Meta-Analytic Depiction Of Ordered Categorical Diagnostic Test Accuracy In ROC Space No Thresholds Left Behind

Ben A. Dwamena, MD

The University of Michigan Radiology & VAMC Nuclear Medicine, Ann Arbor, Michigan

2009 Stata Conference, Washington, DC - July 31, 2009

Outline

- 1 Objectives
- 2 Diagnostic Test Evaluation
- 3 Example Data
- 4 Current Methods for Meta-analysis of Ordinal Data
- 5 Proposed Algorithm for Meta-analysis of Ordinal Data
- 6 Worked Examples
- 7 Concluding Remarks

Objectives

- Review underlying concepts of medical diagnostic test evaluation
- Provide illustrated overview of current methods for meta-analysis of diagnostic test accuracy studies with discrete outcomes
- 3 Describe a robust and flexible parametric algorithm for meta-analysis of ordered categorical data
- Demonstrate implementation with Stata using two data sets, one with studies reporting same set of categories and the other with disparately categorized outcomes

Medical Diagnostic Test

Any measurement aiming to identify individuals who could potentially benefit from preventative or therapeutic intervention

This includes:

- 1 Elements of medical history e.g. Retrosternal chest pain
- 2 Physical examination e.g. Systolic blood pressure
- 3 Imaging procedures e.g. Chest xray
- 4 Laboratory investigations. e.g. Fasting blood sugar
- 5 Clinical prediction rules e.g. Geneva Score for Venous Thromboembolim

Diagnostic Test Types/Scales

- Dichotomous using single implicit or explicit threshold eg. Presence or absence of a specific DNA sequence in blood serum eg. Fasting blood glucose ≥ 126 mg/ml diagnostic of diabetes mellitus
- Ordered Categorical with multiple implicit or explicit thresholds eg. the BIRADS scale for mammograms: 1 'Benign'; 2 'Possibly benign'; 3 'Unclear'; 4 'Possibly malignant'; 5 'Malignant' eg. Clinical symptoms classified as 1 'not present', 2 'mild', 3 'moderate', or 4 'severe'
- **3** Continuous

eg. biochemical tests such as serum levels of creatinine, bilirubin or calcium

Diagnostic Accuracy Studies

Figure: Basic Study Design

Diagnostic Accuracy Studies

Figure: Distributions of test result for diseased and non-diseased populations defined by threshold (DT)

Binary Test Accuracy

Data Structure

Data often reported as 2×2 matrix

	Reference Test (Diseased)	Reference Test (Healthy)
Test Positive	True Positive (a)	False Positive (b)
Test Negative	False Negative (c)	True Negative (d)

- 1 The chosen threshold may vary between studies of the same test due to inter-laboratory or inter-observer variation
- 2 The higher the cut-off value, the higher the specificity and the lower the sensitivity

Binary Test Accuracy

Measures of Test Performance

- Sensitivity (true positive rate) The proportion of subjects with disease who are correctly identified as such by test (a/a+c)
- Specificity (true negative rate) The proportion of subjects without disease who are correctly identified as such by test (d/b+d)
 - Positive predictive value The proportion of test positive subjects who truly have disease (a/a+b)
 - Negative predictive value The proportion of test negative subjects who truly do not have disease (d/c+d)

Binary Test Accuracy

Measures of Test Performance

Likelihood ratios (LR) The ratio of the probability of a positive (or negative) test result in the patients with disease to the probability of the same test result in the patients without the disease (sensitivity/1-specificity) or (1-Sensitivity/specificity)

Diagnostic odds ratio The ratio of the odds of a positive test result in patients with disease compared to the odds of the same test result in patients without disease (LRP/LRN)

Non-binary Test Accuracy

ROC Curve Analysis

The accuracy of continuously or ordinally scaled tests is best summarized by ROC curve, a plot of all pairs of (1-specificity, sensitivity) as positivity threshold varies:

- 1 Provides complete description of potential performance
- 2 Facilitates comparison and combination of information across studies of the same test
- 3 Guides the choice of thresholds in applications
- 4 Provides a mechanism for relevant comparisons between different non-binary tests

Non-binary Test Accuracy

ROC Curve Analysis

Figure: ROC curve derived from changing test threshold

Non-binary Test Accuracy

ROC Curve Analysis

Table: Summary Indices for ROC Curves

Index Name	Notation	Definition	Interpretations
Area under Curve	AUC	Integrate ROC over range(0-1)	Average TPF across all possible FPF
Specific ROC point	$ROC(t_0)$	$ROC(t_0)$	$P[Y_D > q]$
Partial Area under curve	$pAUC(t_0)$	Integrate ROC over range $(0-t_0)$	Average TPF across $FPF \in (0\text{-}t_0)$
Symmetry Point	Sym	ROC(Sym)=Sym	Sensitivity=Specificity

 Y_D : Test result for diseased $q=1-t_0$ quantile for Y_D

Ordinal Test Accuracy

Data Structure

- **1** Test result for each individual Y falls into one of J categories ("ratings")
- 2 These categories are ordered in terms of increasing likelihood of disease
- 3 Data often reported as $2 \times j$ matrix

Category	Diseased	Healthy	Total
C_1	n _{d1}	n _{h1}	n_1
-	-		
	-		
-	-		
C_j	n _{dj}	n _{hj}	nj
Total	n _d	n _h	N

Example Data

117 consecutive patients older than age 50 admitted to a Veterans Affairs (VA) nursing home (NH).

Screened for alcohol dependence using CAGE questionnaire as index test.

DSM-III-R criteria were used as Reference standard.

Forty-nine percent of study participants had lifetime alcohol abuse or dependence.

CAGE Scores for Alcoholism Screening

CAGE is an acronym for each of four questions:

- Have you ever felt you should cut down on your drinking?
- 2 Have people annoyed you by criticizing your drinking?
- 3 Have you ever felt bad or guilty about your drinking?
- 4 Have you ever had a drink in the morning to get rid of a hangover?

Each question is scored 1 or 0 for YES or NO answers respectively

Example Data

Table: Single Study CAGE Scores

Score	0	1	2	3	4
Normal	45	9	4	2	0
Abnormal	1	9	17	7	23

Approaches

- Dichotomization at single threshold and analysis as binary data
- Empirical ROC plot of sensitivity and 1-specificity at different thresholds
- 3 Binormal ROC analysis
- 4 ROC analysis via Ordinal regression

Dichotomized Data

Recommended Positivity Threshold: Cage Score >= 2

	DSM-IIIR (Abnormal)	DSM-IIIR (Normal)	total
CAGE >= 2	47	6	53
CAGE < 2	10	54	64
Total	57	60	117

Sensitivity (percent): (47/57)*100 = 82

Specificity (percent): (54/60)*100 = 90

Positive Predictive Value (percent): (47/53)*100 = 90

Negative Predictive Value (percent): (54/64)*100 = 84

Empirical ROC Analysis

Based on sensitivity/specificity pairs at multiple thresholds: The higher the cut-off value, the higher the specificity and the lower the sensitivity

Sensitivity (TPR) at each threshold Number of diseased diagnosed positive/Number of diseased

Specificity (TNR) at each threshold Number of non-diseased diagnosed

cutpoint	Sensitivity	Specificity
>= 0	100	0
>= 1	98	75
>= 2	82	90
>= 3	52	96
>= 4	40	100
> 4	0	100

negative/Number of non-diseased

Empirical ROC Analysis with roctab

. roctab dtruth score [fw=dis], graph aspect(1)

Binormal ROC Analysis

Test results of diseased and healthy subjects follow normal distributions with respective means μ_1 , μ_0 and standard deviations σ_1 and σ_0

- **1** Scaled mean difference, $a = (\mu_1 \mu_0)/\sigma_1$
- 2 Scale coefficient, b = σ_0 / σ_1
- **3** The binormal ROC curve: TPR= $a + b\Phi(FPR)$ ($0 \le FPR \le 1$)
- **4** The area under curve, AUROC = $\Phi\left(\frac{a}{\sqrt{1+b^2}}\right)$
- **5** The symmetry point index, Sym = $\Phi\left(\frac{a}{1+b}\right)$

Binormal ROC Analysis using rocfit

. rocfit dtruth score [fw=dis]

Binormal model Goodness-of-fit Prob > chi2 Log likelihood	chi2(2) = =	2.88 0.2373		Number	of obs =	117
I		Std. Err.			[95% Conf.	Interval]
intercept	2.919589	0.648216 0.444514	4.50	0.000	1.649110 0.572328	
/cut2 /cut3	1.355698 1.950510	0.175958 0.207460 0.296180 0.358501	6.53 6.59	0.000	0.318907 0.949083 1.370009 1.504824	1.762312 2.531011
	Estimate	Std. Err.	es from	binormal	fit [95% Conf.	Interval]
ROC area delta(m) d(e)	0.951799 2.022495 2.389621 2.351199	0.018976			0.914606 1.379522 1.859906 1.826062	2.665467

Binormal ROC Curve using rocplot

. rocplot, norefline aspect(1)

ROC Analysis via Heteroskedastic Ordinal Regression

Suppose, the test result Y falls into one of J categories ("ratings") The probability of Y falling in a given category j or lower may be modeled as a non-linear function using the ordinal regression equation:

$$g[Pr(Y \le j \mid D)] = \frac{\theta_j - \alpha D}{exp(\beta D)}$$

g: Cumulative link function

D is a variable indicative of disease status

 $\theta_j \theta_{j-1}$: Cut-off values on an underlying latent scale

 α : Location parameter (measure of diagnostic accuracy)

β: Scale parameter (spread of responses across subjects)

Choice of Link Functions for Ordinal Regression

- **Probit** This is the inverse standard normal cumulative distribution function. More suitable when a dependent variable is normally distributed.
- **2 Logit** f(x) = log(x/(1-x)). This is usually used when the dependent ordinal variable has equal category.
- **3 Log-log** f(x) = -log(-log(x)). Recommended when the probability of the lower category is high.
- **4 Complementary log-log** f(x) = log(-log(1-x)). Recommended when the probability of higher category is high.
- **Cauchit** f(x) = tan(p(x 0.5)). This is used when extreme values are present in the data.

Ordinal Probit ROC Analysis with oglm

Heteroskedastic Ordered Probit Regression

oglm score dtruth [fw=dis], link(probit) ls het(dtruth)

Number of obs

117

Log likelihood	= -126.31934	1		LR chi Prob > Pseudo	chi2	= =	93.77 0.0000 0.2707
score		Std. Err.		P> z			Interval]
location dtruth	2.022494	.3280529	6.17	0.000	1.379		2.665466

location dtruth		.3280529	6.17	0.000	1.379522	2.665466
scale dtruth		.307929	-1.19	0.233	9706412	.2364184
/cut1 /cut2 /cut3 /cut4	.6637788 1.355697	.1759585 .2074599 .2961795 .3585009	3.77 6.53 6.59 6.16	0.000 0.000 0.000 0.000	.3189066 .9490835 1.370009 1.504824	1.008651 1.762311 2.531011 2.910121

Ordinal Probit ROC Curve with roccat

. roccat, avar('avar') avarlo('avarlo') avarhi('avarhi') bvar('bvar') ///
bvarlo('bvarlo') bvarhi('bvarhi') np(5000)

Critical review and statistical combination of previous research

Rationale

- 1 Too few patients in a single study
- 2 Too selected a population in a single study
- 3 No consensus regarding accuracy, impact, reproducibility of test(s)
- 4 Data often scattered across several journals
- 5 Explanation of variability in test accuracy
- 6 etc.

I Identification of the number, quality and scope of primary studies

- Quantification of overall classification performance (sensitivity and specificity), discriminatory power (diagnostic odds ratios) and informational value (diagnostic likelihood ratios)
- 3 Assessment of the impact of technological evolution (by cumulative meta-analysis based on publication year), technical characteristics of test, methodological quality of primary studies and publication selection bias on estimates of diagnostic accuracy
- 4 Highlighting of potential issues that require further research

Methodological Concepts

- Meta-analysis of diagnostic accuracy studies may be performed to provide summary estimates of test performance based on a collection of studies and their reported empirical or estimated smooth ROC curves
- Statistical methodology for meta-analysis of diagnostic accuracy studies focused on studies reporting estimates of test sensitivity and specificity or two by two data
- 3 Both fixed and random-effects meta-analytic models have been developed to combine information from such studies

Methodological Concepts

- To meta-analyze studies with results in more than two categories, results are often dichotomized in order to employ one of the binary methods
- 2 It is more efficient and informative to take all thresholds into account
- Existing methods require the same number and set of thresholds, are computationally intensive adapations of the binary methods or are based on hierarchical ordinal probit regression implementable using Bayesian inference

Example Dataset 1

10 studies on CAGE for alcohol dependence screening (5 listed in table) using Similar Thresholds

Table: Observed Data

ldnum	Author	Setting	Score	dis0	dis1	tdis0	tdis1
1	Saitz	PC	0	99	6	134	76
			1	26	9	134	76
			2	6	19	134	76
			3	2	21	134	76
			4	1	21	134	76
2	McQuade	PC	0	197	7	247	53
			1	31	11	247	53
			2	17	12	247	53
			3	2	13	247	53
			4	0	10	247	53
4	Chan	PC	0	38	2	56	48
			1	9	4	56	48
			2	7	15	56	48
			3	2	10	56	48
			4	0	17	56	48
8	Bradley	AMP	0	69	32	117	110
			1	33	20	117	110
			2	13	28	117	110
			3	1	20	117	110
			4	1	10	117	110
10	Indran	AMP	0	179	0	483	52
			1	120	4	483	52
			2	126	24	483	52
			3	53	19	483	52
			4	5	5	483	52

Example Dataset 2

19 studies evaluating EBCT for diagnosis of coronary artery disease (15 listed in table)

Table: Disparate Thresholds

Author	Abnormal	Normal	Categories
Budoff	427	283	2
Seese	87	20	2
Yao	45	19	2
Chen	74	42	4
Hosoi	202	80	5
Budoff	983	868	5
Almeda	160	86	4
Knez	1255	860	4
Wong	28	900	5
Shaw	249	10128	5
Greenland	84	945	4
Arad	129	4484	4
Taylor	14	1611	4
Vliengenhart	50	1745	4
La Monte	287	10459	4

Methodological Overview

- Dichotomization At Single Threshold And Meta-Analysis As Binary Data
- Proportional Odds Ordinal Regression Modeling
- 3 Bivariate Random-Effects Meta-Analysis of Slope And Intercept from Study-Specific Logit-Threshold Linear Regression
- 4 Bayesian Hierarchical Location-Scale Ordinal Regression Modeling

Methods for Dichotomized Data

Examples

- Meta-analysis of sensitivity and specificity separately by direct pooling or modeling using fixed-effects or random-effects approaches
- Meta-analysis of positive and negative likelihood ratios separately using fixed-effects or random-efffects approaches as applied to risk ratios in meta-analysis of therapeutic trials
- Meta-analysis of diagnostic odds ratios using fixed-effects or random-efffects approaches as applied to meta-analysis of odds ratios in clinical treatment trials
- 4 Summary ROC Meta-analysis using fixed-effects or random-efffects approaches

Example Dataset: CAGE

Table: Positivity Threshold: Score >= 2

Author	TP	FP	FN	TN
Saitz	60	9	15	125
McQuade	35	20	18	227
Brown	44	9	19	52
Chan	42	9	6	47
Aertgeerts	80	90	95	1705
Buchsbaum	215	47	79	480
Joseph	48	6	10	54
Bradley	58	15	52	102
Jones	12	1	13	128
Indran	48	184	4	299

Summary ROC Meta-analysis

The most commonly used and easy to implement method It is a fixed-effects model

- Linear regression analysis of the relationship
 - D = a + bS where :
 - D = (logit TPR) (logit FPR) = ln DOR
 - S = (logit TPR) + (logit FPR) = proxy for the threshold
- 2 a and b may be estimated by weighted or un-weighted least squares or robust regression, back-transformed and plotted in ROC space
- 3 Differences between tests or subgroups may examined by adding covariates to model

Summary ROC Meta-analysis

. sroc tp fn fp tn

```
Weighted Regression of D on S:
    Slope = 0.088, Intercept = 3.152, n = 10
        t = 0.63, prob > |t| = 0.545

    Homogeneous: thus ln(OR) = 3.152 and OR = 23.380

AUC and Q*:
    AUC = 0.898, se(AUC) = 0.020, 95% CI = (0.858, 0.937) (homogenous)
    AUC = 0.896, se(AUC) = 0.019, 95% CI = (0.858, 0.934) (heterogenous)
    Q* = (0.829, 0.171), se(Q*) = 0.021, 95% CI = ({0.787, 0.870}, {0.130, 0.213})

Correlation Test:
    Spearman correlation (rho) = 0.709, p(rho=0) = 0.022

    High correlation: use the summary ROC curve; do not use the summary TPR and FPR.
```


Summary ROC Meta-analysis

. sroc tp fn fp tn

```
Weighted Regression of D on S:

Slope = 0.088, Intercept = 3.152, n = 10

t = 0.63, prob >|t| = 0.545
```


Summary ROC Meta-analysis

. sroc tp fn fp tn

Mixed Effects Hierarchical Models

Mathematically equivalent models for estimating underlying SROC and average operating point and/or exploring heterogeneity

Hierarchical Summary ROC(HSROC) Model

1 Focused on inferences about the SROC curve, or comparing SROC curves but summary operating point(s) can be derived from the model parameters

Bivariate Mixed Effects Models

- I Focused on inferences about sensitivity and specificity but SROC curve(s) can be derived from the model parameters
- 2 Generalization of the commonly used DerSimonian and Laird random effects model

Hierarchical Summary ROC Regression

Level 1: Within-study variability

$$y_{ij} \sim Bin(n_{ij}, \pi_{ij})$$

$$logit(\pi_{ij}) = (\theta_i + \alpha_i X_{ij}) \exp(-\beta X_{ij})$$

- θ_i and α_i Study-specific threshold and accuracy parameters
 - y_{ij} Number testing positive assumed to be binomially distributed
 - π_{ij} Probability that a patient in study i with disease status j has a positive test result
 - X_{ij} True disease status(coded -0.5 for those without disease and 0.5 for those with the disease)

Hierarchical Summary ROC Regression

Level 2: Between-study variability

$$\theta_i \sim N(\Theta, \sigma_\theta^2)$$

$$\alpha_i \sim N\left(A, \sigma_{\alpha}^2\right)$$

- $\boldsymbol{\Theta}$ and \boldsymbol{A} Means of the normally distributed threshold and accuracy parameters
- $\sigma_{ heta}^2$ and σ_{lpha}^2 Variances of mean threshold and accuracy
 - β Shape parameter which models any asymmetry in the SROC curve

Hierarchical Summary ROC Regression of CAGE Data

. metandi tp fp fn tn

Log likelihood	= -74.385	097		Numbe	r of studies	= 10
	Coef.		z		[95% Conf	. Interval]
HSROC						
Lambda	2.998289	.25168			2.505006	3.491573
Theta	6057828	.2987906			-1.191402	0201641
beta	.0472602	.2613612	0.18	0.857	4649984	.5595187
s2alpha	. 1874206	.1608058			.0348731	1.007265
s2theta	.536654	.264404			.2043224	1.409525
Summary pt.						
Se	.7052654	.0527992			.5925838	.7974353
Sp	.8961592	.0246019			.8371398	.9354399
DOR	20.65089	3.888347			14.27797	29.86834
LR+	6.791796	1.281433			4.692295	9.83069
LR-	.3288864	.0526198			.2403582	.4500212
1/LR-	3.040564	.4864715			2.222118	4.160458

Hierarchical Summary ROC Meta-analysis of CAGE Data

. metandi tp fp fn tn, plot

Bivariate Mixed Model

Level 1: Within-study variability: Approximate Normal Approach

$$\begin{pmatrix} \texttt{logit}\left(p_{Ai}\right) \\ \texttt{logit}\left(p_{Bi}\right) \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_{Ai} \\ \mu_{Bi} \end{pmatrix}, C_i \right)$$

$$C_i = \begin{pmatrix} s_{Ai}^2 & 0 \\ 0 & s_{Bi}^2 \end{pmatrix}$$

 p_{Ai} and p_{Bi} Sensitivity and specificity of the *i*th study

 μ_{Ai} and μ_{Bi} Logit-transforms of sensitivity and specificity of the *i*th study C_i Within-study variance matrix

 s_{Ai}^2 and s_{Bi}^2 variances of logit-transforms of sensitivity and specificity

Bivariate Mixed Model

Level 1: Within-study variability: Exact Binomial Approach

$$y_{Ai} \sim Bin(n_{Ai}, p_{Ai})$$

$$y_{Bi} \sim Bin(n_{Bi}, p_{Bi})$$

 n_{Ai} and n_{Bi} Number of diseased and non-diseased

 y_{Ai} and y_{Bi} Number of diseased and non-diseased with true test results

 p_{Ai} and p_{Bi} Sensitivity and specificity of the *i*th study

Bivariate Mixed Model

Level 2: Between-study variability

$$\begin{pmatrix} \mu_{Ai} \\ \mu_{Bi} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} M_A \\ M_B \end{pmatrix}, \Sigma_{AB} \end{pmatrix}$$
$$\Sigma_{AB} = \begin{pmatrix} \sigma_A^2 & \sigma_{AB} \\ \sigma_{AB} & \sigma_B^2 \end{pmatrix}$$

 μ_{Ai} and μ_{Bi} Logit-transforms of sensitivity and specificity of the ith study M_A and M_B Means of the normally distributed logit-transforms

 Σ_{AB} Between-study variances and covariance matrix

Bivariate Mixed Binary Regression of CAGE Data

. midas tp fp fn tn, res(all)

SUMMARY DATA AND PERFORMANCE ESTIMATES

```
Number of studies = 10
Reference-positive Units = 953
Reference-negative Units = 3609
Pretest Prob of Disease = 0.21
```

Correlation (Mixed Model) = -0.84
Proportion of heterogeneity likely due to threshold effect = 0.71
Interstudy variation in Sensitivity: ICC_SEN = 0.17, 95% CI = [0.02-0.32]
Interstudy variation in Specificity: ICC_SPE = 0.17, 95% CI = [0.03-0.31]
Heterogeneity (Chi-square): LRT_Q = 178.971, df = 2.00, LRT_p = 0.000
Inconsistency (I-square): LRT_Q = 9.95% CI = [98-99]

Parameter	Estimate		95% CI
Sensitivity	0.72 [0.60,	0.81]
Specificity	0.90 [0.84,	0.94]
Positive Likelihood Ratio	7.3 [4.9,	10.7]
Negative Likelihood Ratio	0.31 [0.22,	0.44]
Diagnostic Odds Ratio	23 [16,	34]

Bivariate Summary ROC Meta-analysis of CAGE data

. midas tp fp fn tn, sroc(curve mean data conf pred) level(95)

Proportional Odds Regression(POR) Framework

Suppose, the test result Y falls into one of J categories ("ratings") The probability of Y falling in a given category j or lower may be modeled using the ordinal regression equation:

$$logit[Pr(Y \le j \mid D)] = \theta_j - \alpha D$$

D is a variable indicative of disease status

 θ_j θ_{j-1} : Cut-off values on an underlying latent scale

 α : Location parameter (measure of diagnostic accuracy=log-odds ratio)

Proportional Odds Regression(POR) Framework

Alternative Fixed- or Random-effects Approaches

- Single POR and log-odds ratio of pooled data
- Single POR and log-odds ratio with adjustment for study using dummy variables
- 3 Study-specific POR and log-odds ratios

All ROC curves are symmetric because of the assumption of a constant odds ratio for test accuracy

Fixed-effects POR of Pooled Data (FEPOR)

. oglm score resp [fw=dis], link(logit)

	Logistic Reg			Number of obs LR chi2(1) Prob > chi2 Pseudo R2	= = = =	4562 1490.31 0.0000 0.1466	
score	Coef.	Std. Err.	z	P> z	[95% Conf.	Interva	al]
resp	2.88352	.0794469	36.29	0.000	2.727807	3.0392	233
/cut1 /cut2 /cut3 /cut4	1.208429 2.0914 3.280551 4.480682	.0393556 .0496541 .0676223 .0913089	30.71 42.12 48.51 49.07	0.000 0.000 0.000 0.000	1.131293 1.99408 3.148014 4.30172	1.2858 2.188 3.4130 4.6596	372 088

Random-effects POR of Pooled Data (REPOR)

. gllamm score resp, i(study) weight(wgt) link(ologit) eq(resp) adapt

```
number of level 1 units = 4562
number of level 2 units = 10
Condition Number = 9.5321335
log likelihood = -4296.7662
```

score	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
resp	3.046648	.2144375	14.21	0.000	2.626358	3.466938
_cut11	1.204772	.0393759	30.60	0.000	1.127596	1.281947
_cut12	2.106683	.0501227	42.03	0.000	2.008444	2.204922
_cut13	3.349023	.0699056	47.91	0.000	3.212011	3.486036
_cut14	4.601222	.0950536	48.41	0.000	4.41492	4.787523

Variances and covariances of random effects

***level 2 (study) var(1): .37787108 (.18985077)

Fixed-effects POR with Studies as Dummy Variables (FEPORD)

. oglm score resp std2-std10 [fw=dis], link(logit)

Ordered Logistic Regression Number of obs = LR chi2(10) = Prob > chi2 =									
Log likel	lihood = -40	61.6084			Pseudo R2	=	0.2009		
score		Std. Err.		P> z	[95% Conf.	Interval]			
resp		.0861223		0.000	2.779759	3.117352			
std2	4815434	. 1887587	-2.55	0.011	8515037	1115832			
std3	1028179	.2302515	-0.45	0.655	5541025	. 3484667			
std4	.3582957	.2305584	1.55	0.120	0935903	.8101818			
std5	-1.132683	.1516207	-7.47	0.000	-1.429854	8355117			
std6	3640983	. 1543584	-2.36	0.018	6666352	0615615			
std7	.2108051	.2254389	0.94	0.350	231047	.6526571			
std8	4197682	.1926105	-2.18	0.029	7972779	0422585			
std9	-1.088437	.2458275	-4.43	0.000	-1.57025	6066241			
	1.158538		7.29	0.000	.8469249	1.470151			
	.8164335	. 1402567	5.82	0.000	.5415355	1.091332			
/cut2	1.809484	.1437148	12.59	0.000	1.527808	2.09116			
/cut3	3.08217	.1503633	20.50	0.000	2.787464	3.376877			
/cut4	4.319102	.1617342	26.70	0.000	4.002108	4.636095			

Random-effects POR with Studies as Dummy Variables (REPORD)

. gllamm score resp std2-std10, i(study) weight(wgt) link(ologit) eq(resp) adapt

log likelihood = -4036.4392

_							
		Coef.	Std. Err.	z		[95% Conf.	Interval]
	resp	3.025969	.2373911	12.75	0.000	2.560691	3.491247
	std2	3181025	.239889	-1.33	0.185	7882763	.1520714
	std3	0341522	.332904	-0.10	0.918	6866321	.6183278
	std4	. 3846226	.3178453	1.21	0.226	2383428	1.007588
	std5	837714	.1986386	-4.22	0.000	-1.227038	4483895
	std6	3871265	.214832	-1.80	0.072	8081894	.0339365
	std7	.0709539	.3247724	0.22	0.827	5655882	.707496
	std8	.4799914	.2608486	1.84	0.066	0312623	.9912452
	std9	9218658	.3100239	-2.97	0.003	-1.529502	31423
		1.527305		7.48	0.000	1.127134	1.927477
_cut11		1.05694	.1861227	5.68	0.000	.6921464	
_cut12	i		.1893604		0.000	1.69858	2.440859
_cut13	i	3.363219	.1957788	17.18	0.000	2.9795	
_cut14						4.215972	

Variances and covariances of random effects

***level 2 (study) var(1): .45376459 (.23616602)

Study-specific POR

```
levelsof author, local(levels)
postutil clear
nois postfile porfile str30 Study ldor ldorse ldorlo ldorhi ///
using porresults, replace
foreach 1 of local levels{
local study "'1'"
nois oglm score dtruth [fw=dis] if author == "'1'", link(logit)
nlcom (avar: b[dtruth]), post
local ldor= _b[avar]
local ldorse= se[avar]
local ldorlo=_b[avar]-invnorm(1-$alph)*_se[avar]
local ldorhi=_b[avar]+invnorm(1-$alph)*_se[avar]
nois post porfile ("'study'") ('ldor') ('ldorse') ('ldorlo') ('ldorhi')
nois postclose porfile
```


Study-specific Log-odds Ratios

- . use porresults, clear
- . nois list Study ldor ldorse ldorlo ldorhi, ///
 sep(0) div ab(32) abs noo compress

+								+
Study	ı	ldor	ī	ldorse	I	ldorlo	ı	ldorhi
	-+		-+-		+-		+-	
Aertgeerts	1	2.543996	1	.1625985	1	2.225309	Ī	2.862683
Bradley	1	1.627137		.263943	1	1.109819		2.144456
Brown	1	2.655694		.4095413	1	1.853008		3.45838
Buchsbaum	1	3.492826	1	.1832168	1	3.133728	1	3.851925
Chan	1	3.679464		.5191509	1	2.661947		4.696981
Indran	1	2.17833	1	.2748064	1	1.63972	1	2.716941
Jones	1	4.223248	1	.6260694	1	2.996175	1	5.450322
Joseph	1	4.090933	1	.52996	1	3.05223	1	5.129636
McQuade	1	3.407526	1	.3518678	1	2.717878	Ī	4.097174
Saitz	1	3.832313	1	.3883162	1	3.071227	Ī	4.593399
+								+

Meta-analysis of Study-specific Log-odds Ratios

. mvmeta ldor ldorvar, (fixed|ml|mm|reml) vars(ldor1)

Model		Std. Err				Interval]
FESSPOR	2.8658	04 .0891923	32.13	0.000	2.69099	3.040618
RESSPOR ML	•				2.571725	3.602412
RESSPOR MM					2.573646	3.602554
RESSPOR REML					2.551733	3.638089
RESSPOR ML	3.0870 3.0881	.2624814	11.74	0.000	2.571725	3.602412 3.602554

Summary AUROCs

Approach	AUROC	CI	CIW
FEPOR	0.88	0.87-0.89	0.02
REPOR	0.89	0.86-0.92	0.06
FEPORD	0.88	0.87-0.90	0.03
REPORD	0.89	0.85-0.92	0.07
FESSPOR	0.88	0.86-0.89	0.03
RESSPOR	0.89	0.85-0.93	0.08

CI: Confidence Interval CIW: Confidence Interval weidth

Summary Log-odds Ratios

Approach	Logor	CI	CIW
FEPOR	2.844	2.728-3.039	0.311
REPOR	3.047	2.626-3.467	0.841
FEPORD	2.949	2.780-3.117	0.337
REPORD	3.026	2.561-3.491	0.930
FESSPOR	2.866	2.691-3.041	0.350
RESSPOR	3.095	2.552-3.638	1.086

CI: Confidence Interval CIW: Confidence Interval weidth

This consists of:

- Study-specific Logit-Threshold Linear Regression (Moses-Shapiro-Littenberg)
- Bivariate Mixed Modeling Of Study-Specific Intercepts And Slopes
- 3 Parametric Estimation Of Summary ROC And Indices Using Mean Intercept And Slope Estimates

Study-specific Logit-Threshold Linear Regression

For the *jth* threshold of the *ith* study,

$$D_{ij} = \alpha_i + \beta_i S_{ij}$$
 where:

$$D_{ij} = logit(TPR_{ij}) - logit(FPR_{ij})$$

$$S_{ij} = logit(TPR_{ij}) + logit(FPR_{ij})$$

TPR = True Positive Rate; FPR = False Positive Rate

 $\alpha_i = \mathsf{Study}\text{-specific Intercept}$

 $\beta_i = \text{Study-specific Slope}$

 α_i and β_i estimated by maximum likelihood

Bivariate Meta-Regression: Within-study Variability

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{\alpha i} \\ \mu_{\beta i} \end{pmatrix}, \Sigma_W \end{pmatrix}$$
$$\Sigma_W = \begin{pmatrix} \sigma_{\alpha i}^2 & \rho_i \sigma_{\alpha i} \sigma_{\beta i} \\ \rho_i \sigma_{\alpha i} \sigma_{\beta i} & \sigma_{\beta i}^2 \end{pmatrix}$$

 α_i and β_i Estimated intercept and slope estimates of the *i*th study $\mu_{\alpha i}$ and $\mu_{\beta i}$ True intercept and slope estimates of the *i*th study Σ_W Within-study correlation (ρ_i) variances $(\sigma_{\alpha i}^2)$ and $(\sigma_{\beta i}^2)$ and covariance $(\rho_i \sigma_{\alpha i} \sigma_{\beta i})$ matrix

Bivariate Meta-Regression: Between-study Variability

$$\begin{pmatrix} \mu_{\alpha i} \\ \mu_{\beta i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{\alpha} \\ \mu_{\beta} \end{pmatrix}, \Sigma_{B} \end{pmatrix}$$
$$\Sigma_{B} = \begin{pmatrix} \tau_{\alpha}^{2} & \kappa \tau_{\alpha} \tau_{\beta} \\ \kappa \tau_{\alpha} \tau_{\beta} & \tau_{\beta}^{2} \end{pmatrix}$$

 μ_{ai} and μ_{bi} True intercept and slope estimates of the *i*th study

 μ_a and μ_b Overall intercept and slope estimates

 Σ_B Between-study correlation (κ) variances $(\tau_a^2 \text{ and } \tau_2^2)$ and covariance $(\kappa \tau_\alpha \tau_\beta)$ matrix

Example data: CAGE

Author	Thresh	TPR	FPR	Author	Thresh	TPR	FPR
Saitz	1	0.92	0.27	Buchsbaum	1	0.89	0.19
Saitz	2	0.80	0.07	Buchsbaum	2	0.73	0.09
Saitz	3	0.55	0.02	Buchsbaum	3	0.44	0.02
Saitz	4	0.27	0.01	Buchsbaum	4	0.19	0.01
McQuade	1	0.87	0.20	Joseph	1	0.98	0.25
McQuade	2	0.66	0.08	Joseph	2	0.82	0.10
McQuade	3	0.43	0.01	Joseph	3	0.53	0.03
McQuade	4	0.19	0.01	Joseph	4	0.40	0.01
Brown	1	0.79	0.23	Bradley	1	0.71	0.41
Brown	2	0.70	0.15	Bradley	2	0.53	0.13
Brown	3	0.52	0.05	Bradley	3	0.27	0.02
Brown	4	0.27	0.02	Bradley	4	0.09	0.01
Chan	1	0.96	0.32	Jones	1	0.88	0.12
Chan	2	0.87	0.16	Jones	2	0.48	0.01
Chan	3	0.56	0.04	Jones	3	0.24	0.01
Chan	4	0.34	0.01	Jones	4	0.08	0.01
Aertgeerts	1	0.61	0.13	Indran	1	0.99	0.63
Aertgeerts	2	0.46	0.05	Indran	2	0.92	0.38
Aertgeerts	3	0.24	0.02	Indran	3	0.46	0.12
Aertgeerts	4	0.11	0.01	Indran	4	0.10	0.01

Study-specific Linear Regression Intercepts and Slopes

Author	α	$SE(\alpha)$	β	$SE(\beta)$	Corr
Aertgeerts	2.498	0.277	-0.024	0.061	0.900
Bradley	1.587	0.391	-0.162	0.090	0.753
Brown	2.571	0.126	-0.088	0.044	0.743
Buchsbaum	3.498	0.185	0.032	0.049	0.727
Chan	3.718	0.177	0.006	0.054	0.425
Indran	2.874	0.363	0.144	0.081	0.104
Jones	4.372	0.966	0.194	0.189	0.854
Joseph	4.308	0.337	0.119	0.101	0.468
McQuade	3.270	0.512	-0.063	0.128	0.763
Saitz	3.702	0.235	-0.033	0.067	0.649

Mean Intercepts and Slopes by Bivariate Mixed Modeling

Method	α	$Se(\alpha)$	β	Se(eta)
fixed	3.098	0.072	0.019	0.020
reml	3.199	0.252	-0.006	0.027
ml	3.198	0.239	-0.006	0.026
mm	3.199	0.237	-0.005	0.027

REML: Restricted maximum likelihood

ML: Full maximum likelihood

MM: Method of moments

 $Intercept(\alpha)$: Average accuracy/discriminatory power of test

 $\mathsf{Slope}(\beta)$: Measures symmetry of ROC Curve

Logit-Threshold/Bivariate Meta-Regression Summary ROC Curve

Bayesian Hierarchical Ordinal Regression Model

Conceptual Framework

- I Random-effects formulation of meta-analysis of studies with an unequal number of nonnested categories
- 2 Employs a hierarchical ordinal regression model, accounting for heterogeneity of studies within-study correlation
- Assumes that each study estimates a study-specific ROC curve that can be viewed as a random sample from a population of all ROC curves of such studies
- 4 Accounts for different sources of variation in the data, through study-specific location and scale parameters
- There are several ways to construct summary ROC curves and their credible bands

Bayesian Hierarchical Ordinal Regression Model Model Specification

Level I (Within study variability)

$$\begin{split} & \textit{M}_{\textit{ik}} \mid \textit{D}_{\textit{ik}}, \alpha_{\textit{k}}, \beta_{\textit{k}} \sim \left\{ \begin{array}{l} \mathcal{N}(0, \ 1), & \text{if } \textit{D}_{\textit{ik}} = 0 \\ \mathcal{N}(\beta_{\textit{k}}, \exp(2\alpha_{\textit{k}})), & \text{if } \textit{D}_{\textit{ik}} = 1 \end{array} \right. \\ & \textit{Y}_{\textit{ik}} = \textit{j} \ \, \text{when} \ \, \theta_{\textit{j}-1,\textit{k}} \leq \textit{M}_{\textit{ik}} < \theta_{\textit{j},\textit{k}} \end{split}$$

Level II (Between study variability)

$$egin{aligned} & lpha_k \sim \mathcal{N}(\mathbf{\Gamma}'\mathbf{V}_k, \ \sigma_lpha^2) \ & eta_k \sim \mathcal{N}(\mathbf{\Lambda}'\mathbf{W}_k, \ \sigma_eta^2) \ & heta_{0,k} \sim \mathcal{N}(0,100), \quad heta_{j,k} = \sum_{i=0}^{j-1} heta_{i,k} + \textit{Exp}(1), \qquad \text{for } j > 0 \text{:} \end{aligned}$$

Level III (Hyperpriors)

$$\Gamma_h, \Lambda_h \sim \mathcal{N}(0, 10^6), \quad \sigma_{\alpha}^2, \sigma_{\beta}^2 \sim \mathcal{IG}(0.001, 0.001)$$

Bayesian Hierarchical Ordinal Regression Model Specification

- 1 The model explicitly uses latent variables ${\bf M}$ that give rise to the data ${\bf Y}$ via a discretization process depending on thresholds θ
- 2 D_{ik} indicate the true disease status of the patient i in study k with $D_{ik} = 1$ if disease is present and $D_{ik} = 0$ if not
- 3 β_k is the location parameter and α_k the scale parameter for the ROC curve of study k.
- 4 V_k and W_k are study-level covariate vectors of dimensions v1 and v2 , respectively

Bayesian Hierarchical Ordinal Regression Model

Parameter Estimation

- Markov Chain Monte Carlo Simulation using Gibbs Sampling
- 2 Estimation via poster means and medians
- **3** Every simulated pair (β_k, α_k) defines an ROC curve
- 4 The sensitivity of the posterior estimates to choice of priors may be examined using several different priors for the variances of study location and scale parameters

Bayesian Hierarchical Ordinal Regression Model

Summary ROCs, Functionals and Variability

- Summary ROC Curves
 - 1 Mean SROC
 - 2 Pointwise SROC
 - 3 Loess SROC
 - 4 Mean Qstar and AUROC
- 2 Variability
 - Envelope Bands for ROC Curves
 - 2 Pointwise Bands for ROC Curves
 - 3 Credible intervals for TPR at fixed FPR

Bayesian Hierarchical Ordinal Regression Model

Methodology and Application

See Dukic and Gatsonis (2003) for application to data from a recently published meta-analysis evaluating accuracy of a single serum progesterone test for diagnosing pregnancy failure.

- They meta-analyzed 20 out of 27 eligible studies, published from 1980 to 1996.
- 2 Among the selected studies, seven had 2 categories, four had 4, eight had 5, and one had 7.
- 3 Thirteen of the studies were prospective and 7 retrospective.

Multi-stage SROC Modeling Algorithm

This consists of:

- Estimation Of Study-Specific ROC Parameters From Observed 2 By J Data By Heteroskedastic Ordinal Regression
- Estimation Of Mean Location And Scale From Study-Specific Estimates By Bivariate Linear Mixed Modeling
- 3 Estimation Of Summary ROC And Indices Using Mean Location And Scale Estimates

Estimation Of Study-Specific ROC Parameters

Heteroskedastic Ordinal Regression Model

Suppose, the test result Y_{ik} for *ith* patient from *kth* study falls into one of J categories ("ratings"). The probability of Y_{ik} falling in a given category j or lower may be modeled as a non-linear function using the ordinal regression equation:

$$g[Pr(Y_{ik} \le j \mid D_{ik})] = \frac{\theta_{jk} - \alpha D_{ik}}{\exp(\beta D_{ik})}$$

g: Cumulative link function

 D_{ik} : a variable indicative of disease status

 θ_j θ_{j-1} : Cut-off values on an underlying latent scale

 α : Location parameter (measure of diagnostic accuracy)

β: Scale parameter (spread of responses across subjects)

Bivariate Random-effects Estimation of Mean parameters

Within-study Variability (Level 1) model

$$\begin{pmatrix} y_{1i} \\ y_{2i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{1i} \\ \mu_{2i} \end{pmatrix}, \Sigma_W \end{pmatrix}$$
$$\Sigma_W = \begin{pmatrix} \sigma_{1i}^2 & \rho_i \sigma_{1i} \sigma_{2i} \\ \rho_i \sigma_{1i} \sigma_{2i} & \sigma_{2i}^2 \end{pmatrix}$$

 y_{1i} and y_{2i} Estimated location and scale effects of the *i*th study

 μ_{1i} and μ_{2i} True location and scale effect of the ith study

 Σ_W Within-study correlation (ρ_i) variances $(\sigma_{1i}^2$ and $\sigma_{2i}^2)$ and covariance $(\rho_i \sigma_{1i} \sigma_{2i})$ matrix

Bivariate Random-effects Estimation of Mean parameters

Between-study Variability (Level 2) model

$$\begin{pmatrix} \mu_{1i} \\ \mu_{2i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \Sigma_B \end{pmatrix}$$
$$\Sigma_B = \begin{pmatrix} \tau_1^2 & \kappa \tau_1 \tau_2 \\ \kappa \tau_1 \tau_2 & \tau_2^2 \end{pmatrix}$$

 μ_{1i} and μ_{2i} True location and scale effects of the *i*th study

 μ_1 and μ_2 Overall location and scale effects

 Σ_B Between-study correlation (κ) variances $(\tau_1^2 \text{ and } \tau_2^2)$ and covariance $(\kappa \tau_1 \tau_2)$ matrix

Bivariate Random-effects Estimation of Mean parameters Estimation Methods

- Maximum Likelihood (ML)
- 2 Restricted Maximum Likelihood (REML)
- 3 DerSimonian and Laird Method Of Moments (MM)

Estimation of Summary ROC and Functionals

Binormal ROC Analysis

- 1 TPR= $a + b\Phi(FPR)$ ($0 \le FPR \le 1$)
- 2 a = meta-analytic location parameter
- **3** b = meta-analytic scale parameter
- **4** AUROC = Area under curve = $\Phi\left(\frac{a}{\sqrt{1+b^2}}\right)$
- **5** Sym = Symmetry point index = $\Phi\left(\frac{a}{1+b}\right)$

Estimation of Summary ROC and Functionals

Bilogistic ROC Analysis

- 1 TPR= invlogit(a + b*logit(FPR)) $(0 \le FPR \le 1)$
- 2 a = meta-analytic location parameter
- **3** b = meta-analytic scale parameter
- 4 Area under curve (AUROC) and Symmetry point index (Sym) derived from integration of TPR= invlogit(a + b*logit(FPR))

Similar Thresholds

Table: Study-specific Estimates by Ordinal Probit

Study	Location (Se)	Scale (Se)	Corr
Aertgeerts	1.37 (0.19)	0.96 (0.11)	-0.14
Bradley	0.74 (0.16)	0.67 (0.11)	0.22
Brown	1.53 (0.38)	0.95 (0.28)	0.54
Buchsbaum	2.21 (0.20)	1.14 (0.13)	0.63
Chan	2.17 (0.44)	1.04 (0.31)	0.73
Indran	1.79 (0.28)	1.47 (0.20)	0.20
Jones	2.22 (0.64)	0.92 (0.34)	0.66
Joseph	2.92 (0.65)	1.44 (0.44)	0.72
McQuade	1.73 (0.33)	0.83 (0.19)	0.55
Saitz	2.16 (.34)	0.99 (0.21)	0.68

Similar Thresholds

Similar Thresholds

Table: Summary performance indices by estimation method

Method	Location	Scale	Area	Sympoint
reml	1.82 (1.43-2.20)	1.00 (0.85-1.16)	0.90 (0.86-0.94)	0.82 (0.78-0.86)
ml	1.81 (1.44-2.17)	1.00 (0.85-1.15)	0.90 (0.86-0.94)	0.82 (0.78-0.85)
mm	1.83 (1.41-2.25)	1.01 (0.85-1.16)	0.90 (0.86-0.95)	0.82 (0.78-0.86)

REML: Restricted maximum likelihood

ML: Full maximum likelihood

MM: Method of moments

Location: Measure of accuracy/discriminatory power of test

Scale: Measures symmetry of ROC curve

Sympoint: Symmetry point(sensitivity=specificity)

Similar Thresholds

Table: Estimated between-studies SDs and correlation

Method	SD(Location)	SD(Scale)	Corr
REML	0.510	0.151	1.00
ML	0.473	0.140	1.00
MM	0.583	0.166	1.00

Similar Thresholds: Using summary data from REML

Disparate Thresholds

Table: Study-specific Estimates by Ordinal Probit

Study	Cutpoints	Location (Se)	Scale (Se)	Corr
Almeda	4	1.32 (0.18)	1.09 0.19)	0.72
Arad	4	1.32 (0.14)	0.96 (0.11)	0.42
Bielak	6	1.86 (0.23)	1.02 (0.18)	0.70
Budoff	7	1.24 (0.06)	1.44 (0.08)	0.54
Chen	4	2.17 (0.38)	1.15 (0.31)	0.77
Greenland	4	0.54 (0.13)	0.92 (0.13)	0.27
Hosoi	5	1.34 (0.16)	0.93 (0.14)	0.67
Knez	4	1.90 (0.09)	1.35 (0.11)	0.82
LaMonte	4	1.75 (0.13)	1.27 (0.12)	0.68
Nixdorff	2	0.72 (4.01)	0.20 (3.99)	1.00
Raggi	4	1.61 (0.37)	1.62 (0.32)	0.08
Schepis	5	1.54 (0.36)	1.19 (0.31)	0.57
Seese	2	5.61 (300.45)	3.06 (234.45)	1.00
Shaw	5	0.87 (0.09)	0.97 (0.07)	-0.06
Taylor	4	0.42 (0.50)	0.53 (0.35)	-0.33
Vliengenthart	4	1.10 (0.22)	1.21 (0.20)	0.20
Wong	5	1.00 (0.27)	1.12 (0.26)	0.28
Yao	2	3.22 (78.35)	3.14 (97.37)	1.00

Disparate Thresholds

Disparate Thresholds

Table: Summary performance indices by estimation method

Method	Location	Scale	Area	Sympoint
reml	1.36 (1.12-1.60)	1.11 (0.98-1.24)	0.83 (0.79-0.87)	0.74 (0.71-0.77)
ml	1.36 (1.13-1.60)	1.11 (0.98-1.23)	0.83 (0.79-0.86)	0.74 (0.71-0.77)
mm	1.36 (1.13-1.59)	1.11 (0.99-1.23)	0.83 (0.79-0.86)	0.74 (0.71-0.77)

REML: Restricted maximum likelihood

ML: Full maximum likelihood

MM: Method of moments

Location: Measure of accuracy/discriminatory power of test

Scale: Measures symmetry of ROC curve

Sympoint: Symmetry point(sensitivity=specificity)

Disparate Thresholds

Table: Estimated between-studies SDs and correlation

Method	SD(Location)	SD(Scale)	Corr
REML	0.441	0.183	0.563
ML	0.423	0.74	0.563
MM	0.420	0.174	0.562

Disparate Thresholds: Using summary results from REML

Conclusions

- Dichotomization of ordinal data is simple with abundance of meta-analytical methods and software programs but inefficient with loss of information
- 2 The "no thresholds left behind" proposed algorithm is very robust, flexible, informative and efficient
- It is invariant to the number/set of thresholds, link function or estimation procedure

Conclusions

- Easily extended for covariate meta-regression and covariate-adjusted SROC analysis
- Easily implemented in Stata using Stata-native and User-written commands
- **3 midacat** module for automated implementation will be available shortly
- 4 Datasets, do-files and unpublished ado-files available from author on request

References I

Aertgeerts B., Buntinx F., and Kester A.

The value of the CAGE in screening for alcohol abuse and alcohol dependence in general clinical populations: a diagnostic meta-analysis.

J clin Epidemiol 2004;57:30-39

Arends L.R., Hamza T.H., Von Houwelingen J.C., Heijenbrok-Kal M.H., Hunink M.G.M. and Stijnen T.

Bivariate Random Effects Meta-Analysis of ROC Curves.

Med Decis Making 2008;28:621-628

Begg C.B. and Mazumdar M.

Operating characteristics of a rank correlation test for publication bias.

Biometrics 1994:50:1088-1101

Chu H. and Cole S.R.

Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach.

J Clin Epidemiol 2006;59:1331-1332

Dendukuri N., Chui K. and Brophy J.M.

Validity of EBCT for coronary artery disease: a systematic review and meta-analysis. BMC Medicine 2007:5:35

References II

Dukic V. and Gatsonis C.

Meta-analysis of diagnostic test accuracy studies with varying number of thresholds. Biometrics 2003;59:936-946

Dwamena, B.

midas: Module for Meta-Analytical Integration of Diagnostic Accuracy Studies Boston College Department of Economics, Statistical Software Components 2007; s456880: http://ideas.repec.org/c/boc/bocode/s456880.html.

Ewing J.A.

Detecting Alcoholism: The CAGE questionnaire. JAMA 1984:252:1905-1907

Harbord R.M., Deeks J.J., Egger M., Whitting P. and Sterne J.A. Unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007:8:239-251

Harbord R.M., Whitting P., Sterne J.A.C., Egger M., Deeks J.J., Shang A. and Bachmann L.M.

An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary

Journal of Clinical Epidemiology 2008;61;1095-1103

References III

Harbord R.M., and Whitting P.

metandi: Meta-analysis of diagnostic accuracy using hierarchical logistic regression Stata Journal 2009;2:211-229

Irwig L., Macaskill P., Glasziou P. and Fahey M.

 $\label{thm:methods} \mbox{Meta-analytic methods for diagnostic test accuracy}.$

J Clin Epidemiol 1995;48:119-30

Kester A.D.M., and Buntinx F.

Meta-Analysis of ROC Curves.

Med Decis Making 2000;20:430-439

Littenberg B. and Moses L. E.

Estimating diagnostic accuracy from multiple conflicting reports: a new meta-analytic method.

Med Decis Making 1993;13:313-321

Macaskill P.

Empirical Bayes estimates generated in a hierarchical summary ROC analysis agreed closely with those of a full Bayesian analysis.

J Clin Epidemiol 2004;57:925-932

References IV

Moses L.E., Shapiro D. and Littenberg B.

Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic

approaches and some additional considerations.

Stat Med 1993;12:1293-13116

Pepe M.S.

Receiver Operating Characteristic Methodology.

Journal of the American Statistical Association 2000;95:308-311

Pepe M.S.

The Statistical Evaluation of Medical Tests for Classification and Prediction.

2003; Oxford: Oxford University Press

Reitsma J.B., Glas A.S., Rutjes A.W.S., Scholten R.J.P.M., Bossuyt P.M. and Zwinderman A.H.

Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.

J Clin Epidemiol 2005;58:982-990

Rutter C.M., and Gatsonis C.A.

A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations Stat Med 2001;20:2865-2884

References V

Toledano A. and Gatsonis C.A.

 $Regression \ analysis \ of \ correlated \ receiver \ operating \ characteristic \ data.$

Academic Radiology 1995;2:S30-S36

Tosteson A.A. and Begg C.B.

A general regression methodology for ROC curve estimation.

Medical Decision Making 1988;8:204-215

Williams R.

Using Heterogeneous Choice Models To Compare Logit and Probit Coefficients Across Groups

Sociological Methods and Research 2009;37: 531-559

White I.R.

Multivariate Random-effects Meta-analysis.

Stata Journal 2009;1:40-56