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Introduction 

• Topics—adaptations to survey data of … 

Leverages 

DFBETAS 

DFFITS 

Cook’s D 

Collinearity measures 

Forward search 

• Comparisons to standard diagnostics 
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Linear Regression on Survey Data 

• Weighted least squares estimates (fixed effects) 

( )2,     ~ 0,T
i i i i iY vε ε σ= +x β  independent (no clustering but can be 

handled) 

( ) 11 1ˆ T T−− −=β X WV X X WV Y  

If constant variance, ( ) 1ˆ T T−
=β X WX X WY 

W = diagonal matrix of survey weights 

• β̂ can be interpreted as an estimate of  

(i) parameter in underlying model or of  

(ii) “census fit” parameter 
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Reasons for Using Diagnostics 

• Extreme points can affect regression parameter estimates, 

hypothesis tests, & confidence intervals 

• Extremes can be due to  

- outlying X’s or Y’s (survey or non-survey data) 

- large weights (survey data) 

- interaction of weights with X’s and Y’s 
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A, B, and C are all influential. A, C may affect estimated slope. 

C will not affect slope but may reduce SE of slope. 
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Generated data based on a survey of mental health organizations 

The 5 points in the lower right may or may not be influential 

depending on size of their survey weights. 
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Survey Weights 

• Survey weights are intended to expand a sample to a finite 

population.  They are NOT same as inverse-variance weights in 

usual WLS regression. 

• Reasons for variation in size of weights due to sample design 

- Household surveys 

- Different sampling rates for demographic groups (e.g., to 

get equal sample sizes for groups) 

- Business/institution surveys 

- Varying sampling rates by type of business (retail, 

service, etc) 

- PPS sampling (probs ∝ no. of employees) 
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• More reasons for variation in size of weights 

- Differential follow-up for nonresponse, i.e., subsampling of 

neighborhoods at different rates for nonresponse 

conversion, callbacks 

- Low response rates followed by large nonresponse 

adjustments in some groups 

- Use of auxiliary data in estimation—poststratification by 

age, race, sex; general regression estimation using no. of 

employees, prior year expenditures, etc. 
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Examples 

• 1999-2002 National Health & Nutrition Examination Survey 

(NHANES)  

Weight range for Mexican-Americans: 698 – 103,831 (148:1) 

• 1998 Survey of Mental Health Organizations  

Weight range: 1 - 159 

• 2002 Status of the Armed Forces Survey 

Weight range: 2.3 – 384 (168:1) 
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Hat Matrix and Leverages 

(Li & Valliant, Survey Methodology 2009) 

• Predicted values: ˆ =Y HY   

1 T−=H XA X W  with T=A X WX 

• Leverages on the diagonal of hat matrix are 1T
ii i i ih w−= x A x  

• When model has an intercept, leverage can be decomposed as 

( ) ( )11 ˆ1 Ti
ii i W i W

wh N
n w

−⎡ ⎤= + − −⎢ ⎥⎣ ⎦
x x S x x ,  

S is a x-product matrix involving x’s; Wx  wtd mean of x’s 

• A point has high leverage if its weight is >> average or ix  is 

toward edge of ellipsoid centered at Wx . 
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An Example 

• 1998 Survey of Mental Health Organizations (SMHO). PPS 

sample 

• Regress expenditures on no. of beds (BEDS), no. patients 

added during years (ADDS) 

Quantiles of Variables in SMHO Regression. 
 Quantiles 
Variables 0% 25% 50% 75% 100% 
Expenditure 
(1000’s) 

17 2,932 6,240 11,842 519,863 

BEDS 0 6 36 93 2,405 
ADDS 0 558 1,410 2,406 79,808 
Weights 1 1.42 2.48 7.76 158.86 
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Scatterplots of expenditures versus beds and additions.  High leverage 
points based on OLS (SW) are highlighted in top (bottom) row. 
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Plot of survey weighted leverages versus OLS unweighted leverages. 
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Rule-of-thumb cutoff is 2 p n 
A = detected by SW only; B = detected by OLS only 
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OLS and SW parameter estimates of SMHO regression using all 
875 sample cases. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept -1,201 526 -2.3 514 1,158 0.4 
# of Beds 94 3 31 81 13 6.2 

# of Additions 2.3 0.13 18 1.8 0.8 2.4 
 
Deleting observations with leverages greater than 2 p n=0.007  

Intercept 2,987 490 6 1,994 354 5.6 
# of Beds 69 4.4 16 76 6.7 11.2 

# of Additions 0.95 0.20 4.7 1.0 0.20 4.7 
 
 

• After deleting high leverage points, SEs reduced, OLS and WLS 

estimates closer to each other. 

• Significance of coefficients unchanged (except for intercept) 
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Variance Estimators 

• Estimators of ( )ˆVar β  are needed for several diagnostics 

• Options are Binder sandwich (ISR 1983) or replication 

(jackknife, BRR, bootstrap) 

These are both design- and model-consistent. 

• Purely model-based estimator useful for setting cutoffs 

( ) 2 1 2 1ˆ ˆ T
Mv σ − −=β A X W XA  with ( )2 2 ˆˆ i ii s w e N pσ ∈= −∑  

ˆT
i i ie Y= − x β, ˆ

ii sN w∈=∑  
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Standardized Residuals 

• Standardizing so that residuals have (approximate) variance 1 

makes interpretation easier. 

• Use ˆie σ  

• Cutoff for large: 2 or 3 based on Gauss inequality 

 

(No design-based, distribution theory for residuals, even asymptotically) 
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DFBETAS, DFFITS 

(Li & Valliant 2009, submitted) 

• Measure effect of single unit on each ˆ
jβ  separately 

• 
( )

( )
1

ˆ
ji i ii

ij
j

c e h
DFBETAS

v β

−
=  with ( )1

ij i i i j
c e w−= A x , i = unit, j = parm 

Based on ( )ˆ ˆ
iDFBETA i= − =β β  ( )1 1i i i iie w h− −A x  

Large if any of weight, residual, or leverage is large 

A lot to look at: np values 
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• Measure effect of unit i on prediction 

Multiply iDFBETA  by T
ix  to get 

( )
( )
1
ˆ

ii i ii
i

j

h e h
DFFITS

v β

−
=  

• Heuristic cutoffs  

ijDFBETAS  z n  

iDFFITS  z p n , z = 2 or 3 

(Bonferroni adjustment to cutoffs can be used) 
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Extended Cook’s D 

• Measures effect of single unit on vector estimate β̂ 

• ( )( ) ( ) ( )( )1ˆ ˆ ˆ ˆ ˆT
iED i v i

−
⎡ ⎤= − −⎣ ⎦β β β β β  

Compare to quantiles from ( )2 pχ  distribution. Influential units 

are ones that define a “large” ellipsoid centered at β̂. 

• Per Atkinson (JRSS-B 1982), an alternative that detects more 

points is i iMD nED p= . 

• Heuristic cutoff for iMD  is 2 or 3 
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SMHO Data: Regress expenditures on BEDS, ADDS 
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C & D are cases identified by OLS but not by SW 

These are all cases with small weights. 

OLS flags 57 cases; SW 9. 
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A = cases identified by SW only; B = OLS only 

OLS flags 44; MD flags 10 
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OLS and SW Parameter Estimates after Deleting Observations with Large 
Modified Cook’s Distance.   

 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept -1,201 526 -2.3 514 1,158 0.4 
# of Beds 94 3 31 81 13 6.2 

# of Additions 2.3 0.13 18 1.8 0.8 2.4 
 

No. units 
deleted 

44   10   

Independent 
Variables 

Coefficient SE t Coefficient SE t 

Intercept 1660 335 4.9 932 345 2.7 
# of Beds 81 2.4 33 83 5.7 14.5 

# of Additions 1.2 0.12 9.7 1.4 0.3 5.4 
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Forward Search 

(Atkinson & Riani book 2000), Li & Valliant 2009, draft) 

 

 

• One outlier can mask effect of another 

• Identify groups of influential observations to avoid masking 

effect 
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• Method 

- Fit a robust regression (e.g., least median of squares) to 

subsample of full sample 

- Choose subsample that minimizes ( )2
,OLS imedian e  

- Subsample m p=  

- Find 1m +  cases with smallest squared residuals 

- Track 2σ̂  

- Look for point at which 2σ̂  makes abrupt change. All cases 

after that are called outliers. 

(No abrupt changes ⇒ no outliers) 

• Adaptations made for survey data 
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SMHO Data again 

Plots of Parameter Estimates from Forward Search  
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83 points identified as influential; 20 never identified by single-

case deletion methods (DFBETAS, DFFITS, modified Cook, etc) 

Method may have promise but more work needed. 
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Collinearity 

• Collinearity is worrisome for both numerical and statistical 

reasons.  

• Estimates of slopes can be numerically unstable, i.e., small 

changes in the X's or the Y 's can produce large changes in 

estimates.  

• Correlation among predictors can lead to slope estimates with 

large variances.  

• When X's are strongly correlated, 2R  can be large while the 

individual slope estimates are not statistically significant. 

• Even if slope estimates are significant, they may have opposite 

sign of what is expected. 
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• Variance inflation factor (VIF) 

Measure of how much ( )ˆvar jβ  is inflated compared to what it 

would be if x’s were orthogonal. 

( )
2

2 2
1ˆVar

1
M k

k iki s
VIF

R x
σβ
∈

=
− ∑

 

2
kR  is the R-square from regressing kx  on the other x’s. 

kx  = column k of X  



 

 28 

• For survey weighted regression estimator, if = +Y Xβ ε, ( )~ ,ε 0 V  

( )
( )

( )2
ˆVar Var  if  others

1
k k

M k k
SW k

VIF

R
ζ ηβ = ⊥
−

x  

( )
2
SW kR  = R-square from SW of regression of  kx  on other x's 

( ) ( )

( ) ( )

T
k k

k T
k k

ζ =
e WVWe

e We
,   

T
k k

k T
k k

η =
x Wx

x WVWx
, 

( )ke  = vector of residuals from regressing kx  on other x's 
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• Approaches to estimation 

- Purely model-based 

- Think of census value of 
( )

21
k k

SW kR
ζ η
−

; fill in design-based 

estimates of each component. 

• Variance decomposition using SVD: use to identify pairs of x’s 

that are collinear (ala Belsley, Kuh, Welsch 1980) 

• Work is in progress on this 



 

 30 

Conclusion 

• Different points can be influential in OLS and SW regression. 

Specialized diagnostics needed for survey data (assuming survey 

weighted LS used). 

• If you adopt OLS regression, use OLS diagnostics; if you 

adopt SW regression, use SW diagnostics. 

• Little formal distribution theory available 

• Packages do not currently include diagnostics for survey 

regressions 
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• Implications of dropping points based on diagnostics 

- “Core” model being fitted: one that fits for the portion of 

population that excludes influential points 

- Idea of estimating census parameter is lost  
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• What if mechanical procedure used that automatically drops 

points? 

- SE’s too small, CI’s cover at less than nominal rate, 

hypothesis tests reject too often 

- Similar to problems known for stepwise regression (Zhang 

BMKA 1992, Hurvich & Tsai TAS 1990) 

• Collinearity has similar effects on survey estimators as in regular 

regression 

- Same inference problems may exist as above if automatic 

procedure used. 


