Small-sample inference for linear mixed-effects models (DDF adjustments)

Xiao Yang

Senior Statistician and Software Developer StataCorp LP

2015 Stata Conference

Outline

- Motivation
- Currently supported methods
 - "Exact" methods
 - Approximate methods
 - Which one to use?
- Postestimation
 - Currently available commands
 - Small-sample adjustments for contrasts

The mixed command fits linear mixed-effects models. Mixed effects are fixed effects plus random effects. For example,

$$y_{ij} = \beta_0 + \beta_1 x_{ij1} + \cdots + \beta_p x_{ijp} + u_j + \epsilon_{ij},$$

where $i = 1, 2, ..., n_j$ and j = 1, 2, ..., s.

In matrix notation, $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \boldsymbol{\epsilon}$.

- β_0 , β_1 , ..., β_p are fixed effects
- u_i 's are random effects
- $u_i \sim N(0, \sigma_u^2)$ and $\epsilon_{ij} \sim N(0, \sigma_e^2)$
- X and Z are design matrices

Researchers are often interested in making inferences about fixed effects.

- Large-sample approximation
 - \bullet sampling distributions of the test statistics are approximated by normal and χ^2
 - default in mixed
- In special cases, sampling distributions of the test statistics are known to be t or F distributions.
 - simple balanced split-plot design
 - simple balanced repeated measures
- In small samples, large-sample approximations may lead to anticonservative results.

Introducing mixed, dfmethod() ...

- In small samples, the null sampling distributions of test statistics for fixed effects are not known in general (except for special cases).
- Sampling distributions are approximated by t and F.
- Approximations differ in how respective denominator degrees of freedom (DDF) are computed.
- Five methods for calculating DDFs.
- New in Stata 14, need to specify the dfmethod() option.

Choosing between DDF methods is not an easy task!

- All DDF methods are only approximations (except in some rare cases).
- The choice of DDFs is highly dependent on the models, the data structure, the size of the dataset, and the balance of the dataset.
- No single method works for all possible models.

Example 1: Simple repeated-measures design

- From table 4.3 of Winer, Brown, and Michels¹.
- The reaction time for 5 subjects each tested with 4 drugs was recorded in the variable score. drug is the repeated-measures factor.
 - . tabdisp person drug, cellvar(score)

	drug							
person	1	2	3	4				
1	30	28	16	34				
2	14	18	10	22				
3	24	20	18	30				
4	38	34	20	44				
5	26	28	14	30				

¹B. J. Winer, D. R. Brown, and K. M. Michels. *Statistical Principles in Experimental Design*. 3rd ed. New York, NY: McGraw-Hill, Inc., 1991.

```
Example 1
```

Use anova command:

```
. anova score person drug, repeated(drug)
. . .
Between-subjects error term:
                              person
                     Levels:
                                         (4 df)
    Lowest b.s.e. variable: person
Repeated variable: drug
                                           Huynh-Feldt epsilon
                                                                          1.0789
                                           *Huynh-Feldt epsilon reset to 1.0000
                                           Greenhouse-Geisser epsilon =
                                                                         0.6049
                                           Box's conservative epsilon = 0.3333
                                                         - Prob > F
                  Source
                               df
                                        F
                                             Regular
                                                        H-F
                                                                 G-G
                                                                           Box
                    drug
                                3
                                      24.76
                                              0.0000
                                                       0.0000
                                                                0.0006
                                                                          0.0076
                Residual
                                12
```

• Large-sample inference

```
. mixed score i.drug || person:, reml
Mixed-effects REML regression
                                                Number of obs
                                                                             20
Group variable: person
                                                Number of groups
                                                Obs per group:
                                                              min =
                                                                              4
                                                               avg =
                                                                            4.0
                                                              max =
                                                                              4
                                                Wald chi2(3)
                                                                          74.28
Log restricted-likelihood = -49.640099
                                                Prob > chi2
                                                                         0.0000
                    Coef.
                            Std. Err.
                                                P>|z|
                                                          [95% Conf. Interval]
       score
        drug
          2
                      - . 8
                            1.939072
                                        -0.41
                                                0.680
                                                         -4.600511
                                                                       3.000511
          3
                    -10.8
                                        -5.57
                                                0.000
                            1.939072
                                                         -14.60051
                                                                     -6.999489
                      5.6
                            1.939072
                                         2.89
                                                0.004
                                                          1.799489
                                                                       9.400511
```

. . .

_cons

26.4

3,149604

8.38

0.000

20.22689

32.57311

Small-sample inference

```
. mixed score i.drug || person:, reml dfmethod(repeated)
Mixed-effects REML regression
                                                 Number of obs
                                                                              20
Group variable: person
                                                 Number of groups
                                                                               5
                                                 Obs per group:
                                                               min =
                                                                               4
                                                                             4.0
                                                                avg =
                                                               max =
                                                                               4
DF method: Repeated
                                                 DF:
                                                               min =
                                                                            4.00
                                                                avg =
                                                                           10.00
                                                               max =
                                                                           12.00
                                                                           24.76
                                                 F(3,
                                                         12.00)
Log restricted-likelihood = -49.640099
                                                 Prob > F
                                                                          0.0000
                    Coef.
                            Std. Err.
                                                 P>|t|
                                                           [95% Conf. Interval]
       score
                                            t
        drug
          2
                      -.8
                            1.939072
                                         -0.41
                                                 0.687
                                                          -5.024874
                                                                        3.424874
                    -10.8
                                         -5.57
                                                 0.000
                            1.939072
                                                          -15.02487
                                                                       -6.575126
                      5.6
                            1.939072
                                          2.89
                                                 0.014
                                                           1.375126
                                                                        9.824874
                     26.4
                            3,149604
                                          8.38
                                                 0.001
                                                            17.6553
                                                                         35,1447
       _cons
```

To display the DF value for each coefficient, just type

. mixed, dftable(pvalue)

score	Coef.	Std. Err.	DF	t	P> t
drug					
2	8	1.939072	12.0	-0.41	0.687
3	-10.8	1.939072	12.0	-5.57	0.000
4	5.6	1.939072	12.0	2.89	0.014
_cons	26.4	3.149604	4.0	8.38	0.001

. estat df

Degrees of freedom

	Repeated		
score drug 2 3 4	12 12 12		
_cons	4		

Example 2: Random-coefficient model for longitudinal data

- Simulated dataset from Kenward and Roger².
- 24 subjects, identified by **id**, split into 3 groups of 8. The subjects of each group are being observed on the same time points. The three sets of time points are chosen to be nonoverlapping: (0,1,2), (3,4,5), and (6,7,8).

$$y_{ij} = \beta_0 + \beta_1 \operatorname{time}_{ij} + u_j + \gamma_j \operatorname{time}_{ij} + \epsilon_{ij}$$

- $\begin{bmatrix} u_j \\ \gamma_j \end{bmatrix} \sim N \left(\begin{bmatrix} b_0 \\ b_1 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{bmatrix} \right)$ and $\epsilon_{ij} \sim N(0, \sigma_e^2)$.
- Data are simulated from the model with $\beta_1 = 0$.

"Small sample inference for fixed effects In: *Biometrics* 53 (1997), pp. 983–997.

²M. G. Kenward and J. H. Roger. from restricted maximum likelihood".

Example 2

Large-sample inference

```
. mixed y time || id: time, reml cov(unstructured)
Mixed-effects REML regression
                                                  Number of obs
                                                                               72
Group variable: id
                                                  Number of groups
                                                                               24
                                                  Obs per group:
                                                                 min =
                                                                              3.0
                                                                 avg =
                                                                 max =
                                                  Wald chi2(1)
                                                                             4.34
Log restricted-likelihood = -109.39153
                                                  Prob > chi2
                                                                           0.0372
                                                             [95% Conf. Interval]
           у
                     Coef.
                             Std. Err.
                                             z
                                                  P>|z|
                  .2765987
                             .1327319
                                           2.08
                                                  0.037
                                                             .0164489
                                                                          .5367485
        time
                  1.045034
                             .2504823
                                           4.17
                                                  0.000
                                                             .5540973
                                                                          1.53597
       _cons
```

• • •

• The default large-sample inference for **time** suggests that the fixed time effect is significant at a 5% level (*p*-value = 0.037).

```
└─ Motivation
└─ Example 2
```

Small-sample inference with the kroger method

```
. mixed y time || id: time, reml cov(unstructured) dfmethod(kroger)
Mixed-effects REML regression
                                                  Number of obs
                                                                               72
Group variable: id
                                                  Number of groups
                                                                               24
                                                  Obs per group:
                                                                min =
                                                                                3
                                                                 avg =
                                                                              3.0
                                                                 max =
                                                                            11.68
DF method: Kenward-Roger
                                                  DF:
                                                                min =
                                                                            17.19
                                                                 avg =
                                                                            22.69
                                                                 max =
                                                  F(1,
                                                          22.69)
                                                                             4.24
Log restricted-likelihood = -109.39153
                                                  Prob > F
                                                                           0.0512
                     Coef.
                             Std. Err.
                                                  P>|t|
                                                            [95% Conf. Interval]
           У
                                             t
        time
                  .2765987
                               .13434
                                           2.06
                                                  0.051
                                                           -.0015158
                                                                         .5547132
                  1.045034
                             .2700712
                                           3.87
                                                  0.002
                                                             4548251
                                                                         1.635242
       cons
```

. .

 After adjusting for a small sample, we do not have sufficient evidence to reject the null hypothesis of no time effect at a 5% significance level. mixed, dfmethod() provides five DDF methods.

Method	ML	REML
residual	YES	YES
repeated	YES	YES
anova	YES	YES
satterthwaite	NO	eim, oim
kroger	NO	eim, oim

residual

"Exact" methods

For "exact" methods, computing DF for each coefficient is based on the single hypothesis test $H_o: \beta_i = 0$, for i = 1, 2, ..., p.

- $v_{df} = n rank(X)$ for all tests.
- residual provides exact degrees of freedom only in the 'iid' case.
- For other mixed models, provides poor approximation.
- Available for completeness.

repeated

"Exact" methods

- Partitions the residual degrees of freedom into the between-subject degrees of freedom and the within-subject degrees of freedom.
- Gives exact DF values for special balanced repeated-measures models with the spherical covariance structure.
- Supported only with two-level models.
- Leads to poor approximations for more complex mixed-effects models or with unbalanced data.

anova

- Checks if the fixed effect is contained in some random-effects equations.
- If contained in some random-effects equations, then DF equals the smallest number of levels among the level variables minus one.
- If not contained in any random-effects equation, then

$$v_{df} = n - rank(X, Z)$$

- Gives an exact sampling distribution of the test statistics only when random effects are simple and balanced and the error terms are i.i.d.
- Leads to poor approximations for more complex mixed-effects models or with unbalanced data.

Conclusion for "exact" methods

- residual, repeated, anova.
- Available for both ML and REML.
- Based on single-hypothesis tests.
- Available for multiple-hypotheses tests only if all corresponding single-hypothesis DFs are the same, $v_{ddf} = v_{df}$.
- If all corresponding single-hypothesis DFs are different, v_{ddf} is not defined.

satterthwaite

- For a single-hypothesis test, Giesbrecht and Burns³ developed a method of computing the DDF that is analogous to Satterthwaite's approximation of the degrees of freedom.
- For a multiple-hypotheses test, Fai and Cornelius⁴
 decomposed the contrast matrix using the spectral
 decomposition and repeatedly applied Giesbrecht and Burns's
 method to get the single-degree-of-freedom t test, then used
 the relationship between t and F to get the DDF.

³F. G. Giesbrecht and J. C. Burns. "Two-stage analysis based on a mixed model: large-sample asymptotic theory and small-sample simulation results". In: *Biometrics* 41 (1985), pp. 477–486.

⁴A. H. Fai and P. L. Cornelius. "Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments". In: *Journal of Statistical Computation and Simulation* 54 (1996), pp. 363–378.

satterthwaite

- Fai and Cornelius⁵ prove that satterthwaite is good at approximating unbalanced split-plot designs.
- Schaalje, McBride, and Fellingham⁶ recommend using the satterthwaite method only when the covariance structure of the data is compound symmetry and the sample size is moderately large.

⁵A. H. Fai and P. L. Cornelius. "Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments". In: *Journal of Statistical Computation and Simulation* 54 (1996), pp. 363–378.

⁶G. B. Schaalje, J. B. McBride, and G. W. Fellingham. "Adequacy of approximations to distributions of test statistics in complex mixed linear models". In: *Journal of Agricultural, Biological, and Environmental Statistics* 7 (2002), pp. 512–524.

kroger

• Kenward and Roger⁷ proposed the scaled *F*-test statistic,

$$F_{KR} = rac{\lambda}{\ell} (\mathbf{C}'\widehat{oldsymbol{eta}} - \mathbf{b})' (\mathbf{C}'\widehat{oldsymbol{\Phi}}_{A}\mathbf{C})^{-1} (\mathbf{C}'\widehat{oldsymbol{eta}} - \mathbf{b}) \sim F_{\ell,ddf_{kr}}$$

- Accounts for the small-sample bias and the variability of the estimated random effects to obtain an adjusted estimator of the fixed-effects covariance matrix $\widehat{\Phi}_A$.
- Uses a Taylor expansion for $(\mathbf{C}'\widehat{\Phi}_A\mathbf{C})^{-1}$ and matches moments of F_{KR} with those of the approximating F distribution to obtain ddf_{Kr} and λ .

"Small sample inference for fixed effects In: *Biometrics* 53 (1997), pp. 983–997.

⁷M. G. Kenward and J. H. Roger. from restricted maximum likelihood".

kroger

- kroger yeilds to exact F distribution when the exact F distribution is available, and improves the approximation when the exact F distribution is not available.
- ullet Computing $\widehat{\Phi}_A$ involves taking first and second derivatives of the covariance matrix of ${f y}$ w.r.t. each random component.
- $\widehat{\Phi}_A$ is invariant under reparameterization if the covariance matrix of \mathbf{y} can be written as a linear function of random components.
- The second derivatives require more computational resources and may not be numerically stable; therefore, they are ignored.

approximate methods

Conclusion for Approximate Methods

- satterthwaite and kroger are only available under REML.
- You can choose to use either oim or eim in the computation of satterthwaite or kroger; eim is the default.
- For a single-hypothesis test, DFs are the same between satterthwaite and kroger, but tests statistics and therefore tests are not necessarily identical.
- Suitable for complex covariance structures and unbalanced data.
- Computationally intensive.

Which is the best dfmethod()?

- [Spilke et al] [7]: Assessed the performance of five DDF methods on RCB, split-plot, strip plots with missing data under REML. Prefered kroger.
- [Alnosaier] [1]: Assessed the performance of satterthwaite and kroger for PBIB, BIBD, and RCB with missing data designs through simulation. Prefered kroger method.
- [Schaalje et al] [6]: Assessed the performance of kroger and satterthwaite for split-plot and repeated measures designs; both methods are affected by covariance structure complexity, sample size, and imbalance. Prefered kroger method.
- [Gregory] [4]: Compared four DDF methods in the unbalanced two-way factorial design. Found no significant differences between those methods.

Which one is the best dfmethod()?

- Prefer the kroger method when the sample size is small, the covariance structure is complicated, and/or the data is unbalanced.
- Even the kroger method sometimes produces inflated Type I error rates (e.g., AR(1) error covariance structure).
- The approximation methods can be computationally intensive.
- More research needs to be done to determine which method is the best for different mixed-effects models.

Postestimation

Stata provides additional postestmation commands and options for small-sample inference after mixed:

- estat df
- test, small
- testparm, small
- lincom, small
- contrast, small (forthcoming)

Example 3: Unbalanced split-plot design

. tabdisp b s. cellvar(v) bv(a) concise

There are 30 observations, 8 subjects, whole plot factor a (2 levels), sub-plot factor b (4 levels), unbalanced

, our		, bj (u)					
			s				
1	2	3	4	5	6	7	8
3	6	3	3				
4	5	4	3				
7		7	6				
7	8	9	8				
				1	2	2	2
				2	3	4	3
				5	6	5	6
				10		9	11
	1 3 4 7	1 2 3 6 4 5 7	1 2 3 3 6 3 4 5 4 7 7	3 6 3 3 4 5 4 3 7 7 6	1 2 3 4 5 3 6 3 3 4 5 4 3 7 7 6 7 8 9 8	1 2 3 4 5 6 3 6 3 3 4 5 4 3 7 7 6 7 8 9 8	1 2 3 4 5 6 7 3 6 3 3 4 5 4 3 7 7 6 7 8 9 8 1 2 2 2 3 4 5 6 5

estat df

estat df is a convenient tool to calculate and compare the DF's for different methods.

Fit the model based on large-sample inference

. mixed y a##b || s:, reml

у	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
2.a	-2	.6288677	-3.18	0.001	-3.232558	767442
Ъ						
2	.25	.5359916	0.47	0.641	8005243	1.300524
3	3.108222	.5862035	5.30	0.000	1.959284	4.25716
4	4.25	.5359916	7.93	0.000	3.199476	5.300524
a#b						
2 2	1	.7580066	1.32	0.187	4856656	2.485666
2 3	.6417778	.7943057	0.81	0.419	9150328	2.198588
2 4	4.044205	.7943057	5.09	0.000	2.487395	5.601016
_cons	3.75	.4446766	8.43	0.000	2.87845	4.62155

estat df

• Compare different DF methods using the method() option

. estat df, method(residual repeated anova satterthwaite kroger) Degrees of freedom

		Residual	Repeated	ANOVA	Satterthwaite	Kenward-Roger
у						
	a					
	1	(empty)				
	2	22	6	16	18.29179	18.29179
	ъ					
		(
	1	(empty)				
	2	22	16	16	16.01983	16.01983
	3	22	16	16	16.66069	16.66069
	4	22	16	16	16.01983	16.01983
	a#b					
	1 1	(empty)				
		(empty)				
	2 1	(empty)				
	2 2	22	16	16	16.01983	16.01983
	2 3	22	16	16	16.36871	16.36871
	2 4	22	16	16	16.36871	16.36871

estat df

 Post the desired DF (kroger in our example) using the post option.

```
. estat df, method(kroger) post
```

 It is the same as refitting the model using the dfmethod() option in mixed.

```
. mixed y a##b || s:, reml dfmethod(kroger)
```

test, small

• Obtain the large-sample inference as usual.

```
. test 2.a
(1) [y]2.a = 0
chi2(1) = 10.11
Prob > chi2 = 0.0015
```

• Use the small option to get small-sample adjustment.

```
. test 2.a, small
(1) [y]2.a = 0
F(1, 18.29) = 10.11
Prob > F = 0.0051
```

```
Example
```

testparm, small

 testparm also provides both tests, with and without small-sample adjustment.

```
. testparm a#b
(1) [y]2.a#2.b = 0
(2) [y]2.a#3.b = 0
(3) [y]2.a#4.b = 0
chi2(3) = 29.35
Prob > chi2 = 0.0000
. testparm a#b, small
(1) [y]2.a#2.b = 0
(2) [y]2.a#3.b = 0
(3) [y]2.a#4.b = 0
F(3, 16.35) = 9.66
Prob > F = 0.0007
```

lincom, small

• lincom also provides two sets of results.

. lincom 2.a + 2.a#4.b (1) [y]2.a + [y]2.a#4.b = 0

у	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	2.044205	.6721771	3.04	0.002	.7267621	3.361648

- . lincom 2.a + 2.a#4.b, small
- (1) [y]2.a + [y]2.a#4.b = 0

	у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	2.044205	.6764554	3.02	0.007	.6311736	3.457237

L Example

contrast, small

. contrast a

- Suppose that we want to test the effect of factor a.
- The effect of factor *a* includes the main effect of *a* and the interaction effects that contain *a*.
- Currently, contrast only provides large-sample inference.

```
Contrasts of marginal linear predictions

Margins : asbalanced

df chi2 P>chi2

y

a 1 1.79 0.1810
```

• It is not the test for 2.a from the coefficient table!

contrast, small

We need to manually compute the small-sample inference.

Write your own contrast

$$H_o: 2.a + \frac{1}{4} \times 2.a\#2.b + \frac{1}{4} \times 2.a\#3.b + \frac{1}{4} \times 2.a\#4.b = 0$$

• Use test, small

• contrast, small forthcoming

Thank you!

References

- [1] W. S. Alnosaier. "Kenward-Roger Approximate F Test for Fixed Effects in Mixed linear models". PhD thesis. Oregon State University, 2007.
- [2] A. H. Fai and P. L. Cornelius. "Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments". In: *Journal of Statistical Computation and Simulation* 54 (1996), pp. 363–378.
- [3] F. G. Giesbrecht and J. C. Burns. "Two-stage analysis based on a mixed model: large-sample asymptotic theory and small-sample simulation results". In: *Biometrics* 41 (1985), pp. 477–486.

References (cont.)

- [4] K. B. Gregory. "A Comparison of Denominator Degrees of Freedom Approximation Methods in the Unbalanced Two-way Factorial Mixed Model". MA thesis. Texas A & M University, 2011.
- [5] M. G. Kenward and J. H. Roger. "Small sample inference for fixed effects from restricted maximum likelihood". In: *Biometrics* 53 (1997), pp. 983–997.
- [6] G. B. Schaalje, J. B. McBride, and G. W. Fellingham. "Adequacy of approximations to distributions of test statistics in complex mixed linear models". In: *Journal of Agricultural*, *Biological*, and *Environmental Statistics* 7 (2002), pp. 512–524.

References (cont.)

- [7] J. Spilke, H. Piepho, and X. Hu. "A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data". In: *Journal of Agricultural, Biological and Environmental Statistics* 10 (2005), pp. 374–389.
- [8] B. J. Winer, D. R. Brown, and K. M. Michels. Statistical Principles in Experimental Design. 3rd ed. New York, NY: McGraw-Hill, Inc., 1991.