
Advanced Graphics Programming in Stata

Sergiy Radyakin
mailto:sradyakin@worldbank.org

Development Economics Research Group
The World Bank

July 29, 2009

Sergiy Radyakin Advanced Graphics Programming in Stata



Quote from a statalist message

”...at present, I don’t really think that graphics is a strength in Stata.
Compared to the myriads of graphs that R can do, Stata can only do
simple plots. The main impediment is probably that Stata graphics is not
programmable by most users. Could this possibly change in the coming
years?”

http://www.stata.com/statalist/archive/2009-01/msg00872.html
Fri, Jan 23, 2009 at 11:46 AM

Sergiy Radyakin Advanced Graphics Programming in Stata



In the next 20 minutes we will learn how to build graphs like these in Stata 9 or later

Sergiy Radyakin Advanced Graphics Programming in Stata



WARNING

Many features presented here are not documented and thus their
behaviour may be unpredictable, especially in different versions of
Stata. Proceed at your own risk.

Illustrations as shown in this presentation have passed through series
of conversion from Stata export, through the Beamer package and
into the PDF format. This inevitably causes some distortion.

This is a rather technical presentation: you have to be absolutely
comfortable with objects and class programming in Stata.

Stata trivia

Did you know that (in Stata 9.2) a single command
twoway scatter price weight

creates 20,002 (twenty thousand and two) classes/objects to show a single graph?

Sergiy Radyakin Advanced Graphics Programming in Stata



Standard Stata graphics

Stata comes with a number of standard graphs: scatter and line plots, bar and pie charts, etc.

Stata graphics galleries:

http://www.ats.ucla.edu/stat/Stata/library/GraphExamples/default.htm
http://www.survey-design.com.au/Usergraphs.html
http://www.stata.com/support/faqs/graphics/gph/statagraphs.html

Sergiy Radyakin Advanced Graphics Programming in Stata



There are other types of graphs out there!

There are many more types of charts and graphs out there: shaded charts, heatmaps, contour
plots, 3D graphs, etc. Users of R have developed a number of such graphs, see e.g.

R graphics galleries:

http://addictedtor.free.fr/graphiques/thumbs.php

How can we develop custom graphs in Stata?

Sergiy Radyakin Advanced Graphics Programming in Stata



Implementing graphics commands

One can use old (pre-Stata 8) documented graphics commands
to draw directly, without using the modern Stata graphics
engine, like -venndiag- by J.M.Lauritsen

Or write a wrapper for a standard command: for example
-tmap-/-spmap- by M.Pisati are in fact wrappers around
-twoway area-. While these commands produce graphics
output, they do not add a new graph to Stata’s graphical
engine.

...............................................................................................................................................................................................

Another way is to create custom classes required by the
graphical engine, for example -sunflower-, by W.D.Dupont,
W.D.Plummer Jr., T.J.Steichen, N.J.Cox, W.W.Gould,
J.S.Pitblado, built-in to Stata 8 and later.

Finally a plugin can be implemented that will communicate
with OS libraries directly to create and manage the graph. An
early version of the -amap- used to work this way before it was
moved out of process. These are totally independent from
Stata’s graphics engine, but are platform-specific

Sergiy Radyakin Advanced Graphics Programming in Stata



Why develop graphs using Stata’s graphics engine?

Stata graphics engine is implemented as a set of classes and objects with
very desirable properties:

Stata’s cross-platform compatibility, no platform-specific solutions
Stata’s export facility to produce WMF/EMF/PNG/TIFF/..and any
other formats if they are added in the future
Stata’s *.GPH file format, printing and editing (Stata 10+)
Graphs can be made -graph combine-’able with standard Stata graphs

The engine provides a mechanism for inheriting standard behavior and
properties, as well as overriding them with new, custom ones.

In particular, programmers do not have to implement features like axes,
scales and legend, as long as they are shared with the base (parent) class.

In the heart of the engine there lies an undocumented command -gdi- with
its numerous subcommands, which is responsible for communicating with
the OS graphics libraries to actually draw something on the screen. It is a
successor of the out-of-date command -gph- present in Stata 7 and some
earlier versions.

Sergiy Radyakin Advanced Graphics Programming in Stata



Example problem: pattern fills

One common request in Statalist is creating diagrams with patterned fills for printing
(publication) in black-and-white.

Standard Stata graphics commands do not allow patterned fills.

Typical solutions suggested were to prepare the data, export it from Stata, and use
another graphing package (e.g. Excel) to create the necessary graph.

Any better solutions?

Sergiy Radyakin Advanced Graphics Programming in Stata



PAREA - module to generate area graph with pattern fills

PAREA

PAREA by Sergiy Radyakin is a ready to use command,
which implements pattern fills, available from SSC since
April 2008.

findit parea

The command was featured in the ”User written
Stata graph commands” gallery:

http://www.survey-design.com.au/Usergraphs.html

To understand the Stata graphics engine we will
look at one particular type of graphs - area graphs,
(other types of graphs bar, pie, etc) can be
modified in a similar way.

Specifically we ask:
1. How to create patterned fills in Stata?
2. How to create a new type of graph with this

new feature?

Sergiy Radyakin Advanced Graphics Programming in Stata



How to use the patterns?

In shadestyle.class we see the following fragment:

which suggests that the proper syntax to apply patterns is: gdi shadepattern=patternname

where patternname is anything from the list of patterns: pattern1-pattern10, background,

none

Now, how do we create our pattern filled twoway area graph? We note that -twoway- calls

-graph-, which is not aware of any particular twoway graphs (implemented as separate

programs). So how does Stata know which kinds of twoway graphs are implemented?

Sergiy Radyakin Advanced Graphics Programming in Stata



How do we create our pattern filled graph?

It doesn’t! It tries. Every time a user requests a -twoway something- (e.g. twoway parea)
Stata follows this route:

twoway99Kgraph99Kgraph.Graph99K.....99K
99K.twowaygraph g.new parea ...parameters and options...

twowaygraph g creates a (parent) object of class graph g and calls own method parse to parse
the parameters and options. Subsequently it checks presence of the following files (see
twowaygraph g.class) :

twoway something parse.class

yxtype-something.style

yxview something draw.ado

Note how here the presense of the class file is verified not directly by checking the proper file

name, but using -cutil- command and the class name, (-cutil- is same as -classutil-).

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating custom graphic options parser

After the files are checked, the object of class twoway parea parse is
created by the twowaygraph g class

Hence in our custom graph we must provide this class to Stata.

Classes twoway something parse are responsible for parsing options
specific to this graph type, that are not shared with other graphs of
the twoway family (and hence not handled by the parent).

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating custom graphic options parser

This class adds one new property ”pattern” of type string to the base set of
properties that are inherited from the parent class, which I have chosen to
be twoway bar parse. This property is initialized with value ”pattern10”,
which is the default behaviour - solid fill.

After a new instance of this class is created, it’s method .parse is called.
Note that the parse method calls .Super.parse ‘0’ to let the parent object to
parse all the options first. Thus everything that the parent (in our case
twoway bar parse) can digest will be removed from the parameters line. All
is left for us is to find the parameter for pattern and store it into the
declared property.

In this class you also see the method log edits. The graphs in Stata are not
built directly, but rather an internal program (called ”log”) is created, and
then replayed to construct a graph. This allows saving graphs to disk in the
[proprietary] *.gph-format.

In this method I let the parent class do it’s work first, then I add (Arrpush)
to this program line which would set the pattern of the view that is being
created.

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating custom graphic view

The view is the next class that we need to create - parea g class, which inherits from the
yxview, which implements most useful methods for two-dimensional views.

Note that this class must declare all properties that are going to be used in the log-program
commands (in our case we again declare the pattern property and initialize it to solid fill). At
the minimum, this is it - all is left is to supply the actual drawing routine.
Here however a newkey method is supplied - this will override the standard method for creating

legend keys (because we want the patterns to be in the legend as well). This method doesn’t do
much, it just creates a new instance of the class pareakey g.

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating custom legend key

This class implements two methods:
new is the constructor, which is called when an object of this class is
created;

draw parea is responsible for drawing the legend key.

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating custom graph: drawing

Finally we have to actually draw the graph. When the time is right (when
the log-program is replayed) Stata will be calling the following procedure
(must be implemented as an *.ado file): yxview something draw
(in our case: yxview parea draw).

Here it is best to study existing Stata commands to find out what to
write in it. In any case drawing is actually performed by calls to an
undocumented command gdi, which structurally reminds the Windows
MetaFile commands or Windows GDI interface.

Command gdi is not only undocumented, it is also rarely used. In
particular, some of its implemented subcommands are not called anywhere
in Stata’s classes and *.ado files. So there is plenty of blanks to be filled
in.

Sergiy Radyakin Advanced Graphics Programming in Stata



Drawing with GDI commands

For example, to set the shade we do:

gdi shadergb=128 255 100
gdi shadelevel=80
gdi shadepattern=pattern7
gdi shadechange

Note that gdi shadechange must be called to apply all of the above
changes! To draw a line we can:

gdi moveto x0 y0
gdi lineto x1 y1

Or equivalently

gdi line x0 y0 x1 y1

Sergiy Radyakin Advanced Graphics Programming in Stata



Doing more advanced changes

We have just seen how we can pass one more parameter through the Stata’s
graphics engine all the way to the drawing procedure. When implementing a
custom graph, keep in mind the difference between scalar parameters and
vector parameters.

Scalar parameters are, for example, a number, a string or a color. The
memory for their storage can be reserved directly by declaring the
corresponding property member in the twoway something parse.class
and something g.class

Vector parameters are of dimension of data being plotted (e.g. labels for
each point on a scatter, etc). These can’t be stored in the property
members directly, since the required memory is not known at design time.
Stata provides a dynamic memory mechanism to store these kind of data
particularly for graphics commands. It is based on the concept of serset - a
data holder in the Stata’s memory outside of the current loaded dataset.
Sersets can be saved and loaded, and can also be embedded into other kinds
of data (that’s how the data is stored with the graph parameters into the
*.gph file). Nice thing about sersets is that they are documented!

Sergiy Radyakin Advanced Graphics Programming in Stata



Doing more advanced changes

We add the following line: .must create serset == 1 into the options parser indicating that
our graphics command uses additional sersets (in our case to store the values of the cells) and
Stata must call a special procedure log create serset to create them. We then provide this
procedure:

Later while creating the log for graph creation, we pass the index of the values var serset to the
view object.

Sergiy Radyakin Advanced Graphics Programming in Stata



Custom graphics command: twoway matrix

twoway matrix is a very flexible and powerful command:

has two modes:

plotting values choosing proper values from a color palette, useful for
plotting density or intensity of an XY-dependent outcome
plotting colors specified directly, useful for digital image processing

comes with a set of palettes (BW256, Red256, Green256, Blue256,
RedGreen256, Yellow256, Acid256).

R-G-B color components can be specified directly, useful when
processing color separately in digital image processing

supports basic contour option

formatted values can be displayed in the matrix grid

rownames/colnames or row/col indices can be displayed on the axes

currently has a rather inconvenient syntax. it is often simplier to use
derived commands, which simplify syntax and handle some
preparational work.

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating derived commands for specialized purposes

plotmatrix is intended to plot matrices:

plotmatrix M [, label(string) format(string)

contour(int) grid color(R G B)]

Here:

M is a required matrix name

label is either ”indices” or ”names”

if format is specified formatted values are displayed in cells

if contour is specified, its integer value [1-255] is taken as a
threshold to separate colors range into color bins:
0(contour)255.

if grid color is specified, grid of this color is plotted over the
color cells

Other options may be specified to further control the graphics
parameters - these will be passed to the underlying graphics
command.

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating derived commands for specialized purposes

pictureppm is intended to plot simple (color) graphics imported
from Portable Pixel Map (PPM) format:

pictureppm using "filename.ppm"

Other options may be specified to further control the graphics
parameters - these will be passed to the underlying graphics
command.

currently set fixed to 256x256 graphics size, but this can be easily modified

PPM format is a lossless raster graphics format, where R-G-B color componets are stored
separately for each pixel in ASCII encoding

JPG, PNG, GIF, BMP, and other images can be easily converted to PPM with a free
image viewer/converter IrfanView http://www.irfanview.com/

About the image

By popular demand, here is some more information about the image: Lenna (Lena) is image 4.2.04 in the University of Southern
California SIPI Image database and is available for research purposes. The image is an equivalent of auto.dta dataset in the
image-processing/compression communities. Original image is copyrighted by Playboy. Some more information is here:
http://en.wikipedia.org/wiki/Lenna

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating more exciting graphics: metheorological data

Monsoon progression in India, 2006, monthly precipitation

May June July

August September October

Terrestrial Precipitation: 1900-2006 Gridded Monthly Time Series(v1.01)

Center for Climatic Research, Department of Geography, University of Delaware

Sergiy Radyakin Advanced Graphics Programming in Stata



Creating more exciting graphics: Contour plot

Sergiy Radyakin Advanced Graphics Programming in Stata



Drawing with GDI commands

init
end
update
record
maybedraw
resetregs
topwindow
xcur, ycur
xtransform, ytransform
xreverse, yreverse
xmetric, ymetrix
xsize, ysize
newjitterseed
jitterseed
xalpha, yalpha
xbeta, ybeta
gbeta

record
maybedraw
pen
linergb
gm linewidth
linedash
penchange
shadergb
shadelevel
shadepattern
shadechange
rectangle
pieslice
point
cpoint
ctext
polybegin, polyend
moveto
lineto
line
gm rmoveto
gm rlineto

textrgb
textsize
gm textsize
textangle
texthalign
textvalign
textfont
textchange
symbol
symbolsize
gm symbolsize
pointcloud
scatter
scattervalue
scatterlabel
scatterline
scatterweight

scatterline connect type
scatter-

line connect missing
gm jitter
jitterseed

xalpha, yalpha
xbeta, ybeta
gbeta
xtransform, ytransform
natscale
tsnatscale
xbounds, ybounds

————————

Subcommands
mentioned here two
times work in two
directions - to set and
to get a parameter.

————————

Stata 10 added more
subcommands, e.g. to
communicate with the
graph editor.

Sergiy Radyakin Advanced Graphics Programming in Stata


