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Testing goodness of fit

• embedd model in larger model

• constructive method: suggests model
improvement

but: often violation of some assumption leads to
rejections for other forms of misspecification

e.g.: White test for heteroscedasticity in
regression is also very sensitive to misspecification
of mean

• may require estimating more complicated models
(LR, Wald), though sometimes score testing may
be feasible
Check testomit

• sometimes saturated model can be estimated,
e.g., regression models with categorical covariates

• goodness of fit statistics

• derive distribution of d(obs,fit) under Ho

• example with categorical response

d(obs,fit) = sum (obs-exp)2/exp

• d() can often be seen as an aggregate of residuals

• See Cressie-Read (1984) for details

• All models are wrong . . .
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Pearson’s X2 for binary data

Pearson X2 measure for goodness of fit after binary
regression models

πi = F (x′iβ)

With replication of the xi (HL: ”m-asymptotics”)

X2 =
∑

pattern

(obs− exp)2

exp

With large number of obs per pattern, X2 is
approximately χ2 (with df = #patterns - #parameters).

Stata’s lfit command provides this test for logistic
regression

lfit also allows essentially unique covariates, i.e., with
small number of replications per pattern. The manual
warns that this is “not necessarily incorrect.”
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Unaggregated measure of fit

With unique covariates, the unaggregated Pearson’s
statistic Tn is

Tn =
n∑

i=1

(yi − π̂i)
2

π̂i(1− π̂i)

With replicated data, Tn does not equal X2, but usually
is close.

Claim: Tn is not χ2 distributed (”n-asymptotics”).

Correct Theory: Subject to regularity conditions
(Windmeijer ’90; McCullagh ’86)

Tn − n√
n σn

→ N(0, 1)

σ2
n =

1

n

n∑
i=1

(1− 2πi)
2

πi(1− πi)
− v′nΩ

−1
n vn

vn =
1

n

n∑
i=1

1− πi

πi(1− πi)
F ′(x′iβ)xi

Ωn =
1

n

n∑
i=1

F ′(x′iβ)

πi(1− πi)
Fisher information

Condition for Tn to be χ2 distributed: σ2 = 2.

Counter example: logistic regression with 1 x-var

xi ∼ U [−1, 2] β = 1
σ2

n → 0.034

Pearson’s X2 4/15 jeroen weesie June 10, 2002



Extensions

Extensions available for (Windmeijer 1995)

• multinomial logit (Stata: mlogit)

• conditional logistic regression (one success/group;
= Luce-McFadden choice model) (Stata: clogit).

Conditional logistic regression (k alternatives)

πij =
exp xijβ∑k

h=1 exp xihβ

Asymptotic result for

Tn =
n∑

i=1

k∑
j=1

(Yij − π̂ij)
2

π̂ij(1− π̂ij)
Tn − nk√

n σn
→ N(0, 1)

σ2
n =

1

n

n∑
i=1

k∑
j=1


1− 2πij

πij
qij −

k∑
h6=j

qijqih

 − ν ′nΩ
−1
n νn

νn =
1

n

n∑
i=1

k∑
j=1

qij(xij −
k∑

h=1
πihxih)

qij =
1− 2πij

1− πij
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Problem with application

(1) Sensitivity with respect to observations with large
residuals (small πi for observed response)

Ad hoc modifications of test statistics

• ignore observations with some π < ε

• ”round-up” probabilities to ε

• or: “leave as is”

See also Hosmer & Lemeshow - 2nd edition.

(2) Quality of asymptotic approximation unknown

(3) Power against meaningfull misspecifications
unknown
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A Stata command

Post-estimation command

pearsonx2 [, eps(#) table]

available after the following commands

logit / logistic

probit

cloglog

mlogit

clogit -- one positive response per groups

Options

eps(#) specifies that only observations for which the

estimated probability for all possible outcomes are

greater than # are used in computing the test.

# defaults to 1E-2.

table specifies that Windmeijer’s test is conducted for

various eps (.1,.01,.001,etc) in order to assess the

sensitivity of the test to very small probabilities

of some outcomes.
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Example logistic regression

. use barcelona_lbw

(Hosmer & Lemeshow data)

. xi: logistic low age lwt i.race smoke ptl ht ui

i.race _Irace_1-3 (naturally coded; _Irace_1 omitted)

Logit estimates Number of obs = 189

LR chi2(8) = 33.22

Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

------------------------------------------------------------------------------

low | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .9732636 .0354759 -0.74 0.457 .9061578 1.045339

lwt | .9849634 .0068217 -2.19 0.029 .9716834 .9984249

_Irace_2 | 3.534767 1.860737 2.40 0.016 1.259736 9.918406

_Irace_3 | 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke | 2.517698 1.00916 2.30 0.021 1.147676 5.523162

ptl | 1.719161 .5952579 1.56 0.118 .8721455 3.388787

ht | 6.249602 4.322408 2.65 0.008 1.611152 24.24199

ui | 2.1351 .9808153 1.65 0.099 .8677528 5.2534

------------------------------------------------------------------------------

. lfit

Logistic model for low, goodness-of-fit test

number of observations = 189

number of covariate patterns = 182

Pearson chi2(173) = 179.24

Prob > chi2 = 0.3567

. lfit, group(10)

Logistic model for low, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

number of observations = 189

number of groups = 10

Hosmer-Lemeshow chi2(8) = 9.65

Prob > chi2 = 0.2904
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Logistic regression (cont)

. pearsonx2

Pearson-Windmeijer goodness-of-fit test after logistic low

number of observations = 189

Pearson’s X2 (ungrouped) = 182.02

Windmeijer’s H = norm(X2) = 0.61

Prob > chi2(1) = 0.4334

. pearsonx2, table

Pearson-Windmeijer goodness-of-fit test after logistic low

number of observations = 189

Pearson’s X2 (ungrouped) = 182.02

Windmeijer’s H = norm(X2) = 0.61

Prob > chi2(1) = 0.4334

----------------------------------------------------------------

eps | Obs X2 se(X2) H p

-----------+----------------------------------------------------

0.10000000 | 163 161.46 3.01 0.26 0.6095

0.01000000 | 189 182.02 8.90 0.61 0.4334

----------------------------------------------------------------

All obs with some p<eps are ignored in computing the test
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Example conditional logistic regression

clogit choice sexJap incJap japan sexEur incEur europe, group(id) nolog

Conditional (fixed-effects) logistic regression Number of obs = 885

LR chi2(6) = 142.74

Prob > chi2 = 0.0000

Log likelihood = -252.72012 Pseudo R2 = 0.2202

------------------------------------------------------------------------------

choice | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

sexJap | -.4694799 .3114939 -1.51 0.132 -1.079997 .141037

incJap | .0276854 .0123666 2.24 0.025 .0034472 .0519236

japan | -1.962652 .6216804 -3.16 0.002 -3.181123 -.7441806

sexEur | .5388442 .4525278 1.19 0.234 -.348094 1.425782

incEur | .0273669 .013787 1.98 0.047 .000345 .0543889

europe | -3.180029 .7546837 -4.21 0.000 -4.659182 -1.700876

------------------------------------------------------------------------------

. pearsonx2, table

Pearson-Windmeijer goodness-of-fit test after clogit choice

number of observations = 295

Pearson’s X2 (ungrouped) = 870.42

Windmeijer’s H = norm(X2) = 19.48

Prob > chi2(1) = 0.0000

----------------------------------------------------------------

eps | Obs X2 se(X2) H p

-----------+----------------------------------------------------

0.10000000 | 200 625.43 2.26 126.67 0.0000

0.01000000 | 295 870.42 3.30 19.48 0.0000

----------------------------------------------------------------

All obs with some p<eps are ignored in computing the test
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Simulation: Goodness-of-link test

Design

True : logit(πi) = γx1 + γx2
xij iid N(0, 1)

Fitted: logit(πi) = β1x1 + β2x2
probit(πi) = β1x1 + β2x2

Results (proportion of rejections in 1000 replications)

pearsonx2 linktest

γ n fitted 0.10 0.05 0.01 0.10 0.05 0.01

1 100 logit .048 .027 .015 .105 .049 .005
1 400 logit .070 .045 .021 .100 .050 .008
1 1600 logit .064 .046 .027 .119 .062 .013

1 100 probit .046 .032 .018 .112 .055 .010
1 400 probit .096 .076 .047 .120 .059 .009
1 1600 probit .102 .080 .058 .147 .085 .021

3 100 logit .105 .063 .028 .100 .064 .017
3 400 logit .127 .071 .021 .142 .116 .058
3 1600 logit .133 .074 .023 .103 .062 .014

3 100 probit .160 .119 .055 .194 .112 .037
3 400 probit .248 .178 .066 .253 .204 .134
3 1600 probit .269 .201 .080 .254 .164 .078
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Simulation: Omitted variables in logit

Design

true logitπi = xi1 + xi2 + γxi1xi2

xij iid N(0, 1)

fitted logitπi = β1xi1 + β2xi2

Results (proportion of rejections in 1000 replications)

n γ α = 0.10 α = 0.05 α = 0.01

100 0 .037 .028 .020
400 0 .085 .053 .026

1600 0 .076 .037 .010

100 1/3 .087 .070 .053
400 1/3 .112 .089 .036

1600 1/3 .248 .181 .092

100 2/3 .230 .201 .161
400 2/3 .273 .194 .113

1600 2/3 .847 .781 .641

100 1 .488 .459 .394
400 1 .621 .536 .348

1600 1 .999 .999 .995
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Simulation: Omitted variables in clogit

Design – k alternatives

True LPij = x1ij + x2ij + γx1ijx2ij

xhij iid N(0, 1)

Fitted LPij = β1x1ij + β2x2ij

and

πij =
exp LPij∑k

l=1 exp LPil

Results (proportion of rejections in 1000 replications)

γ = 0 γ = 1
k n .100 .050 .010 .100 .050 .010

3 100 .031 .023 .017 .378 .352 .284
3 200 .040 .030 .017 .267 .211 .106
3 400 .046 .033 .024 .506 .475 .436
3 400 .057 .035 .021 .268 .194 .103

4 100 .061 .044 .026 .261 .229 .192
4 200 .022 .019 .006 .813 .747 .619
4 400 .051 .030 .017 .714 .636 .473
4 800 .059 .035 .019 .995 .920 .817

5 100 .052 .046 .024 .180 .133 .071
5 200 .028 .019 .007 .920 .905 .881
5 400 .061 .046 .022 .771 .722 .594
5 800 .046 .030 .014 .996 .994 .990

Pearson’s X2 13/15 jeroen weesie June 10, 2002



Discussion and conclusion

(Based on many more simulations than reported here)

Dedicated tests (eg omitted vars test) have more power than the

omnibus gof test (surprise?)

Asymptotic results for binary cases (logit, probit) seem adequate

I am not sure yet about cloglog

Asymptotic results for mlogit / clogit are reasaonbly accurate only

for LARGE n. For small and moderate n, tests are severely biased.

Turn to higher order asymptotics?

The methods of Windmeijer (1994) and Weesie (199) for reducing

the sensitivity of the tests to very small probabilities are not

ambiguous improvements.

Consider other statistics from the power family suggested by

Cressie-Read.
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