Estimation in panel data with individual effects and AR(p) remainder disturbances

Long Liu, University of Texas at San Antonio

2015 Stata Conference

Outline

- Literature review
- The Model and Estimation
- Applications
- Conclusion

Panel Data Model

Example

$$y_{it} = x'_{it}\beta + u_{it}, \quad i = 1, ..., N; \ t = 1, ..., T,$$

$$u_{it} = \mu_i + v_{it}$$
.

- Baltagi (2013)
- Stata command: xtreg

Panel Data Model with AR(1) Disturbances

Example

$$y_{it} = x_{it}' \beta + u_{it}, \quad i = 1, ..., N; \ t = 1 ..., T,$$
 $u_{it} = \mu_i + v_{it},$

$$v_{it} = \rho v_{i,t-1} + \epsilon_{it}$$

- Baltagi and Li (1991)
- Stata command: xtregar

Panel Data Model with AR(p) Disturbances

Example

$$y_{it} = x'_{it}\beta + u_{it}, \quad i = 1, ..., N; \ t = 1..., T,$$
 $u_{it} = \mu_i + v_{it},$

$$v_{it} = \rho_1 v_{i,t-1} + \rho_2 v_{i,t-2} + \cdots + \rho_p v_{i,t-p} + \epsilon_{it}.$$

- Baltagi and Liu (2013)
- New user-written Stata command: xtregarp

Model in matrix forms

$$y = X\beta + u \tag{1}$$

$$u = (I_N \otimes \iota_T) \, \mu + \nu. \tag{2}$$

Variance-covariance matrix

The variance–covariance matrix of u is

$$\Omega = I_N \otimes \Lambda, \tag{3}$$

where

$$\Lambda = \sigma_{\mu}^2 J_T + \sigma^2 V,$$

 J_T is a matrix of ones of dimension T and $E(v_iv_i') = \sigma^2 V$.

Transformed error

Given a $T \times T$ matrix C, such that $CVC' = I_T$. The transformed error becomes

$$u^* = (I_N \otimes C) u = (I_N \otimes \iota_T^{\alpha}) \mu + (I_N \otimes C) \nu, \tag{4}$$

where $\iota_T^{\alpha} = C \iota_T = (\alpha_1, \dots, \alpha_T)'$ is a $T \times 1$ vector.

Transformation matrix

For AR(1), C is the Prais-Winsten transformation matrix in Baltagi and Li (1991).

$$C = \begin{bmatrix} \sqrt{1-\rho^2} & 0 & 0 & \cdots & 0 & 0 \\ -\rho & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & -\rho & 1 & 0 \\ 0 & 0 & 0 & 0 & -\rho & 1 \end{bmatrix}$$

Variance—covariance matrix of transformed error

The variance-covariance matrix for the transformed disturbance u^* becomes

$$\Omega^* = I_{\mathcal{N}} \otimes \Lambda^*, \tag{5}$$

where

$$\Lambda^* = C\Lambda C' = \sigma_{\mu}^2 J_T^{\alpha} + \sigma^2 I_T, \tag{6}$$

and $J_T^{\alpha}=\iota_T^{\alpha}\iota_T^{\alpha\prime}$. Define $d^2=\iota_T^{\alpha\prime}\iota_T^{\alpha}=\sum_{t=1}^T\alpha_t^2$, $J_T^{\alpha}=J_T^{\alpha}/d^2$ and $E_T^{\alpha}=I_T-J_T^{\alpha}$. We have

$$\Lambda^* = \sigma_\alpha^2 \bar{J}_T^\alpha + \sigma^2 E_T^\alpha, \tag{7}$$

where $\sigma_{\alpha}^2 = \sigma_{\mu}^2 d^2 + \sigma^2$.

Two-step transformation

Therefore,

$$\sigma\Omega^{*-1/2} = \frac{\sigma}{\sigma_{\alpha}} \left(I_{N} \otimes \bar{J}_{T}^{\alpha} \right) + \left(I_{N} \otimes E_{T}^{\alpha} \right) = \left(I_{N} \otimes I_{T}^{\alpha} \right) - \delta \left(I_{N} \otimes \bar{J}_{T}^{\alpha} \right), \quad (8)$$

where $\delta=1-\frac{\sigma}{\sigma_{\alpha}}$. Make the error spherical. $y^{**}=\sigma\Omega^{*-1/2}y^{*}$, and X^{**} and u^{**} are similarly defined. The typical elements

$$y_{it}^{**} = y_{it}^{*} - \delta \alpha_{t} \frac{\sum_{s=1}^{I} \alpha_{s} y_{is}^{*}}{\sum_{s=1}^{T} \alpha_{s}^{2}}.$$
 (9)

FE estimator if $\delta = 1$.

Parameters estimation

Baltagi and Li (1991) proposed best quadratic unbiased estimators of σ^2 and σ^2_{α}

$$\hat{\sigma}_{\alpha}^{2}=u^{*\prime}\left(\textit{I}_{\textit{N}}\otimes\bar{\textit{J}}_{\textit{T}}^{\alpha}\right)u^{*}/\textit{N} \text{ and } \hat{\sigma}^{2}=u^{*\prime}\left(\textit{I}_{\textit{N}}\otimes\textit{E}_{\textit{T}}^{\alpha}\right)u^{*}/\textit{N}\left(\textit{T}-1\right). \tag{10}$$

Transformation

Following Baltagi and Li (1994), the (*) transformation defined in (4), is obtained recursively as follows:

$$y_{it}^{*} = y_{i1}$$

$$y_{it}^{*} = (y_{it} - b_{t,t-1}y_{i,t-1}^{*} - \dots - b_{t,1}y_{i,1}^{*}) / \sqrt{a_{t}} \quad \text{for } t = 2, \dots, p$$

$$y_{it}^{*} = (y_{it} - \rho_{1}y_{i,t-1} - \dots - \rho_{p}y_{i,t-p}) / \sqrt{a} \quad \text{for } t = p+1, \dots, T,$$

$$(11)$$

where $a = \sigma_{\epsilon}^2/\gamma_0$.

Transformation

 a_t and $b_{t,s}$ are determined recursively as

$$a_t = 1 - b_{t,t-1}^2 - \dots - b_{t,2}^2 - b_{t,1}^2$$
 for $t = 2, \dots, p$ (12)

and

$$b_{t,1} = r_{t-1}$$

 $b_{t,s} = (r_{t-s} - b_{s,s-1}b_{t,s-1} - \dots - b_{s,1}b_{t,1}) / \sqrt{a_s}$ for $s = 2, \dots, t-1$
(13)

for $t = 2 \dots, p$.

Transformation

Similar to y_{it}^* , we can get $\iota_T^{\alpha} = C\iota_T = (\alpha_1, \dots, \alpha_T)'$ as follows:

$$\begin{array}{ll} \alpha_{1} = 1 \\ \alpha_{t} = \left(1 - b_{t, t-1} \alpha_{t-1} - \dots - b_{t, 1} \alpha_{1}\right) / \sqrt{a_{t}} & \text{for } t = 2, \dots, p \\ \alpha_{t} = \left(1 - \sum_{s=1}^{p} \rho_{s}\right) / \sqrt{a} & \text{for } t = p+1, \dots, T. \end{array} \tag{14}$$

Auto-covariance function

The above transformation depends upon the auto-covariance function of v_{it} , that is, γ_s for $t=1\ldots,p$.

$$\hat{\gamma}_{s} = \sum_{i=1}^{N} \sum_{t=s+1}^{T} \frac{\tilde{v}_{it} \tilde{v}_{i,t-s}}{N(T-s)}$$
(15)

for $s=0,\ldots,p$, where \tilde{v}_{it} denotes the within residuals. After getting $\hat{\gamma}_s$, one can compute $\hat{r}_s=\hat{\gamma}_s/\hat{\gamma}_0$ for $s=1\ldots,p$.

Auto-covariance function

Next, we can estimate the ρ 's by running the regression of \tilde{v}_{it} on $\tilde{v}_{i,t-1}$, $\tilde{v}_{i,t-2},\ldots$, $\tilde{v}_{i,t-p}$ (t>p). Finally

$$\gamma_0 = E\left(v_{it}^2\right) = \rho_1 \gamma_1 + \rho_2 \gamma_2 + \dots + \rho_p \gamma_p + \sigma_\epsilon^2. \tag{16}$$

$$a = \sigma_{\epsilon}^{2} / \gamma_{0} = 1 - \rho_{1} r_{1} - \rho_{2} r_{2} - \dots - \rho_{p} r_{p}. \tag{17}$$

Precedures

• Step (i): Use the within residuals to compute $\hat{\gamma}_s$ as given in (15). From $\hat{\gamma}_s$ (s=1....,p), we can get a_t , $b_{t,t-s}$ and α_t from (12), (13) and (14).

Precedures

- Step (i): Use the within residuals to compute $\hat{\gamma}_s$ as given in (15). From $\hat{\gamma}_s$ ($s=1,\ldots,p$), we can get a_t , $b_{t,t-s}$ and α_t from (12), (13) and (14).
- ② Step (ii): Get $\rho_1, \rho_2, \dots, \rho_p$ from the OLS regression of \tilde{v}_{it} on $\tilde{v}_{i,t-1}, \tilde{v}_{i,t-2}, \dots, \tilde{v}_{i,t-p}$ (t > p). Obtain an estimate of a from (17). We now have all the ingredients to compute y_{it}^* and x_{it}^* for $t = 1, \dots, T$ from (11).

Precedures

- Step (i): Use the within residuals to compute $\hat{\gamma}_s$ as given in (15). From $\hat{\gamma}_s$ (s=1....,p), we can get a_t , $b_{t,t-s}$ and α_t from (12), (13) and (14).
- ② Step (ii): Get $\rho_1, \rho_2, \cdots, \rho_p$ from the OLS regression of \tilde{v}_{it} on $\tilde{v}_{i,t-1}, \tilde{v}_{i,t-2}, \cdots, \tilde{v}_{i,t-p}$ (t>p). Obtain an estimate of a from (17). We now have all the ingredients to compute y_{it}^* and x_{it}^* for $t=1,\ldots,T$ from (11).
- **3** Step (iii): Compute $\hat{\sigma}_{\alpha}^2$ and $\hat{\sigma}^2$ in (10) using OLS residuals of y_{it}^* on x_{it}^* . Then compute y_{it}^{**} and x_{it}^{**} for $t=1,\ldots,T$ from (9). Run the OLS regression of y_{it}^{**} on x_{it}^{**} . This is equivalent to running the GLS regression on (1).

Syntax

```
Random Effects (RE) model
xtregarp depvar [indepvars] [if] [in], re
or Fixed Effects (FE) model
xtregarp depvar [indepvars] [if] [in] [weight], fe
```

```
. use http://www.stata-press.com/data/r13/grunfeld
. xtset
        panel variable:
                           company (strongly balanced)
         time variable:
                           year, 1935 to 1954
delta: 1 year .xtregarp invest mvalue kstock, re p(3) RE GLS regression with AR(3) disturbances
                                                                                    200
                                                      Number of obs
                                                      Number of groups
Group variable (i): company
                                                                                     10
                                                      Obs per group: min =
                                                                                     20
R-sq:
        within
                 = 0.7626
        between = 0.7992
                                                                                   20.0
                                                                       avg =
        overall = 0.7902
                                                                                      20
                                                                       max =
                                                      Wald chi2(3)
                                                                                 380.31
corr(u i. Xb)
                     = 0.0000
                                                      Prob > chi2
                                                                                 0.0000
                                                                           =
       invest
                      Coef.
                               Std. Err.
                                                z
                                                      P>|z|
                                                                 [95% Conf. Interval]
      mvalue
                   .0858281
                                .0077689
                                             11.05
                                                      0.000
                                                                 .0706014
                                                                               .1010548
      kstock
                   .3170181
                                .0232755
                                             13.62
                                                      0.000
                                                                   .271399
                                                                               .3626371
                   -31.2444
                               25.06929
                                             -1.25
                                                      0.213
                                                                -80.37931
                                                                                17.8905
        _cons
                  .81710709
                                (estimated autocorrelation coefficient)
         rho1
         rho2
                 -.24028523
                                (estimated autocorrelation coefficient)
                  -.0337094
         rho3
                                (estimated autocorrelation coefficient)
                  74.714532
     sigma_u
                  41,221855
     sigma_e
     rho_fov
                   .7666359
                                (fraction of variance due to u i)
                  .74992556
       theta
```

An Application of Cornwell and Rupert (1988)

- PSID data of 595 individuals over the period 1976-82
- log wage is regressed on
- years of education (ED),
- weeks worked (WKS),
- years of full-time work experience (EXP),
- occupation (OCC=1, if in a blue-collar occupation),
- residence (SOUTH = 1, if in the South),
- metropolitan area (SMSA = 1, if metropolitan area),
- industry (IND = 1, if in a manufacturing industry),
- marital status (MS = 1, if married),
- sex (FEM = 1, if female),
- race (BLK = 1, if black),
- union coverage (UNION = 1, if in a union contract)

An Application of Cornwell and Rupert (1988)

- RE estimator: xtreg, re
- FE estimator: xtreg, fe
- REAR1 estimator: xtregar, re
- FEAR1-CO estimator using Cochrane-Orcutt transformation: xtregar,
 fe
- FEAR1-PW estimator using Prais-Winsten transformation: xtregarp, fe p(1)

```
. xtregar lwage occ south smsa ind exp exp2 wks ms union fem blk ed, fe rhotype FE (within) regression with AR(1) disturbances Number of obs = 3570
                                                       Number of groups
Group variable: id
                                                                                       595
R-sq:
        within
                = 0.5095
                                                       Obs per group: min =
                                                                                         6
        between = 0.0194
                                                                                       6.0
                                                                         avg =
        overall = 0.0319
                                                                         max =
                                                       F(9,2966)
                                                                                   342.38
corr(u_i, Xb)
                 = -0.9092
                                                       Prob > F
                                                                                   0.0000
                                                                             =
        lwage
                       Coef.
                                Std. Err.
                                                 t.
                                                       P>|t|
                                                                   [95% Conf. Interval]
                  -.0216596
                                .0153898
                                              -1.41
                                                       0.159
                                                                  -.0518355
                                                                                 .0085162
          occ
        south
                    .0351867
                                .0421693
                                               0.83
                                                       0.404
                                                                  -.0474973
                                                                                 .1178707
                                                                                 .0067598
                  -.0386588
                                .0231637
                                              -1.67
                                                       0.095
                                                                  -.0840774
         smsa
                    .0110341
                                 .017063
                                               0.65
                                                       0.518
                                                                  -.0224225
                                                                                 .0444907
          ind
          exp
                    .1062692
                                .0036503
                                              29.11
                                                       0.000
                                                                   .0991119
                                                                                 .1134266
                  -.0003063
                                .0000787
                                                       0.000
                                                                  -.0004606
                                                                                 -.000152
         exp2
                                              -3.89
                    .0003698
                                .0006845
                                                       0.589
                                                                                 .0017119
          wks
                                               0.54
                                                                  -.0009724
           ms
                  -.0216163
                                .0220885
                                              -0.98
                                                       0.328
                                                                  -.0649267
                                                                                 .0216941
                    .0153562
                                .0166579
                                                                   -.017306
        union
                                               0.92
                                                       0.357
                                                                                 .0480184
                   4.743534
                                .0516744
                                                                   4.642213
                                                                                 4.844856
                                              91.80
                                                       0.000
        cons
                  .14650642
      rho_ar
     sigma_u
                  1.0196127
     sigma_e
                  .14794958
                  .97937909
                                (fraction of variance because of u i)
     rho_fov
```

```
xtregarp lwage occ south smsa ind exp exp2 wks ms union fem blk ed, fe p(1)
FE GLS regression with AR(1) disturbances
                                                                                4165
Group variable (i): id
                                                   Number of groups
                                                                                 595
R-sq:
       within
                = 0.6581
                                                   Obs per group: min =
       between = 0.0261
                                                                                 7.0
                                                                    avg =
       overall = 0.0462
                                                                    max =
                                                   Wald chi2(9)
                                                                             6836.85
                                                                        =
                    = -0.9097
                                                   Prob > chi2
corr(u i. Xb)
                                                                        =
                                                                              0.0000
       lwage
                     Coef.
                              Std. Err.
                                                   P>|z|
                                                               [95% Conf. Interval]
                                              z
                  -.022311
                              .0127311
                                           -1.75
                                                   0.080
                                                             -.0472635
                                                                            .0026414
         OCC.
       south
                 -.0071538
                              .0331086
                                           -0.22
                                                   0.829
                                                             -.0720455
                                                                             .057738
                 -.0440674
                              .0185212
                                           -2.38
                                                   0.017
                                                             -.0803684
                                                                          -.0077665
        smsa
         ind
                  .0205403
                              .0143986
                                            1.43
                                                   0.154
                                                             -.0076805
                                                                             .048761
                  .1134939
                              .0024702
                                           45.95
                                                   0.000
                                                               .1086525
                                                                            .1183353
         exp
                              .0000546
                                                             -.0005364
                                                                          -.0003224
        exp2
                 -.0004294
                                           -7.87
                                                   0.000
         wks
                  .0005792
                              .0005452
                                            1.06
                                                   0.288
                                                             -.0004894
                                                                            .0016478
                 -.0332211
                              .0181076
                                           -1.83
                                                   0.067
                                                             -.0687114
                                                                            .0022692
          ms
                  .0293732
                               .013791
       union
                                            2.13
                                                   0.033
                                                               .0023434
                                                                             .056403
        rho1
                 .15024986
                              (estimated autocorrelation coefficient)
     sigma_u
                 .46063021
                 .50364606
     sigma_e
     rho_fov
                 .45547913
                              (fraction of variance due to u_i)
       theta
                          1
```

	RE	FE	REAR1	FEAR1-CO	FEAR1-PW
осс	-0.0501	-0.0215	-0.0690	-0.0217	-0.0223
	(0.0166)	(0.0138)	(0.0167)	(0.0154)	(0.0127)
south	-0.0166	-0.00186	-0.0406	`0.0352´	-0.00715
	(0.0265)	(0.0343)	(0.0218)	(0.0422)	(0.0331)
smsa	-0.0138	`-0.0425	`0.0435´	`-0.0387	`-0.0441´
	(0.0200)	(0.0194)	(0.0183)	(0.0232)	(0.0185)
ind	0.00374	0.0192	0.0144	0.0110	0.0205
	(0.0173)	(0.0154)	(0.0163)	(0.0171)	(0.0144)
exp	`0.0821	`0.1130´	`0.0664´	`0.1060´	`0.1130´
	(0.00285)	(0.00247)	(0.00289)	(0.00365)	(0.00247)
exp2	`-0.0008	`-0.0004´	`-0.0009´	`-0.0003´	`-0.0004´
	(0.00006)	(0.00005)	(0.00006)	(0.00008)	(0.00005)
wks	0.0010	0.0008	0.0012	0.0004	0.0006
	(0.0008)	(0.0006)	(0.0008)	(0.0007)	(0.0005)
ms	-0.0746	-0.0297	-0.0668	-0.0216	-0.0332
	(0.0230)	(0.0190)	(0.0237)	(0.0221)	(0.0181)
union	0.0632	0.0328	0.0682	[0.0154]	[0.0294]
	(0.0171)	(0.0149)	(0.0164)	(0.0167)	(0.0138)
fem	-0.3390		-0.3980		
	(0.0513)		(0.0401)		
blk	-0.2100		-0.1890		
	(0.0580)		(0.0424)		
ed	`0.0997´		`0.0806´		
	(0.0058)		(0.0044)		
N	4165	4165	4165	3570	4165

An Application of Cornwell and Rupert (1988)

- The standard error of the FEAR1-CO estimator is even larger than the one of FE estimator.
- This is because the loss of the first time period.
- The standard error of the FEAR1-PW estimator is smaller than the one of FE estimator.

An Application of Gravity Data Set in Serlenga and Shin (2007)

The FEAR1 estimator

$$\hat{\beta}_{FEAR1} = \left[X^{*\prime} \left(I_{N} \otimes E_{T}^{\alpha} \right) X^{*} \right]^{-1} X^{*\prime} \left(I_{N} \otimes E_{T}^{\alpha} \right) y^{*}$$

If $\rho = 0$, reduces to the FE estimator

$$\hat{\beta}_{FE} = \left[X' \left(I_N \otimes E_T \right) X \right]^{-1} X' \left(I_N \otimes E_T \right) y,$$

where E_T is the within matrix, and if ho=1, reduces to the FD estimator

$$\hat{\beta}_{FD} = \left[X' \left(I_N \otimes D'D \right) X \right]^{-1} X' \left(I_N \otimes D'D \right) y,$$

where D is the first difference matrix.

ullet Let ho choose between the FE and FD estimators.

An Application of Gravity Data Set in Serlenga and Shin (2007)

- bilateral trade flows among 15 European countries over the period 1960–2001.
- The general model regresses bilateral trade (Trade) is regressed on
- GDP (GDP),
- similarity in relative size (SIM),
- differences in relative factor endowments between trading partners (RLF),
- real exchange rate (RER),
- both countries belong to the European community (CEE),
- adopt a common currency (EMU);
- distance between capital cities (DIST);
- common border (BOR);
- common language (LAN).

	OLS	RE	FE	FD	FEAR1
Gdp	1.538	2.224	3.053	1.279	2.160
	(0.0130)	(0.0536)	(0.0786)	(0.116)	(0.111)
Sim	0.839	`1.279´	1.422	`0.596´	`1.051´
	(0.0171)	(0.0495)	(0.0551)	(0.104)	(0.0857)
Rlf	`0.0205´	`0.0235´	`0.0181´	-0.00247	-0.00124
	(0.00833)	(0.00731)	(0.00718)	(0.00469)	(0.00485)
Rer	`0.0878´	`0.0562´	`0.0836´	` 0.402 ´	`0.0612´
	(0.00388)	(0.00938)	(0.0102)	(0.0172)	(0.0202)
Cee	` 0.167 ´	` 0.305 ´	`0.319´	`0.0493´	`0.0681´
	(0.0264)	(0.0169)	(0.0167)	(0.0145)	(0.0161)
Emu	`0.210´	`0.274´	`0.218´	-0.0192´	`0.0333´
	(0.0702)	(0.0348)	(0.0342)	(0.0167)	(0.0219)
Dist	`-0.698´	`-0.439´	,	,	,
	(0.0224)	(0.123)			
Bor	`0.536´	`0.277			
	(0.0334)	(0.196)			
Lan	`0.260 ′	`0.655´			
	(0.0336)	(0.190)			
$\overline{\rho}$,	` '			0.866
Ń	3822	3822	3822	3822	3822

A little bug in xtregar

Transforming the data to remove the AR(1) component

After estimating ρ , Baltagi and Wu (1999) derive a transformation of the data that removes the AR(1) component. Their $C_i(\rho)$ can be written as

$$y^*_{it_{ij}} = \begin{cases} (1-\rho^2)^{1/2} y_{it_{ij}} & \text{if } t_{ij} = 1 \\ \\ (1-\rho^2)^{1/2} \left[y_{i,t_{ij}} \left\{ \frac{1}{1-\rho^{2(t_{ij}-t_{i,j-1})}} \right\}^{1/2} - y_{i,t_{i,j-1}} \left\{ \frac{\rho^{2(t_{ij}-t_{i,j-1})}}{1-\rho^{2(t_{i,j}-t_{i,j-1})}} \right\}^{1/2} \right] & \text{if } t_{ij} > 1 \end{cases}$$

Using the analogous transform on the independent variables generates transformed data without the AR(1) component. Performing simple OLS on the transformed data leaves behind the residuals μ^* .

An Application of Grunfeld Data Set

- Panel data on 11 large US manufacturing firms over 20 years, for the years 1935–1954.
- Gross investment (invest) is regressed on
- Market value of the firm (mvalue),
- Stock of plant and equipment (kstock)

	FE	FEAR1	FEAR2	FEAR3
mvalue	0.110	0.0917	0.0836	0.0827
	(0.0119)	(0.00867)	(0.00808)	(0.00828)
	(0.0113)	(0.00001)	(0.00000)	(0.00020)
kstock	0.310	0.322	0.315	0.320
KSLUCK				
	(0.0174)	(0.0250)	(0.0228)	(0.0225)
ρ_1		0.664	0.868	0.817
ρ_2			-0.296	-0.240
ρ_3				-0.034
RMŚĔ	52.768	50.551	50.009	50.692
N	200	200	200	200

Conclusion

• We introduce a new user-written Stata command xtregarp.

Conclusion

- We introduce a new user-written Stata command xtregarp.
- It perfrom the RE or FE estimator with AR(p) disturbances in Baltagi and Liu (2013)

Conclusion '

- We introduce a new user-written Stata command xtregarp.
- It perfrom the RE or FE estimator with AR(p) disturbances in Baltagi and Liu (2013)
- Pros: allows autocorrelation besides AR(1); use PW transformation for FE estimator

Conclusion

- We introduce a new user-written Stata command xtregarp.
- It perfrom the RE or FE estimator with AR(p) disturbances in Baltagi and Liu (2013)
- Pros: allows autocorrelation besides AR(1); use PW transformation for FE estimator
- Cons: do not allow unbalanced panel data.

Thank you!!!