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© Stata 11 has new command sspace for estimating the
parameters of state-space models

© Stata 11 has new command dfactor for estimating the
parameters of dynamic-factor models

© Stata 11 has new command dvech for estimating the
parameters of diagonal vech multivariate GARCH models



State-space models
What are state-space models

@ Flexible modeling structure that encompasses many linear
time-series models

o VARMA with or without exogenous variables
o ARMA, ARMAX, VAR, and VARX models

@ Dynamic-factor models
@ Unobserved component (Structural time-series) models

@ Models for stationary and non-stationary data

@ Hamilton (1994b,a); Brockwell and Davis (1991); Hannan and
Deistler (1988) provide good introductions



State-space models

The state-space modeling process

@ Write your model as a state-space model
@ Express your state-space space model in sspace syntax

o sspace will estimate the parameters by maximum likelihood

@ For stationary models, sspace uses the Kalman filter to predict
the conditional means and variances for each time period

@ For nonstationary models, sspace uses the De Jong diffuse
Kalman filter to predict the conditional means and variances for
each time period

@ These predicted conditional means and variances are used to
compute the log-likelihood function, which sspace maximizes



State-space models
Definition of a state-space model

z; = Az, ; + Bx; + Ce; (State Equations)
y: = Dz, +Fw; + Gr; (Observation equations)

z: is an m x 1 vector of unobserved state variables;

X; is a k, x 1 vector of exogenous variables;

€: is a g x 1 vector of state-error terms, (g < m);

y: is an n X 1 vector of observed endogenous variables;
w; is a k, X 1 vector of exogenous variables; and

v; is an r x 1 vector of observation-error terms, (r < n);
A, B, C, D, F, and G are parameter matrices.

The error terms are assumed to be zero mean, normally distributed,
serially uncorrelated, and uncorrelated with each other

Specify model in covariance or error form



State-space models

An AR(1) model

@ Consider a first-order autoregressive (AR(1)) process

Ve — = oye—1 — p) + €
@ Letting the state be u; =y, — p allows us to write the AR(1) in
state-space form as

up = aup_1 + € (state equation) (1)
Ye =M+ U (observation equation) (2)

@ If you are in doubt, you can obtain the AR(1) model by
substituting equation (1) into equation (2) and then plugging
Ye—1 — pin for ue_q



State-space models
Covariance-form syntax for sspace

sspace state_ceq [state_ceq ... state_ceq|

obs_ceq [obs.ceq ... obsceq| [if][in][, options ]

where each state_ceq is of the form

(statevar | lagged_statevars| [indepvars|, state |noerror moconstant|)

and each obs_ceq is of the form

(depvar [ statevars| [indepvars|, |[noerror noconstant])

some of the available options are

covstate (covform) specifies the covariance structure for
the errors in the state variables
covobserved (covform) specifies the covariance structure for the

errors in the observed dependent variable
constraints(constraints) apply linear constraints

vce (vcetype) vcetype may be oim, or robust



State-space models

us = aup_1 + € (state equation)
Yi =M+ U (observation equation)

. webuse manufac
(St. Louis Fed (FRED) manufacturing data)
. constraint define 1 [D.lncaputillu = 1
. sspace (u L.u, state noconstant) (D.lncaputil u , noerror ), constraints(1)
searching for initial values ...........
(setting technique to bhhh)
Iteration O: log likelihood = 1483.3603
(output omitted )
Refining estimates:

Iteration 0: log likelihood = 1516.44
Iteration 1: log likelihood = 1516.44
State-space model
Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(1) = 61.73
Log likelihood = 1516.44 Prob > chi2 = 0.0000
(1) [D.lncaputil]u = 1
0IM
Incaputil Coef.  Std. Err. z P>|z| [95% Conf. Intervall
u
u
L1. .3523983 .0448539 7.86 0.000 .2644862 .4403104
D.1lncaputil
u 1 . . . .
_cons -.0003558 .0005781 -0.62 0.538 -.001489 .0007773
var (u) .0000622  4.18e-06 14.88  0.000 .000054 .0000704

Note: Tests of variances against zero are conservative and are provided-only

8/ 31 for reference.



State-space models

Estimation by arima

. arima D.lncaputil, ar(1) technique(nr) nolog
ARIMA regression

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(1) = 61.73
Log likelihood = 1516.44 Prob > chi2 = 0.0000
0IM
D.1lncaputil Coef.  Std. Err. z P>|z| [95% Conf. Intervall
Incaputil
_cons -.0003558 .0005781 -0.62 0.538 -.001489 .0007773
ARMA
ar
L1. .3523983 .0448539 7.86 0.000 2644862 .4403104
/sigma .0078897 .0002651 29.77 0.000 .0073701 .0084092




State-space models

An ARMA(1,1) model

Harvey (1993, 95-96) wrote a zero-mean, first-order, autoregressive
moving-average (ARMA(1,1)) model

Ve =y 1+ O€r_1 + €

as a state-space model with state equations

e\ _ (o1 Yt-1 1
(5e) = (6 o) (522) + ()
and observation equation

This state-space model is in error form



State-space models

An ARMA(1,1) model (continued)

Letting uq; = y; and uy; = O¢, allows use to write the ARMA(1,1) model

Ye=ayi1+ 01+ €

as a state-space model with state equations
U1y a 1 Ur(¢—1) 1
= + €
() = (3 o) () + (o)

and observation equation
Uit
=(10
Yi ( ) (U2t>



State-space models

Error-form syntax for sspace

sspace stateefeq | state_efeq ... state_efeq |

obs_efeq |obs_efeq ... obsefeq | [if|[in][, options |
where each state_efeq is of the form
(statevar | lagged_statevars| [indepvars| [state_errors|, state
[noconstant})

and each obs_ceq is of the form
(depvar [ statevars| [indepvars| [obs_errors|, [noconstant |)

state_errors is a list of state-equation errors that enter a state equation.
Each state error has the form e.statevar, where statevar is the name of a
state in the model.

obs_errors is a list of observation-equation errors that enter an equation
for an observed variable. Each error has the form e. depvar, where depvar
is an observed dependent variable in the model.



State-space models

. constraint 4 [D.lncaputillul = 1

. sspace (ul L.ul L.u2 e.ul, state noconstant) ///
> (u2 e.ul, state noconstant) 11/
> (D.1ncaputil ui, noconstant ), /17
> constraints(2/4) covstate(diagonal) nolog
State-space model
Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(2) = 333.84
Log likelihood = 1531.255 Prob > chi2 = 0.0000
(1) [wilL.u2 =1
(2) [utle.ul =1
( 3) [D.lncaputil]ul = 1
0IM
Incaputil Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ul
ul
L1. .8056815 .0522661 15.41 0.000 .7032418 .9081212
u2
L1. 1
e.ul 1
u2
e.ul -.5188453 .0701985 -7.39 0.000 -.6564317 -.3812588
D.1lncaputil
ul 1
var (ul) .0000582 3.91e-06 14.88 0.000 .0000505 .0000659

13 / 31 te: Tests of variances against zero are conservative and are provided only



State-space models

Estimation by arima

. arima D.lncaputil, ar(1) ma(1) tech(nr) noconstant nolog nrtolerance(le-9)
ARIMA regression

Sample: 1972m2 - 2008m12 Number of obs = 443

Wald chi2(2) = 333.84

Log likelihood = 1531.255 Prob > chi2 = 0.0000

0IM
D.1lncaputil Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ARMA

ar

L1. .8056814 .0522662 15.41 0.000 .7032415 .9081213
ma

L1. -.5188451 .0701986 -7.39 0.000 -.6564318 -.3812584

/sigma .0076289 .0002563 29.77 0.000 .0071266 .0081312

14 / 31



State-space models

A VARMA(L,1) model

We are going to model the changes in the natural log of capacity
utilization and the changes in the log of hours as a first-order vector
autoregressive moving-average (VARMA(1,1)) model

Alncaputil,\ (a3 0 Alncaputil, ,
Alnhours, /| \asx a3 Alnhours, ;
0y 0 €1(t-1) €1t
- -
<0 0) <€2(r—1) €2t
We simplify the problem by assuming that
2
€1ty (o1 O
()= (5 )



State-space models

State-space form of a VARMA(1,1) model

Letting s;; = Alncaputil,, sy = 01€1¢, and s3; = Alnhours;
implies that the state equations are

S1¢ (0751 1 0 S]_(t_]_) 1 0

S | = 0 0 O S5(t—1) + (91 0 (Elt)
S3t (0%] 0 a3 53(1_»_1) 0 1 2t

with observation equations
Alncaputil) (1 0 O zlt
Alnhours / \0 0 1 2t



State-space models

constraint [ul]lL.u2
constraint [uile.ul
constraint [u3]e.u3

constraint [D.Incaputillul = 1
constraint [D.1nhoursJu3 =1




State-space models

> (u2 e.ut, state noconstant) 11/
> (u3 L.ul L.u3 e.u3, state noconstant) 117
> (D.1ncaputil ui, noconstant) /17
> (D.1lnhours u3, noconstant) , 11/
> constraints(5/9) covstate(diagonal) nolog vsquish nocnsreport
State-space model
Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(4) nd 427.55
Log likelihood = 3156.0564 Prob > chi2 = 0.0000
0IM
Coef. Std. Err. z P>|z| [95% Conf. Intervall
ul
ul
L1. .8058031 .0522493 165.42 0.000 .7033964 .9082098
u2
L1. 1
e.ul 1
u2
e.ul -.518907 .0701848 -7.39 0.000 -.6564667 -.3813474
u3
ul
L1. .1734868 .0405156 4.28 0.000 .0940776 252896
u3
L1. -.4809376 .0498574 -9.65 0.000 -.5786563 -.3832188
e.ud 1 o o 5 o o
D.1lncaputil
ul 1
D.lnhours
u3 1
var (ul) .0000582 3.91e-06 14.88 0.000 .0000505 .0000659
var (u3) .0000382 2.56e-06 14.88 0.000 .0000331 .0000432

Note: Tests of variances against zero are comservative and are provided only
18 /31 for reference.



State-space models
A local linear-trend model

@ The local linear-trend model is a standard unobserved
component (UC) model

@ Harvey (1989) popularized UC models under the name structural
time-series models

@ The local-level model

Yi = [t + €
Mt = 1+ U

models the dependent variable as a random walk plus an
idiosyncratic noise term

@ The local-level model is already in state-space form



State-space models

A local-level model for the S&P 500

. webuse sp500w, clear

. constraint 10 [z]L.z =1
. constraint 11 [closelz =1
. sspace (z L.z, state noconstant) ///
> (close z, noconstant), /17
> constraints(10 11) nolog
State-space model
Sample: 1 - 3093 Number of obs = 3093
Log likelihood = -12576.99
(1) [z2lL.z =1
(2) [closelz =1
0IM
close Coef.  Std. Err. z P>|z| [95% Conf. Intervall
z
z
L1. 1
close
z 1
var(z) 170.3456 7.584909 22.46 0.000 155.4794 185.2117
var (close) 15.24858 3.392457 4.49 0.000 8.599486 21.89767

Note: Model is not stationmary.
Note: Tests of variances against zero are conservative and are provided only
for reference.



Dynamic-factor models
Dynamic-factor models

@ Dynamic-factor models model multivariate time series as linear
functions of
@ unobserved factors,
@ their own lags,
@ exogenous variables, and
o disturbances, which may be autoregressive
@ The unobserved factors may follow a vector autoregressive
structure
@ These models are used in forecasting and in estimating the
unobserved factors
@ Economic indicators
@ Index estimation
e Stock and Watson (1989) and Stock and Watson (1991)
discuss macroeconomic applications



A dynamic-factor model has the form
Y = Pft + th + u;
ft = RWt + A]_ft_l + A2ft_2 +--- 4 At—pft—p +v;
u=Cu 1 +Cupp+--- + Ct—qut—q + €;

Item dimension definition

Yt kx1 vector of dependent variables

P k X nf matrix of parameters

f; nex1 vector of unobservable factors

Q k x ny matrix of parameters

X¢ n x1 vector of exogenous variables

u; kx1 vector of disturbances

R ng X ny matrix of parameters

W, n, x1 vector of exogenous variables

A; ne X nf matrix of autocorrelation parameters for j € {1,2,..., p}
Vs nex 1 vector of disturbances

C; k x k matrix of autocorrelation parameters for i € {1,2,...,q}
€t kx1 vector of disturbances




Dynamic-factor models
Special cases

Dynamic factors with vector autoregressive errors
Dynamic factors

Static factors with vector autoregressive errors
Static factors

Vector autoregressive errors

Seemingly unrelated regression

DFAR)
DF)
SFAR)
SF)
VAR)
SUR)

(
(
(
(
(
(



Dynamic-factor models

Syntax for dfactor

dfactor obs.eq [faceq| [if][in]], options]

obs_eq specifies the equation for the observed dependent variables,
and it has the form

(depvars = [exogd]| [, sopts])

fac_eq specifies the equation for the unobserved factors, and it has
the form

(facvars = [exog_f| |, sopts])

Among the sopts are

ar (numlist) autoregressive terms

arstructure (arstructure) structure of autoregressive coefficient
matrices

covstructure (covstructure) covariance structure

vce (vcetype) vcetype may be oim,cor robust



Dynamic-factor models

o we!use !lex

(St. Louis Fed (FRED) macro data)

. dfactor (D.(ipman income hours unemp) = , noconstant) (f = , ar(1/2)) , nolog
Dynamic-factor model
Sample: 1972m2 - 2008mi1 Number of obs = 442
Wald chi2(6) = 751.95
Log likelihood = -662.09507 Prob > chi2 = 0.0000
0IM
Coef.  Std. Err. z P>|z| [95% Conf. Intervall

f

£

L1. .2651932 .0568663 4.66 0.000 .1637372 .3766491
L2. .4820398 .0624635 7.72 0.000 .3596136 .604466

D.ipman

f .3502249 .0287389 12.19 0.000 .2938976 .4065522
D.income

f .0746338 .0217319 3.43 0.001 .0320401 .1172276
D.hours

£ .2177469 .0186769 11.66 0.000 .1811407 .254353
D.unemp

£ -.0676016 .0071022 -9.52 0.000 -.0815217 -.0536816
var (De. ipman) .1383158 .0167086 8.28 0.000 .1055675 .1710641
var (De.inc-~e) .2773808 .0188302 14.73 0.000 .2404743 .3142873
var (De.hours) .0911446 .0080847 11.27 0.000 .0752988 .1069903
var (De . unemp) .0237232 .0017932 13.23 0.000 .0202086 .0272378

Note: Tests of variances against zero are conservative and are provided only
25 / 31 for reference.



Multivariate GARCH models

@ Multivariate carcH models allow the conditional covariance
matrix of the dependent variables to follow a flexible dynamic
structure

@ General multivariate GARCH models are under identified

@ There are trade-offs between flexibility and identification
@ Plethora of alternatives

@ dvech estimates the parameters of diagonal vech GarRcH models

o Each element of the current conditional covariance matrix of
the dependent variables depends only on its own past and on
past shocks

@ Bollerslev, Engle, and Wooldridge (1988); Bollerslev, Engle, and
Nelson (1994); Bauwens, Laurent, and Rombouts (2006);
Silvennoinen and Terasvirta (2009) provide good introductions



. 1/2
Yt:CXt+€t, e =H,/ v,

P q
H=S+> AGe i€, +Y B oH,;

i=1 j=1

y: is an m x 1 vector of dependent variables;

C is an m x k matrix of parameters;

X; is an k x 1 vector of independent variables, which may contain
lags of y;;

H%/2 is the Cholesky factor of the time-varying conditional covariance
matrix Hy;

v, is an m x 1 vector of normal, independent, and identically
distributed (NIID) innovations;

S is an m X m symmetric parameter matrix;

each A; is an m X m symmetric parameter matrix;

® is the element-wise or Hadamard product;

and each B; is an m x m symmetric parameter matrix



Multivariate GARCH

@ Bollerslev, Engle, and Wooldridge (1988) proposed a general
vech multivariate GARCH model of the form

ye = Cx; + €;

1/2
6f:Ht/ UV

p q
h; = vech(H;) = s+ Z A;vech(e; i€, )+ Z Bjh;_;

i=1 j=1

o the vech() function stacks the lower diagonal elements of
symmetric matrix into a column vector,

1 2\ ,
vech <2 3) =(1, 2, 3)

@ Bollerslev, Engle, and Wooldridge (1988) found this form to be
under identified and suggested restricting the A; and B; to be
diagonal matrices



Multivariate GARCH
Syntax of dvech

dvech eq |eq --- eq| [if] [in] [, options |

where each eq has the form

(depvars = [indepvars|, |noconstant |)

Some of the options are

noconstant suppress constant term

arch (numlist) ARCH terms

garch (numlist) GARCH terms
constraints(numlist) apply linear constraints

vce (vcetype) vcetype may be oim, or robust



Multivariate GARCH

@ tbill is a secondary market rate of a six month U.S. Treasury
bill and bond is Moody's seasoned AAA corporate bond yield

@ Consider a restricted var(1) on the first differences with an
ARCH(1) term



. webuse irates4

(St. Louis Fed (FRED) financial data)

Multivariate GARCH

. dvech (D.bond = LD.bond LD.tbill, noconstant) /17
> (D.tbill = LD.tbill, noconstant), arch(1l) nolog
Diagonal vech multivariate GARCH model
Sample: 3 - 2456 Number of obs = 2454
Wald chi2(3) = 1197.76
Log likelihood = 4221.433 Prob > chi2 = 0.0000
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
D.bond
bond
LD. .2941649 .0234734 12.53  0.000 2481579 .3401718
tbill
LD. .0953158 .0098077 9.72  0.000 .076093 .1145386
D.tbill
tbill
LD. .4385945 .0136672 32.09 0.000 .4118072 .4653817
Sigmal
1.1 .0048922 .0002005 24.40 0.000 .0044993 .0052851
2_1 .0040949 .0002394 17.10 0.000 .0036256 .0045641
2.2 .0115043 .0005184 22.19 0.000 .0104883 .0125203
L.ARCH
1.1 .4519233 .045671 9.90  0.000 3624099 .5414368
2_1 .2515474 .0366701 6.86  0.000 .1796752 .3234195
2.2 .8437212 .0600839 14.04  0.000 . 7259589 .9614836

31 /31
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