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ARMA models

Time series data are autocorrelated due to the dependence with past
values.

Autoregressive moving average (ARMA) class of models is a popular
tool to model such autocorrelations.

The AR part models the current value as a weighted average of past
values with some error.

yt = φyt−1 + εt

where

yt is the observed series
φ is the autoregressive parameter
εt is an IID error with mean 0 and variance σ2
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ARMA(1,1) model

The MA part models the current value as a weighted average of past
errors.

yt = εt + θεt−1

where θ is the moving average parameter.

The AR and MA models generate completely different
autocorrelations.

Combining these lead to a flexible way to capture various correlation
patterns observed in time series data.

yt = φyt−1 + εt + θεt−1
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Linear ARMA models

Current value of the series is linearly dependent on past values

The parameters do not change throughout the sample

This precludes many interesting features observed in the data
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Examples

In economics, the average growth rate of gross domestic product
(GDP) tend to be higher in expansions than in recessions.
Furthermore, expansions tend to last longer than recessions

In finance, stock returns display periods of high and low volatility over
the course of years

In public health, incidence of infectious disease tend be different
under epidemic and non-epidemic states
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Nonlinear models

In all these examples, the dynamics are state-dependent.

The states may be recession and expansion, high volatility and low
volatility, or epidemic and non-epidemic states
Parameters may be changing according to the states

Nonlinear models aim to characterize such features observed in the
data
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Markov-switching model

Hamilton (1989)

Finite number of unobserved states

Suppose there are two states 1 and 2
Let st denote a random variable such that st = 1 or st = 2 at any time

st follows a first-order Markov process

Current value of st depends only on the immediate past value
We do not know which state the process is in but can only estimate the
probabilities

The process can switch between states repeatedly over the sample

Ashish Rajbhandari (StataCorp LP) Markov-switching regression Stata Conference 2015 7 / 31



Features

Estimate the state-dependent parameters

Estimate transition probabilities

P(st = j |st−1 = i) = pij
Probability of transitioning from state i to state j

Estimate the expected duration of a state

Estimate state-specific predictions
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Background

Consider the following state-dependent AR(1) model

yt = µst + φstyt−1 + εt

where εt ∼ N(0, σ2st )

st is discrete and denotes the state at time t

The parameters µ, φ, and σ2 are state-dependent
The number of states are imposed apriori

For example, a two-state model can be expressed as

yt =

{
µ1 + φ1yt−1 + εt,1 if st = 1

µ2 + φ2yt−1 + εt,2 if st = 2
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Assumptions on the state variable

Recall the two-state model

yt =

{
µ1 + φ1yt−1 + εt,1 if st = 1

µ2 + φ2yt−1 + εt,2 if st = 2

If the timing when the process switches states is known, we could

Create indicator variables to estimate the parameters in different states.
For example economic crisis may alter the dynamics of a
macroeconomic variable.
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States are unobserved

st is drawn randomly every period from a discrete probability
distribution

Switching regresssion model
The realization of st at each period are independent from that of the
previous period

st follows a first-order Markov process

The current realization of the state depends only on the immediate past
st is autocorrelated
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mswitch regression command in Stata

Markov-switching autoregression

mswitch ar depvar
[
nonswitch varlist

] [
if
] [

in
]
, ar(numlist)[

options
]

Markov-switching dynamic regression

mswitch dr depvar
[
nonswitch varlist

] [
if
] [

in
] [

, options
]
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MSAR with 4 lags

Hamilton (1989) models the quarterly growth rate of real GNP as a
two state model

The dataset spans the period 1951q1 - 1984q4

The states are expansion and recession

rgnpt = µst + φ1(rgnpt−1 − µst−1) + φ2(rgnpt−2 − µst−2)+

φ3(rgnpt−3 − µst−3) + φ4(rgnpt−4 − µst−4) + εt
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Quarterly growth rate of US RGNP
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Figure : Quarterly growth rate of US RGNP
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Markov-switching autoregression

. mswitch ar rgnp, ar(1/4) nolog
Performing EM optimization:
Performing gradient-based optimization:
Markov-switching autoregression
Sample: 1952q2 - 1984q4 No. of obs = 131
Number of states = 2 AIC = 2.9048
Unconditional probabilities: transition HQIC = 2.9851

SBIC = 3.1023
Log likelihood = -181.26339

rgnp Coef. Std. Err. z P>|z| [95% Conf. Interval]

rgnp
ar

L1. .0134871 .1199941 0.11 0.911 -.2216971 .2486713
L2. -.0575212 .137663 -0.42 0.676 -.3273357 .2122933
L3. -.2469833 .1069103 -2.31 0.021 -.4565235 -.037443
L4. -.2129214 .1105311 -1.93 0.054 -.4295583 .0037155

State1
_cons -.3588127 .2645396 -1.36 0.175 -.8773007 .1596753

State2
_cons 1.163517 .0745187 15.61 0.000 1.017463 1.309571

sigma .7690048 .0667396 .6487179 .9115957

p11 .754671 .0965189 .5254555 .8952432

p21 .0959153 .0377362 .0432569 .1993221
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Transition probabilities

State 1 is recession and State 2 is expansion.

Let P denote a transition probability matrix for 2 states. The
elements of P are

P =

[
p11 p12
p21 p22

]
=

[
0.75 0.25
0.1 0.9

]
such that

∑
j pij = 1 for i,j = 1,2.

p11 denotes the probability of transitioning to recession in the next
period given that the current state is in recession.
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Predicting the probability of recession
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Figure : Probability of recession
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Expected duration

Compute the expected duration the series spends in a state

Let Di denote the duration of state i

Di follows a geometric distribution
The expected duration is

E [Di ] =
1

1− pii

The closer pii is to 1, the higher is the expected duration of state i
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Estimating duration of a state

. estat duration
Number of obs = 131

Expected Duration Estimate Std. Err. [95% Conf. Interval]

State1 4.076159 1.603668 2.107284 9.545916

State2 10.42587 4.101873 5.017005 23.11772
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Equivalent AR specifications

Consider the following equivalent AR(1) models:

yt − δ = φ(yt−1 − δ) + εt

yt = µ+ φyt−1 + εt

The unconditional means for the above models are related: δ = µ
1−φ
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MSAR and MSDR specifications

This equivalence is not possible if the mean is state-dependent

yt = δst + φ(yt−1 − δst−1) + εt (AR)

yt = µst + φyt−1 + εt (DR)

A one time change in the state leads to an immediate shift in the
mean level in the AR specification.

A one time change in the state leads to the mean level changing
smoothly over several time periods in the DR specification.
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State vector of MSAR

The observed series depends on the value of states at time t and
t − 1.

A two-state Markov process becomes a four-state Markov process.
In general, AR specification increases the state vector by the factor
K p+1, where p is the number of lags.

Used for modeling data with smaller frequency such as quarterly,
annual, etc.
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Markov-switching model of interest rates
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Figure : Short term interest rate
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Estimating interest rates

Estimate using data for the period 1955q3-2005q4

Assume the following specification for interest rates

intratet = µst + est

where

intrate is the interest rate
est ∼ N(0, σ2

st )
µ and σ2 is state-dependent
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Estimate the model using mswitch dr

. mswitch dr intrate, varswitch nolog
Performing EM optimization:
Performing gradient-based optimization:
Markov-switching dynamic regression
Sample: 1954q3 - 2005q4 No. of obs = 206
Number of states = 2 AIC = 4.4078
Unconditional probabilities: transition HQIC = 4.4470

SBIC = 4.5048
Log likelihood = -448.00658

intrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

State1
_cons 2.650457 .1260721 21.02 0.000 2.40336 2.897554

State2
_cons 7.445134 .2649754 28.10 0.000 6.925792 7.964477

sigma1 .9704124 .0880692 .8122805 1.159329

sigma2 2.958272 .1824307 2.621478 3.338336

p11 .9789357 .0160089 .9102967 .9953235

p21 .0193584 .0116402 .0059 .0616132
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Predicted probability of State 2
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Figure : Predicted probabilities using MSDR model
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Dynamic forecasting with MSAR

Estimate using data for the period 1955q3-1999q4

Assume the following specification for interest rates

intratet = µst + ρ intratet−1 + φstinflationt + γstogapt + et

where

intrate is the interest rate
inflation is the inflation rate
ogap is the output gap
et ∼ N(0, σ2)
ρ is constant
µ, φ, and γ are state-dependent

Out-of-sample forecasting from period 2000q1 - 2007q1
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Estimate the model using mswitch dr

. mswitch dr intrate L.intrate if tin(,1999q4), switch(inflation ogap) nolog
Performing EM optimization:
Performing gradient-based optimization:
Markov-switching dynamic regression
Sample: 1955q3 - 1999q4 No. of obs = 178
Number of states = 2 AIC = 2.3301
Unconditional probabilities: transition HQIC = 2.4025

SBIC = 2.5088
Log likelihood = -197.375

intrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

intrate
intrate

L1. .8503947 .0991269 8.58 0.000 .6561096 1.04468

State1
inflation -.0392848 .1298901 -0.30 0.762 -.2938646 .215295

ogap .1473233 .0528794 2.79 0.005 .0436816 .250965
_cons .7403998 .2041607 3.63 0.000 .3402522 1.140547

State2
inflation .2688704 .0798215 3.37 0.001 .1124232 .4253177

ogap -.0075103 .0856139 -0.09 0.930 -.1753105 .1602899
_cons .2173127 .4685576 0.46 0.643 -.7010433 1.135669

sigma .6138084 .0367645 .54582 .6902655

p11 .7459455 .2512815 .1792104 .9752993

p21 .2061723 .0956226 .0763309 .4494157
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Out-of-sample dynamic forecasts

0
2

4
6

8

2000q3 2002q1 2003q3 2005q1 2006q3
date (quarters)

interest rate forecasts in State 1
forecasts in State 2 weighted forecasts

Figure : Forecasts using MSDR model

Ashish Rajbhandari (StataCorp LP) Markov-switching regression Stata Conference 2015 29 / 31



Thank you !
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