Standard Errors for the Blinder-Oaxaca Decomposition

Ben Jann
Department of Sociology
ETH Zurich
jann@soz.gess.ethz.ch

3rd German Stata Users Group Meeting Berlin, April 82005

Outline

1 Motivation
■ The Econometrics of Discrimination
■ What about Standard Errors?

2 Results
■ New Variance Estimators
■ A New Stata Command
■ Bootstrap results

The Decomposition Problem

- Explanation of the difference in (mean) outcome between two groups.
- Popular example: Male-Female wage differential.
- Research questions
- How much of the differential can be explained by group differences in characteristics?
- How much of the differential may be due to, e.g., discrimination?

The Three-Fold Division (Winsborough/Dickinson 1971)

Based on the regression model

$$
Y_{j}=X_{j} \beta_{j}+\epsilon_{j}, \quad E\left(\epsilon_{j}\right)=0, \quad j \in\{1,2\}
$$

the mean outcome difference $R=\bar{Y}_{1}-\bar{Y}_{2}=\bar{X}_{1}^{\prime} \hat{\beta}_{1}-\bar{X}_{2}^{\prime} \hat{\beta}_{2}$
can be decomposed as

$$
R=\begin{aligned}
& \left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime} \hat{\beta}_{2}+\bar{X}_{2}^{\prime}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)+\left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right) \\
& \text { differences in } \\
& \text { endowments }
\end{aligned} \text { differences in } \quad \text { coefficients } \quad \text { interaction }
$$

\bar{Y} : sample mean of outcome variable (e.g. log wages)
\bar{X} : mean vector of regressors (e.g. education, experience, etc.)

The Two-Fold Division

$$
\begin{aligned}
& R=\left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime} \beta^{*}+\left[\bar{X}_{1}^{\prime}\left(\hat{\beta}_{1}-\beta^{*}\right)+\bar{X}_{2}^{\prime}\left(\beta^{*}-\hat{\beta}_{2}\right)\right] \\
& \text { "explained" } \\
& \text { part }(Q) \text { "unexplained" } \operatorname{part}(U)
\end{aligned}
$$

where β^{*} is a set of benchmark coefficients (i.e. the coefficients from the non-discriminatory wage structure). Examples for β^{*} are:

- $\beta^{*}=\hat{\beta}_{1}$ or $\beta^{*}=\hat{\beta}_{2}$ (Oaxaca 1973; Blinder 1973)
- $\beta^{*}=0.5 \hat{\beta}_{1}+0.5 \hat{\beta}_{2}$ (Reimers 1983)
- coefficients from the pooled sample (Neumark 1988)

Alternative Specification (Oaxaca/Ransom 1994)

The two-fold decomposition can also be expressed as

$$
\begin{aligned}
R & =\left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime}\left[W \hat{\beta}_{1}+(I-W) \hat{\beta}_{2}\right] \quad \text { (explained part) } \\
& +\left[\bar{X}_{1}^{\prime}(I-W)+\bar{X}_{2}^{\prime} W\right]\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right) \quad \text { (unexplained part) }
\end{aligned}
$$

where W represents a matrix of relative weights given to the coefficients of the first group ($I=$ identity matrix).
Examples:

- $W=I$ corresponds to $\beta^{*}=\hat{\beta}_{1}, W=0$ to $\beta^{*}=\hat{\beta}_{2}$
- $W=0.5$ / corresponds to $\beta^{*}=0.5 \hat{\beta}_{1}+0.5 \hat{\beta}_{2}$
- $W=\left(X_{1}^{\prime} X_{1}+X_{2}^{\prime} X_{2}\right)^{-1} X_{1}^{\prime} X_{1}$ is equivalent to using the coefficients from the pooled sample as β^{*}

Sampling Variances?

■ The computation of the decomposition components is straight forward: Estimate OLS models and insert the coefficients and the means of the regressors into the formulas.

■ However, deriving standard errors for the decomposition components seems to cause problems. At least, hardly any paper applying these methods reports standard errors or confidence intervals.
■ This is problematic because it is hard to evaluate the significance of reported decomposition results without knowing anything about their sampling distribution.

Approaches to Estimating the Standard Errors

- An obvious solution is to use the bootstrap technique.

■ However, bootstrap is slow and it would be desirable to have easy to compute asymptotic formulas.
■ Previously proposed estimators (Oaxaca/Ransom 1998;
Greene 2003:53-54) produce biased results in most applications because they assume fixed regressors (as will be shown below).
■ Thus, new unbiased variance estimators for the components of the three-fold and the two-fold decomposition the will be presented in the following.

Step I: Variance of Mean Prediction

How can the sampling variance of the mean prediction $\bar{Y}=\bar{X}^{\prime} \hat{\beta}$ be estimated?

- If the regressors are fixed, then \bar{X} is constant. Thus:

$$
\widehat{V}\left(\bar{X}^{\prime} \hat{\beta}\right)=\bar{X}^{\prime} \widehat{V}(\hat{\beta}) \bar{X}
$$

- In most applications, however, the regressors and therefore \bar{X} are stochastic. Fortunately, \bar{X} and $\hat{\beta}$ are uncorrelated (as long as $\operatorname{Cov}(\epsilon, X)=0$ holds). Thus:

$$
\widehat{V}\left(\bar{X}^{\prime} \hat{\beta}\right)=\bar{X}^{\prime} \widehat{V}(\hat{\beta}) \bar{X}+\hat{\beta}^{\prime} \widehat{V}(\bar{X}) \hat{\beta}+\operatorname{tr}(\widehat{V}(\bar{X}) \widehat{V}(\hat{\beta}))
$$

(proof in the Appendix).

Step II: Variance of Difference in Mean Prediction

As long as the two samples are independent, the variance estimator for the group difference in mean predictions immediately follows as:

$$
\begin{aligned}
\widehat{V}(R)= & \widehat{V}\left(\bar{X}_{1}^{\prime} \hat{\beta}_{1}-\bar{X}_{2}^{\prime} \hat{\beta}_{2}\right) \\
= & \widehat{V}\left(\bar{X}_{1}^{\prime} \hat{\beta}_{1}\right)+\widehat{V}\left(\bar{X}_{2}^{\prime} \hat{\beta}_{2}\right) \\
= & \bar{X}_{1}^{\prime} \widehat{V}\left(\hat{\beta}_{1}\right) \bar{X}_{1}+\hat{\beta}_{1}^{\prime} \widehat{V}\left(\bar{X}_{1}\right) \hat{\beta}_{1}+\operatorname{tr}\left(\widehat{V}\left(\bar{X}_{1}\right) \widehat{V}\left(\hat{\beta}_{1}\right)\right) \\
& +\bar{X}_{2}^{\prime} \widehat{V}\left(\hat{\beta}_{2}\right) \bar{X}_{2}+\hat{\beta}_{2}^{\prime} \widehat{V}\left(\bar{X}_{2}\right) \hat{\beta}_{2}+\operatorname{tr}\left(\widehat{V}\left(\bar{X}_{2}\right) \widehat{V}\left(\hat{\beta}_{2}\right)\right)
\end{aligned}
$$

Step III: Three-Fold Decomposition

Similarly:

$$
\begin{aligned}
\begin{aligned}
\widehat{V}\left(\left[\bar{X}_{1}-\bar{X}_{2}\right]^{\prime} \hat{\beta}_{2}\right)=(& \bar{X}_{1}- \\
& \left.\bar{X}_{2}\right)^{\prime} \widehat{V}\left(\hat{\beta}_{2}\right)\left(\bar{X}_{1}-\bar{X}_{2}\right) \\
& +\hat{\beta}_{2}^{\prime}\left[\widehat{V}\left(\bar{X}_{1}\right)+\widehat{V}\left(\bar{X}_{2}\right)\right] \hat{\beta}_{2}+\operatorname{tr}(.) \\
\widehat{V}\left(\bar{X}_{2}^{\prime}\left[\hat{\beta}_{1}-\hat{\beta}_{2}\right]\right)=\bar{X}_{2}^{\prime} & {\left[\widehat{V}\left(\hat{\beta}_{1}\right)+\widehat{V}\left(\hat{\beta}_{2}\right)\right] \bar{X}_{2} } \\
& +\left(\hat{\beta}_{2}-\hat{\beta}_{2}\right)^{\prime} \widehat{V}\left(\bar{X}_{2}\right)\left(\hat{\beta}_{2}-\hat{\beta}_{2}\right)+\operatorname{tr}(.) \\
\widehat{V}([& \left.\left.\bar{X}_{1}-\bar{X}_{2}\right]\left[\hat{\beta}_{1}-\hat{\beta}_{2}\right]\right)= \\
& \left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime}\left[\widehat{V}\left(\hat{\beta}_{1}\right)+\widehat{V}\left(\hat{\beta}_{2}\right)\right]\left(\bar{X}_{1}-\bar{X}_{2}\right) \\
+\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)^{\prime}[& \left.\widehat{V}\left(\bar{X}_{1}\right)+\widehat{V}\left(\bar{X}_{2}\right)\right]\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)+\operatorname{tr}(.)
\end{aligned}
\end{aligned}
$$

Step IV: Two-Fold Decomposition

Finally:
$\widehat{V}(Q)=\operatorname{tr}()+$.

$$
\begin{aligned}
& +\left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime}\left[W \widehat{V}\left(\hat{\beta}_{1}\right) W^{\prime}+(I-W) \widehat{V}\left(\hat{\beta}_{2}\right)(I-W)^{\prime}\right]\left(\bar{X}_{1}-\bar{X}_{2}\right) \\
& +\left[W \hat{\beta}_{1}+(I-W) \hat{\beta}_{2}\right]^{\prime}\left[\widehat{V}\left(\bar{X}_{1}\right)+\widehat{V}\left(\bar{X}_{2}\right)\right]\left[W \hat{\beta}_{1}+(I-W) \hat{\beta}_{2}\right]
\end{aligned}
$$

$\widehat{V}(U)=\operatorname{tr}()+$.

$$
\begin{aligned}
& +\left[(I-W)^{\prime} \bar{X}_{1}+W^{\prime} \bar{X}_{2}\right]^{\prime}\left[\widehat{V}\left(\hat{\beta}_{1}\right)+\widehat{V}\left(\hat{\beta}_{2}\right)\right]\left[(I-W)^{\prime} \bar{X}_{1}+W^{\prime} \bar{X}_{2}\right] \\
& +\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)^{\prime}\left[(I-W)^{\prime} \widehat{V}\left(\bar{X}_{1}\right)(I-W)+W^{\prime} \widehat{V}\left(\bar{X}_{2}\right) W\right]\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)
\end{aligned}
$$

(Note: W is assumed fixed.)

The oaxaca Command

The proposed formulas are implemented in a new post-estimation command called oaxaca. The syntax is:
oaxaca est1 est2 [, se fixed[(varlist)] eform other options]
where est1 and est2 are the names of stored estimates.
se requests standard errors
fixed identifies fixed regressors
eform transforms all results to exponentiated form
Other options: detailed decomposition for individual regressors/groups of regressors, specify W, use β^{*} from pooled model, adjust for selection terms

New Variance Estimators A New Stata Command Bootstrap results
. quietly regress lnwage educyrs exp exp2 tenure boss if female==0

- estimates store male
. quietly regress lnwage educyrs exp exp2 tenure boss if female==1
. estimates store female
- oaxaca male female, se
(high estimates: male; low estimates: female)

Results of linear decomposition:

lnwage	Pred. H	Pred. L	R=H-L	E	C	CE
Total	3.725382	$\mathbf{3 . 4 8 3 2 1 2}$.2421702	.0950089	.1330691	.0140922
Std. error	.006801	.0106372	.0126255	.0088171	.0112131	.0068167

H: mean prediction high model; L: mean prediction low model
R: raw differential; E: differential due to endowments
$C:$ diff. due to coefficients; CE: diff. due to interaction

Explained $\left(Q=E+W^{*} C E\right)$:

lnwage	$W=0$	$W=1$	$W=.5$
Total	.0950089	.1091011	.102055
Std. error	.0088171	.0075205	.007452

Unexplained ($\mathrm{U}=\mathrm{C}+[\mathrm{I}-\mathrm{W}] * \mathrm{CE}$):

lnwage	$W=0$	$W=1$	$W=.5$
Total	.1471613	.1330691	.1401152
Std. error	.012253	.0112131	.0112391

Empirical Application

- The accuracy of the proposed estimators can be demonstrated by Monte-Carlo experiments under ideal conditions.

■ But how do the estimators perform on „real" data compared to, e.g., bootstrap estimators?

■ Application: Decomposition of the gender wage gap using data from the Swiss Labor Force Survey 2000 (SLFS; Swiss Federal Statistical Office).

Sample: Employees aged 20-62, working fulltime, only one job. Dependent variable: Log hourly wages.

	Men			Women	
Log wages	Coef.	Mean		Coef.	Mean
Education	0.0754	12.0239		0.0762	11.6156
	(0.0023)	(0.0414)		(0.0044)	(0.0548)
Experience	0.0221	19.1641	0.0247	14.0429	
	(0.0017)	(0.2063)		(0.0031)	(0.2616)
Exp. ${ }^{2} / 100$	-0.0319	5.1125	-0.0435	3.0283	
	(0.0036)	(0.0932)		(0.0079)	(0.1017)
Tenure	0.0028	10.3077	0.0063	7.6729	
	(0.0007)	(0.1656)		(0.0014)	(0.2013)
Supervisor	0.1502	0.5341	0.0709	0.3737	
	(0.0113)	(0.0086)		(0.0193)	(0.0123)
Constant	2.4489		2.3079		
	(0.0332)		(0.0564)		
R^{2}	0.3470		0.2519		
N. of cases	3383		1544	ETH	

Decomposition and Standard Errors

Value
BS
STO
FIX

Differential (R)
$0.2422 \quad 0.0122$
0.0126
0.0107

Explained (Q):

$W=0$	0.0950	0.0094	0.0088	0.0059
$W=1$	0.1091	0.0076	0.0075	0.0031
$W=0.5 /$	0.1021	0.0078	0.0075	0.0033
$W=W^{*}$	0.1144	0.0081	0.0076	0.0026

Unexplained (U):

$W=0$	0.1472	0.0122	0.0123	0.0122
$W=1$	0.1331	0.0113	0.0112	0.0111
$W=0.5 /$	0.1401	0.0112	0.0112	0.0112
$W=W^{*}$	0.1277	0.0104	0.0104	0.0103

BS = bootstrap standard errors, STO = stochastic regressors assumed, FIX = fixed regressors assumed

Summary

- Standard errors for the Blinder-Oaxaca decomposition are rarely reported in the literature. However, relatively simple estimators do exist.
- These estimators seem to work quite all right on real data (using bootstrap estimates as a benchmark).
- Neglecting the stochastic nature of the regressors yields a considerable underestimation of the standard errors for the „explained" part of the differential.
- Outlook

■ Unsolved problem: The estimates may be biased if W is stochastic.

Proof I

LEMMA: The variance of the product of two uncorrelated random vectors is:

$$
V\left(u_{1}^{\prime} u_{2}\right)=\mu_{1}^{\prime} \Sigma_{2} \mu_{1}+\mu_{2}^{\prime} \Sigma_{1} \mu_{2}+\operatorname{tr}\left(\Sigma_{1} \Sigma_{2}\right)
$$

where $u_{j} \sim\left(\mu_{j}, \Sigma_{j}\right), j=1,2$
PROOF:

$$
E(x+y)=E(x)+E(y), \quad E(x y)=E(x) E(y)+\operatorname{Cov}(x, y)
$$

Thus, if u_{1} and u_{2} are uncorrelated:

$$
E\left(u_{1}^{\prime} u_{2}\right)=\mu_{1}^{\prime} \mu_{2}, \quad E\left(u_{j} u_{j}^{\prime}\right)=\mu_{j} \mu_{j}^{\prime}+\Sigma_{j}
$$

Proof II

and

$$
\begin{aligned}
E\left(\left[u_{1}^{\prime} u_{2}\right]^{2}\right)= & E\left(u_{1}^{\prime} u_{2} u_{2}^{\prime} u_{1}\right)=\operatorname{tr}\left(E\left(u_{1} u_{1}^{\prime} u_{2} u_{2}^{\prime}\right)\right) \\
= & \operatorname{tr}\left(E\left(u_{1} u_{1}^{\prime}\right) E\left(u_{2} u_{2}^{\prime}\right)\right) \\
= & \operatorname{tr}\left(\left(\mu_{1} \mu_{1}^{\prime}+\Sigma_{1}\right)\left(\mu_{2} \mu_{2}^{\prime}+\Sigma_{2}\right)\right) \\
= & \operatorname{tr}\left(\mu_{1} \mu_{1}^{\prime} \mu_{2} \mu_{2}^{\prime}\right)+\operatorname{tr}\left(\mu_{1} \mu_{1}^{\prime} \Sigma_{2}\right) \\
& +\operatorname{tr}\left(\Sigma_{1} \mu_{2} \mu_{2}^{\prime}\right)+\operatorname{tr}\left(\Sigma_{1} \Sigma_{2}\right) \\
= & \left(\mu_{1}^{\prime} \mu_{2}\right)^{2}+\mu_{1}^{\prime} \Sigma_{2} \mu_{1}+\mu_{2}^{\prime} \Sigma_{1} \mu_{2}+\operatorname{tr}\left(\Sigma_{1} \Sigma_{2}\right)
\end{aligned}
$$

Finally:

$$
\begin{aligned}
V\left(u_{1}^{\prime} u_{2}\right) & =E\left(\left[u_{1}^{\prime} u_{2}\right]^{2}\right)-\left[E\left(u_{1}^{\prime} u_{2}\right)\right]^{2} \\
& =\mu_{1}^{\prime} \Sigma_{2} \mu_{1}+\mu_{2}^{\prime} \Sigma_{1} \mu_{2}+\operatorname{tr}\left(\Sigma_{1} \Sigma_{2}\right)
\end{aligned}
$$

References I

- Blinder, A. S. (1973) Wage Discrimination: Reduced Form and Structural Estimates The Journal of Human Resources 8(4):436-455.
- Greene, W. H. (2003) Econometric Analysis, 5th edn.
- Neumark, D. (1988) Employers' Discriminatory Behavior and the Estimation of Wage Discrimination The Journal of Human Resources 23:279-295.
- Oaxaca, R. (1973) Male-Female Wage Differentials in Urban Labor Markets International Economic Review 14:693-709.
- Oaxaca, R., and M. R. Ransom (1994) On discrimination and the decomposition of wage differentials Journal of Econometrics 61:5-21.

References II

- Oaxaca, R. L., and M. Ransom (1998) Calculation of approximate variances for wage decomposition differentials Journal of Economic and Social Measurement 24:55-61.
- Reimers, C. W. (1983) Labor Market Discrimination Against Hispanic and Black Men The Review of Economics and Statistics 65:570-579.
- Winsborough, H. H., and P. Dickinson (1971) Components of Negro-White Income Differences Proceedings of the Social Statistics Section:6-8.

