it easy to keep track of your
terms.

@) Kronecker product terms

Column/row names are returned with the form
equation(B):name(A)

. matrix list C

c[4,4]
displacem~t: displacem~t:
. weight = weight
rl:rl 3 3019.4595 197.2973 595731.19
r1:x2 0 1 0 197.2973
r2:rl 0 0 1 3019.4595
r2:r2 0 0 0 1

» Note the name stripe is used, but the equation stripe is lost.

It returns two-part names, with the equation part from the first matrix, and the name
part from the second matrix. The parts are separated by a colon.

29

Combine term parts

» To use this further,we move all the variable names into the name

stripe
. local cn : colfullnames C

. local cn :subinstr local cn ":" "#", all
. local cn :subinstr local cn "# " "", all
. matrix coleg C = ""
. matrix colnames C = cn'
. matrix list C
c[4,4]
c.displace~t#

_ weight displacement c.weight
rl:rl ; X 3019.4595 197.2973 595731.19
rl:r2 o 1 o 197.2973
r2:rl o [} 1 3019.4595
r2:x2 o [} [} 1

Note matrix understands these are interaction terms!

In subsequent operations, the equation part is lost, so we need to move term names
around if we want to keep them.

30

A

* And we can keep building ...

cte, 81

matrix C = D#C
matrix list C

weighe
30194395
1
°

displacemert
197.2973

°

1

©.displace-tg
e weighe
35873119
197.2972
3019 4598
1

°
°
°
°

i

o o o 3%

o o o »

Kronecker product terms

<-=pgd

e weighe
64306326
21297297
[

°

3019 4595
1

°

°

c.mpqt
o displacest

4201 8992

197.29m3

c.mpgd
c.displace-td

4201.8992
€4306.326
2.207207
595731.19
197.2973
3019 4595

1

31

@) Parse covariates from factors

* Use_ms_parse_parts with terms from e(b)

. quietly regress price foreign#f#fc.weight

. matrix list e(b)

e(b) [1,6]
Ob. . Ob.foreign# 1.foreign#
foreign foreign weight co.weight c.weight _cons
yl 0 -2171.5968 2.9948135 0 2.3672266 -3861.719

. _ms_parse parts weight

. return list // "variable"

scalars:
r(omit) = 0

macros:
r(name) : "weight"
r(type) : "variable"

Another thing | want to do is separate out intercept terms from all the higher order
terms.

The Stata command _ms_pars_parts is an amazingly useful tool!

You give it the name of a term, and it parses it into parts.

32

A

Parse factors from covariates

 Factors
. _ms_parse parts 1.foreign
. return list // "factor"

scalars:
r(base) = 0
r(level) = 1
r(omit) = 0
macros:
r(name) : "foreign"
r(op) : "1"

r(type) : "factor"

33

Parse interactions

» Interactions

. _ms_parse parts 1.foreign#c.weight
. return list // "interaction"

scalars:
r (basel)
r(levell)
r (k_names)

r(omit) =

macros:

r (name2) :

xr(op2) :
: "foreign"
: man

r (namel)
r(opl)

r(type) :

o N H O

"weight"

ngn

"interaction"

34

Parse polynomials

* Polynomial terms require some extra parsing

. _ms_parse_parts whatever#c.whatever

. return list // polynomial as interaction

scalars:
r(k_names) = 2
r(omit) = 0
macros:
r (name2) : "whatever"
r(op2) : "c"
r (namel) : "whatever"
r(opl) : "ec"

r(type) : "interaction"

Matrix extraction/substitution

» Recognizes factor notation equivalences!

. quietly regress price c.weight##c.disp

. matrix A = e(b)

. matrix B= A[1,1..2] // by numerical index

. matrix B= A[1,"weight"] // by column/row names
. matrix B= A[1,"c.weight#c.displacement”]

. matrix list B

c.weight#
c.displace~t

yi .0143162

. matrix B= A[1,"c.displacement#c.weight"]

. matrix list B

c.weight#
c.displace~t

y1 .0143162

Once we have sorted the covariates from the categorical variables, and formed our
transformation matrix for the covariates, we can use matrix extraction and
substitution to plug the components into a larger parameter transformation matrix
that accommodates the categorical terms.

Here, it is useful to realize that factor variable notation is built into matrix extraction
and substitution.

@) stdParm syntax

* stdParm [, nodepvar store replace
estimates_ta.ble_options]

* Produces centered and standardized parameters

Optionally exclude the response variable

Results can be stored

Results can be reported with any estimates table
options

So I've put these pieces together into a little software routine, that works after
regress and gim.

37

stdParm use

. quietly regress price c.weight##c.mpg

. stdParm
Variable | Original Centered Standardized
g o

weight | 5.0670077 .98475137 .25948245
mpg | 396.78438 -181.98425 -.35696623

|

c.weight#|
c.mpg | -.19167955 -.19167955 -.29221218

|
_cons | -5944.8806 -686.28559 -.23267895

38

stdParm, stats(N r2) star

stdParm additional statistics

Variable | Original Centered Standardized
weight | 5.0670077*** .98475137 .25948245
mpg | 396.78438* -181.98425 -.35696623
I
c.weight#|
c.mpg | -.19167955** -.19167955** -.29221218%*
|
_cons | -5944.8806 -686.28559 -.23267895
N | 74 74 74
r2 | .35969597 .35969597 .35969597
legend: * p<0.05; ** p<0.01; *** p<0.001

39

stdParm after logit

. quietly logit foreign c.price##ic.weight

. stdParm
Variable | Original Centered Standardized
g

price | .00331766 .00113549 3.3491337
weight | -.00141654 -.00587217 -4.5638148

|

c.price#|
c.weight | =7.227e-07 -7.227e-07 -1.6566669

|
_cons | -4.5154515 -1.7920268 -1.7920268

40

stdParm, eform

. quietly logit foreign c.price##ic.weight

. stdrParm, eform

Variable | Original Centered Standardized
g o
price | 1.0033232 1.0011361 28.478052
weight | .99858446 .99414503 .01042222
|
c.price#|
c.weight | .99999928 .99999928 .19077378

|
_cons | .01093867 .16662211 .16662211

A

Download/ install

+ net from
http://www.ssc.wisc.edu/~hemken/Stataworkshops

¢+ Tinker with the source code, suggest improvements:
https://github.com/Hemken/stdParm

42

