New multivariate time-series estimators in Stata 11

David M. Drukker

StataCorp

Stata Conference Washington, DC 2009

Outline

- Stata 11 has new command sspace for estimating the parameters of state-space models
- Stata 11 has new command dfactor for estimating the parameters of dynamic-factor models
- Stata 11 has new command dvech for estimating the parameters of diagonal vech multivariate GARCH models

What are state-space models

- Flexible modeling structure that encompasses many linear time-series models
 - VARMA with or without exogenous variables
 - ARMA, ARMAX, VAR, and VARX models
 - Dynamic-factor models
 - Unobserved component (Structural time-series) models
- Models for stationary and non-stationary data
- Hamilton (1994b,a); Brockwell and Davis (1991); Hannan and Deistler (1988) provide good introductions

The state-space modeling process

- Write your model as a state-space model
- Express your state-space space model in sspace syntax
 - sspace will estimate the parameters by maximum likelihood
 - For stationary models, sspace uses the Kalman filter to predict the conditional means and variances for each time period
 - For nonstationary models, sspace uses the De Jong diffuse Kalman filter to predict the conditional means and variances for each time period
 - These predicted conditional means and variances are used to compute the log-likelihood function, which sspace maximizes

Definition of a state-space model

$$\mathbf{z}_{t} = \mathbf{A}\mathbf{z}_{t-1} + \mathbf{B}\mathbf{x}_{t} + \mathbf{C}\epsilon_{t}$$
 (State Equations)
 $\mathbf{y}_{t} = \mathbf{D}\mathbf{z}_{t} + \mathbf{F}\mathbf{w}_{t} + \mathbf{G}\nu_{t}$ (Observation equations)

```
\mathbf{z}_t is an m \times 1 vector of unobserved state variables; \mathbf{x}_t is a k_\times \times 1 vector of exogenous variables; \boldsymbol{\epsilon}_t is a q \times 1 vector of state-error terms, (q \leq m); \mathbf{y}_t is an n \times 1 vector of observed endogenous variables; \mathbf{w}_t is a k_w \times 1 vector of exogenous variables; and \boldsymbol{\nu}_t is an r \times 1 vector of observation-error terms, (r \leq n); \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{F}, and \mathbf{G} are parameter matrices.
```

The error terms are assumed to be zero mean, normally distributed, serially uncorrelated, and uncorrelated with each other

Specify model in covariance or error form

An AR(1) model

• Consider a first-order autoregressive (AR(1)) process

$$y_t - \mu = \alpha(y_{t-1} - \mu) + \epsilon_t$$

• Letting the state be $u_t = y_t - \mu$ allows us to write the AR(1) in state-space form as

$$u_t = \alpha u_{t-1} + \epsilon_t$$
 (state equation) (1)

$$y_t = \mu + u_t$$
 (observation equation) (2)

• If you are in doubt, you can obtain the AR(1) model by substituting equation (1) into equation (2) and then plugging $y_{t-1} - \mu$ in for u_{t-1}

Covariance-form syntax for sspace

```
sspace state_ceq [ state_ceq ... state_ceq ]
                        obs_ceq [obs_ceq ... obs_ceq] [if] [in] [, options]
where each state_ceq is of the form
       (statevar [lagged_statevars] [indepvars], state [noerror noconstant])
and each obs_ceq is of the form
       (depvar statevars indepvars, noerror noconstant)
some of the available options are
                                                                                                                                 specifies the covariance structure for
     covstate(covform)
                                                                                                                                  the errors in the state variables
     covobserved(covform)
                                                                                                                                  specifies the covariance structure for the
                                                                                                                                 errors in the observed dependent variable
     constraints(constraints)
                                                                                                                                  apply linear constraints
     vce(vcetype)
                                                                                                                                  vcetype may be oim, or robust
                                                                                                                                                                                                <ロ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □
```

$$egin{array}{ll} u_t &= lpha u_{t-1} + \epsilon_t & ext{(state equation)} \ y_t &= \mu + u_t & ext{(observation equation)} \end{array}$$

. webuse manufac

(St. Louis Fed (FRED) manufacturing data)

. constraint define 1 [D.lncaputil]u = 1

. sspace (u L.u, state noconstant) (D.lncaputil u , noerror), constraints(1) searching for initial values

(setting technique to bhhh)

setting technique to bnnn)

Iteration 0: log likelihood = 1483.3603

 $(\mathit{output}\ \mathit{omitted}\,)$

Refining estimates:

Iteration 0: log likelihood = 1516.44
Iteration 1: log likelihood = 1516.44

State-space model

Sample: 1972m2 - 2008m12

Number of obs = 443 Wald chi2(1) = 61.73 Prob > chi2 = 0.0000

Log likelihood = 1516.44
(1) [D.lncaputil]u = 1

lncaputil	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
u						
u L1.	.3523983	.0448539	7.86	0.000	. 2644862	.4403104
D.lncaputil						
u _cons	1 0003558	.0005781	-0.62	0.538	001489	.0007773
var(u)	.0000622	4.18e-06	14.88	0.000	.000054	.0000704

Note: Tests of variances against zero are conservative and are provided only () + () + () + () ()

Estimation by arima

```
. arima D.lncaputil, ar(1) technique(nr) nolog
ARIMA regression
Sample: 1972m2 - 2008m12
                                                 Number of obs
                                                                             443
                                                 Wald chi2(1)
                                                                           61.73
Log likelihood = 1516.44
                                                 Prob > chi2
                                                                          0.0000
                                OTM
D.lncaputil
                                                 P>|z|
                                                            [95% Conf. Interval]
                    Coef.
                             Std. Err.
lncaputil
                -.0003558
                             .0005781
                                         -0.62
                                                 0.538
                                                            -.001489
                                                                        .0007773
       _cons
ARMA
          ar
         L1.
                 .3523983
                             .0448539
                                          7.86
                                                 0.000
                                                            .2644862
                                                                        .4403104
      /sigma
                 .0078897
                             .0002651
                                         29.77
                                                 0.000
                                                            .0073701
                                                                        .0084092
```

An ARMA(1,1) model

Harvey (1993, 95–96) wrote a zero-mean, first-order, autoregressive moving-average ($_{ARMA(1,1)}$) model

$$y_t = \alpha y_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$$

as a state-space model with state equations

$$\begin{pmatrix} y_t \\ \theta \epsilon_t \end{pmatrix} = \begin{pmatrix} \alpha & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_{t-1} \\ \theta \epsilon_{t-1} \end{pmatrix} + \begin{pmatrix} 1 \\ \theta \end{pmatrix} \epsilon_t$$

and observation equation

$$y_t = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} y_t \\ \theta \epsilon_t \end{pmatrix}$$

This state-space model is in error form

An ARMA(1,1) model (continued)

Letting $u_{1t}=y_t$ and $u_{2t}=\theta\epsilon_t$ allows use to write the ARMA(1,1) model

$$y_t = \alpha y_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$$

as a state-space model with state equations

$$\begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix} = \begin{pmatrix} \alpha & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_{1(t-1)} \\ u_{2(t-1)} \end{pmatrix} + \begin{pmatrix} 1 \\ \theta \end{pmatrix} \epsilon_t$$

and observation equation

$$y_t = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix}$$

Error-form syntax for sspace

```
sspace state_efeq [ state_efeq ... state_efeq ]
      obs_efeq [ obs_efeq ... obs_efeq ] [ if ] [ in ] [ , options ]
where each state_efeq is of the form
  (statevar [lagged_statevars] [indepvars] [state_errors], state
       [noconstant])
and each obs_ceq is of the form
  (depvar [statevars] [indepvars] [obs_errors], [noconstant])
```

state_errors is a list of state-equation errors that enter a state equation. Each state error has the form e.statevar, where statevar is the name of a state in the model.

obs_errors is a list of observation-equation errors that enter an equation for an observed variable. Each error has the form e.depvar, where depvar is an observed dependent variable in the model.

State-space models

```
. constraint 3 [ul]e.ul
. constraint 4 [D.lncaputil]u1 = 1
. sspace (u1 L.u1 L.u2 e.u1, state noconstant)
        (u2 e.u1,
                            state noconstant)
        (D.lncaputil u1,
                            noconstant ).
        constraints(2/4) covstate(diagonal) nolog
State-space model
Sample: 1972m2 - 2008m12
                                              Number of obs =
                                                                  443
                                              Wald chi2(2)
                                                               333.84
Log likelihood = 1531.255
                                              Prob > chi2
                                                                  0.0000
(1) [u1]L.u2 = 1
(2) [u1]e.u1 = 1
 ( 3) [D.lncaputil]u1 = 1
```

lncaputil	Coef.	OIM Std. Err.	z	P> z	[95% Conf	. Interval]
u1 u1 L1.	.8056815	.0522661	15.41	0.000	.7032418	.9081212
u2 L1. e.u1	1 1	:	:	;	:	:
u2 e.u1	5188453	.0701985	-7.39	0.000	6564317	3812588
D.lncaputil u1	1					
var(u1)	.0000582	3.91e-06	14.88	0.000	.0000505	.0000659

Estimation by arima

```
. arima D.lncaputil, ar(1) ma(1) tech(nr) noconstant nolog nrtolerance(1e-9)
ARIMA regression
Sample: 1972m2 - 2008m12
                                                 Number of obs
                                                                             443
                                                 Wald chi2(2)
                                                                          333.84
Log likelihood = 1531.255
                                                 Prob > chi2
                                                                          0.0000
                                OTM
D.lncaputil
                                                 P>|z|
                                                            [95% Conf. Interval]
                    Coef.
                             Std. Err.
ARMA
          ar
                 .8056814
         L1.
                             .0522662
                                         15.41
                                                 0.000
                                                            .7032415
                                                                        .9081213
          ma
         L1.
                -.5188451
                             .0701986
                                         -7.39
                                                 0.000
                                                          -.6564318
                                                                       -.3812584
      /sigma
                 .0076289
                             .0002563
                                         29.77
                                                 0.000
                                                            .0071266
                                                                        .0081312
```

A VARMA(1,1) model

We are going to model the changes in the natural log of capacity utilization and the changes in the log of hours as a first-order vector autoregressive moving-average (VARMA(1,1)) model

$$\begin{pmatrix} \Delta \text{lncaputil}_t \\ \Delta \text{lnhours}_t \end{pmatrix} = \begin{pmatrix} \alpha_1 & 0 \\ \alpha_2 & \alpha_3 \end{pmatrix} \begin{pmatrix} \Delta \text{lncaputil}_{t-1} \\ \Delta \text{lnhours}_{t-1} \end{pmatrix} + \begin{pmatrix} \theta_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \epsilon_{1(t-1)} \\ \epsilon_{2(t-1)} \end{pmatrix} + \begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{pmatrix}$$

We simplify the problem by assuming that

$$\mathsf{Var}\begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$$

State-space form of a VARMA(1,1) model

Letting $s_{1t} = \Delta \text{lncaputil}_t$, $s_{2t} = \theta_1 \epsilon_{1t}$, and $s_{3t} = \Delta \text{lnhours}_t$ implies that the state equations are

$$\begin{pmatrix} s_{1t} \\ s_{2t} \\ s_{3t} \end{pmatrix} = \begin{pmatrix} \alpha_1 & 1 & 0 \\ 0 & 0 & 0 \\ \alpha_2 & 0 & \alpha_3 \end{pmatrix} \begin{pmatrix} s_{1(t-1)} \\ s_{2(t-1)} \\ s_{3(t-1)} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ \theta_1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{pmatrix}$$

with observation equations

$$egin{pmatrix} \Delta ext{lncaputil} \ \Delta ext{lnhours} \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} s_{1t} \ s_{2t} \ s_{3t} \end{pmatrix}$$


```
. constraint 5 [u1]L.u2 = 1
. constraint 6 [u1]e.u1 = 1
. constraint 7 [u3]e.u3 = 1
. constraint 8 [D.lncaputil]u1 = 1
. constraint 9 [D.lnhours]u3 = 1
```

State-space models

```
(u2 e.u1,
                               state noconstant)
                                                      111
         (u3 L.u1 L.u3 e.u3, state noconstant)
         (D.lncaputil u1,
                               noconstant)
         (D.1nhours u3,
                              noconstant),
         constraints(5/9) covstate(diagonal) nolog vsquish nocnsreport
State-space model
Sample: 1972m2 - 2008m12
                                                   Number of obs
                                                   Wald chi2(4)
                                                                          427.55
Log likelihood = 3156.0564
                                                   Prob > chi2
                                                                          0.0000
                            Std. Err.
                                                           [95% Conf. Interval]
                    Coef.
                  .8058031
                             .0522493
                                         15.42
                                                 0.000
                                                           .7033964
                                                                        .9082098
          u2
        e.u1
        e.u1
                  -.518907
                             .0701848
                                         -7.39
                                                 0.000
                                                           -.6564667
                                                                       -.3813474
u3
                  .1734868
                             .0405156
                                          4.28
                                                 0.000
                                                           .0940776
                                                                         .252896
          u3
                -.4809376
                             .0498574
                                         -9.65
                                                 0.000
                                                           -.5786563
                                                                       -.3832188
        e.u3
D.lncaputil
D.lnhours
                  .0000582
                            3.91e-06
                                         14.88
                                                 0.000
                                                           .0000505
                                                                        .0000659
                  .0000382
                            2.56e-06
                                         14.88
                                                 0.000
                                                           .0000331
                                                                        .0000432
```

Note: Tests of variances against zero are conservative and are provided only $18 \ / \ 31$ for reference.

A local linear-trend model

- The local linear-trend model is a standard unobserved component (UC) model
- Harvey (1989) popularized UC models under the name structural time-series models
- The local-level model

$$y_t = \mu_t + \epsilon_t$$
$$\mu_t = \mu_{t-1} + \nu_t$$

models the dependent variable as a random walk plus an idiosyncratic noise term

• The local-level model is already in state-space form

A local-level model for the S&P 500

close	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
z z L1.	1					
close	1					
var(z) var(close)	170.3456 15.24858	7.584909 3.392457	22.46 4.49	0.000	155.4794 8.599486	185.2117 21.89767

Note: Model is not stationary.

Note: Tests of variances against zero are conservative and are provided only for reference.

Dynamic-factor models

- Dynamic-factor models model multivariate time series as linear functions of
 - unobserved factors,
 - their own lags,
 - exogenous variables, and
 - disturbances, which may be autoregressive
- The unobserved factors may follow a vector autoregressive structure
- These models are used in forecasting and in estimating the unobserved factors
 - Economic indicators
 - Index estimation
 - Stock and Watson (1989) and Stock and Watson (1991) discuss macroeconomic applications

A dynamic-factor model has the form

$$\begin{aligned} \mathbf{y}_t &= \mathbf{P}\mathbf{f}_t + \mathbf{Q}\mathbf{x}_t + \mathbf{u}_t \\ \mathbf{f}_t &= \mathbf{R}\mathbf{w}_t + \mathbf{A}_1\mathbf{f}_{t-1} + \mathbf{A}_2\mathbf{f}_{t-2} + \dots + \mathbf{A}_{t-p}\mathbf{f}_{t-p} + \boldsymbol{\nu}_t \\ \mathbf{u}_t &= \mathbf{C}_1\mathbf{u}_{t-1} + \mathbf{C}_2\mathbf{u}_{t-2} + \dots + \mathbf{C}_{t-q}\mathbf{u}_{t-q} + \boldsymbol{\epsilon}_t \end{aligned}$$

Item	dimension	definition
y _t	$k \times 1$	vector of dependent variables
Р	$k \times n_f$	matrix of parameters
\mathbf{f}_t	$n_f imes 1$	vector of unobservable factors
Q	$k \times n_{\times}$	matrix of parameters
\mathbf{x}_t	$n_{\times} \times 1$	vector of exogenous variables
\mathbf{u}_t	$k \times 1$	vector of disturbances
R	$n_f \times n_w$	matrix of parameters
\mathbf{w}_t	$n_w imes 1$	vector of exogenous variables
\mathbf{A}_{i}	$n_f \times n_f$	matrix of autocorrelation parameters for $i \in \{1, 2, \dots, p\}$
$oldsymbol{ u}_t$	$n_f imes 1$	vector of disturbances
\mathbf{C}_i	$k \times k$	matrix of autocorrelation parameters for $i \in \{1, 2, \dots, q\}$
$oldsymbol{\epsilon}_t$	$k \times 1$	vector of disturbances

Special cases

```
Dynamic factors with vector autoregressive errors

Dynamic factors

Static factors with vector autoregressive errors

Static factors

Vector autoregressive errors

Seemingly unrelated regression

(DFAR)

(SFAR)

(SFAR)
```

Syntax for dfactor

```
dfactor obs_eq [fac_eq] [if][in][, options]
```

obs_eq specifies the equation for the observed dependent variables,
and it has the form

```
(depvars = [exog\_d] [, sopts])
```

fac_eq specifies the equation for the unobserved factors, and it has
the form

```
(facvars = [exog\_f] [, sopts])
```

```
Among the sopts are
```

vce(vcetype)

ar (numlist) autoregressive terms

<u>ars</u>tructure(arstructure) structure of autoregressive coefficient

matrices

covstructure(covstructure) covariance structure

vcetype may be oim, for robust > ≥ ∽ < ~

Dynamic-factor models

```
. webuse dfex
(St. Louis Fed (FRED) macro data)
. dfactor (D.(ipman income hours unemp) = , noconstant) (f = , ar(1/2)) , nolog
Dynamic-factor model
Sample: 1972m2 - 2008m11
                                                     Number of obs
                                                                                442
                                                     Wald chi2(6)
                                                                             751.95
Log likelihood = -662.09507
                                                     Prob > chi2
                                                                             0.0000
                                 OIM
                     Coef.
                              Std. Err.
                                                   P>|z|
                                                              [95% Conf. Interval]
                  .2651932
                              .0568663
                                           4.66
                                                   0.000
                                                                           .3766491
                  .4820398
                              .0624635
                                           7.72
                                                   0.000
                                                              .3596136
                                                                            .604466
D.ipman
                  .3502249
                              .0287389
                                          12.19
                                                   0.000
                                                              .2938976
                                                                           .4065522
           f
D.income
                  .0746338
                              .0217319
                                           3.43
                                                   0.001
                                                              .0320401
                                                                           .1172276
           f
D.hours
                  .2177469
                              .0186769
                                          11.66
                                                                            .254353
                                                   0.000
                                                              .1811407
D.unemp
                 -.0676016
                              .0071022
                                           -9.52
                                                   0.000
                                                             -.0815217
                                                                          -.0536816
           f
var(De.ipman)
                  .1383158
                              .0167086
                                           8.28
                                                   0.000
                                                              .1055675
                                                                           .1710641
var(De.inc~e)
                  .2773808
                              .0188302
                                           14.73
                                                   0.000
                                                              .2404743
                                                                           .3142873
var (De.hours)
                                          11.27
                                                   0.000
                                                              .0752988
                  .0911446
                              .0080847
var(De.unemp)
                  .0237232
                              .0017932
                                           13.23
                                                   0.000
                                                              .0202086
                                                                           .0272378
```

Note: Tests of variances against zero are conservative and are provided only $25 \ / \ 31$ for reference.

Multivariate GARCH models

- Multivariate GARCH models allow the conditional covariance matrix of the dependent variables to follow a flexible dynamic structure
- General multivariate GARCH models are under identified
 - There are trade-offs between flexibility and identification
 - Plethora of alternatives
- dvech estimates the parameters of diagonal vech GARCH models
 - Each element of the current conditional covariance matrix of the dependent variables depends only on its own past and on past shocks
- Bollerslev, Engle, and Wooldridge (1988); Bollerslev, Engle, and Nelson (1994); Bauwens, Laurent, and Rombouts (2006); Silvennoinen and Teräsvirta (2009) provide good introductions

$$\mathbf{y}_t = \mathbf{C}\mathbf{x}_t + \epsilon_t; \qquad \epsilon_t = \mathbf{H}_t^{1/2} \mathbf{\nu}_t \ \mathbf{H}_t = \mathbf{S} + \sum_{i=1}^p \mathbf{A}_i \odot \epsilon_{t-i} \epsilon'_{t-i} + \sum_{j=1}^q \mathbf{B}_j \odot \mathbf{H}_{t-j}$$

 \mathbf{y}_t is an $m \times 1$ vector of dependent variables;

C is an $m \times k$ matrix of parameters;

 \mathbf{x}_t is an $k \times 1$ vector of independent variables, which may contain lags of \mathbf{y}_t ;

 $\mathbf{H}_{t}^{1/2}$ is the Cholesky factor of the time-varying conditional covariance matrix \mathbf{H}_{t} ;

 ν_t is an $m \times 1$ vector of normal, independent, and identically distributed (NIID) innovations;

S is an $m \times m$ symmetric parameter matrix; each \mathbf{A}_i is an $m \times m$ symmetric parameter matrix;

 \odot is the element-wise or Hadamard product; and each \mathbf{B}_i is an $m \times m$ symmetric parameter matrix.

 Bollerslev, Engle, and Wooldridge (1988) proposed a general vech multivariate GARCH model of the form

$$\mathbf{y}_t = \mathbf{C}\mathbf{x}_t + \epsilon_t$$
 $\epsilon_t = \mathbf{H}_t^{1/2} \boldsymbol{\nu}_t$
 $\mathbf{h}_t = \operatorname{vech}(\mathbf{H}_t) = \mathbf{s} + \sum_{i=1}^p \mathbf{A}_i \operatorname{vech}(\epsilon_{t-i} \epsilon'_{t-i}) + \sum_{i=1}^q \mathbf{B}_j \mathbf{h}_{t-j}$

 the vech() function stacks the lower diagonal elements of symmetric matrix into a column vector,

$$\operatorname{vech}\begin{pmatrix}1&2\\2&3\end{pmatrix}=(1,\ 2,\ 3)'$$

• Bollerslev, Engle, and Wooldridge (1988) found this form to be under identified and suggested restricting the \mathbf{A}_i and \mathbf{B}_i to be diagonal matrices

Syntax of dvech

```
dvech eq [eq \cdots eq] [if] [in] [, options]
where each eq has the form
  (depvars = [indepvars], [noconstant])
Some of the options are
 noconstant
                          suppress constant term
 arch(numlist)
                          ARCH terms
 garch(numlist)
                          GARCH terms
 constraints(numlist)
                          apply linear constraints
 vce(vcetvpe)
                          vcetype may be oim, or robust
```

- tbill is a secondary market rate of a six month U.S. Treasury bill and bond is Moody's seasoned AAA corporate bond yield
- Consider a restricted VAR(1) on the first differences with an ARCH(1) term

```
. webuse irates4
(St. Louis Fed (FRED) financial data)
. dvech (D.bond = LD.bond LD.tbill, noconstant)
        (D.tbill = LD.tbill, noconstant), arch(1) nolog
Diagonal vech multivariate GARCH model
Sample: 3 - 2456
                                                     Number of obs
                                                                              2454
                                                     Wald chi2(3)
                                                                           1197.76
Log likelihood =
                    4221.433
                                                     Prob > chi2
                                                                            0.0000
                     Coef.
                             Std. Err.
                                                   P>|z|
                                                             [95% Conf. Interval]
D. bond
        bond
                             .0234734
         LD.
                  .2941649
                                          12.53
                                                   0.000
                                                              .2481579
                                                                          .3401718
       tbill
                  .0953158
                             .0098077
                                           9.72
                                                   0.000
                                                              .076093
                                                                          .1145386
D.tbill
       tbill
         LD.
                  .4385945
                             .0136672
                                          32.09
                                                   0.000
                                                              .4118072
                                                                          .4653817
Sigma0
         1_1
                  .0048922
                             .0002005
                                          24.40
                                                   0.000
                                                             .0044993
                                                                          .0052851
         2 1
                  .0040949
                             .0002394
                                          17.10
                                                   0.000
                                                             .0036256
                                                                          .0045641
         2_2
                  .0115043
                             .0005184
                                          22.19
                                                   0.000
                                                              .0104883
                                                                          .0125203
L.ARCH
                  .4519233
                              .045671
                                           9.90
                                                   0.000
                                                              .3624099
                                                                          .5414368
         2_1
                  .2515474
                             .0366701
                                           6.86
                                                   0.000
                                                             .1796752
                                                                          .3234195
         2_2
                  .8437212
                              .0600839
                                          14.04
                                                   0.000
                                                              .7259589
                                                                          .9614836
```

Bibliography

- Bauwens, L., S. Laurent, and J. V. K. Rombouts. 2006. "Multivariate GARCH models: A survey," *Journal of Applied Econometrics*, 21, 79–109.
- Bollerslev, T., R. F. Engle, and D. B. Nelson. 1994. "ARCH models," in R. F. Engle and D. L. McFadden (eds.), *Handbook of Econometrics, Volume IV*, New York: Elsevier.
- Bollerslev, T., R. F. Engle, and J. M. Wooldridge. 1988. "A capital asset pricing model with time-varying covariances," *Journal of Political Economy*, 96, 116–131.
- Brockwell, P. J. and R. A. Davis. 1991. *Time Series: Theory and Methods*, New York: Springer, 2 ed.
- Hamilton, J. D. 1994a. "State-space models," in R. F. Engle and D. L. McFadden (eds.), Vol. 4 of *Handbook of Econometrics*, New York: Elsevier, pp. 3039–3080.
- Hamilton, James D. 1994b. *Time Series Analysis*, Princeton, New Jersey: Princeton University Press.

- Hannan, E. J. and M. Deistler. 1988. *The Statistical Theory of Linear Systems*, New York: Wiley.
- Harvey, Andrew C. 1989. Forecasting, Structural Time-Series Models, and the Kalman Filter, Cambridge: Cambridge University Press.
- ———. 1993. *Time Series Models*, Cambridge, MA: MIT Press, 2d ed.
- Silvennoinen, A. and T. Teräsvirta. 2009. "Multivariate GARCH models," in T. G. Andersen, R. A. Davis, J.-P. Kreiß, and T. Mikosch (eds.), *Handbook of Financial Time Series*, New York: Springer, pp. 201–229.
- Stock, James H. and Mark W. Watson. 1989. "New indexes of coincident and leading economic indicators," in Oliver J. Blanchard and Stanley Fischer (eds.), *NBER Macroeconomics Annual 1989*, vol. 4, Cambridge, MA: MIT Press, pp. 351–394.
- ———. 1991. "A probability model of the coincident economic indicators," in Kajal Lahiri and Geoffrey H. Moore (eds.), *Leading* a conditional content of the coincident economic indicators, and the coincident economic indicators indicators indicators in the coincident economic indicators i

Economic Indicators: New Approaches and Forecasting Records, Cambridge: Cambridge University Press, pp. 63–89.