Motivation Results Summary

Standard Errors for the Blinder–Oaxaca Decomposition

Ben Jann

Department of Sociology ETH Zurich jann@soz.gess.ethz.ch

3rd German Stata Users Group Meeting Berlin, April 8 2005

Motivation Results Summary

Outline

1 Motivation

- The Econometrics of Discrimination
- What about Standard Errors?

2 Results

- New Variance Estimators
- A New Stata Command
- Bootstrap results

The Econometrics of Discrimination What about Standard Errors?

The Decomposition Problem

- Explanation of the difference in (mean) outcome between two groups.
- Popular example: Male–Female wage differential.
- Research questions
 - How much of the differential can be explained by group differences in characteristics?
 - How much of the differential may be due to, e.g., discrimination?

The Three-Fold Division (Winsborough/Dickinson 1971)

Based on the regression model

$$Y_j = X_j \beta_j + \epsilon_j, \quad E(\epsilon_j) = 0, \quad j \in \{1, 2\}$$

the mean outcome difference $R = \bar{Y}_1 - \bar{Y}_2 = \bar{X}'_1 \hat{\beta}_1 - \bar{X}'_2 \hat{\beta}_2$ can be decomposed as

$$R = (\bar{X}_1 - \bar{X}_2)'\hat{\beta}_2 + \bar{X}'_2(\hat{\beta}_1 - \hat{\beta}_2) + (\bar{X}_1 - \bar{X}_2)'(\hat{\beta}_1 - \hat{\beta}_2)$$

differences in differences in interaction
endowments coefficients

 \bar{Y} : sample mean of outcome variable (e.g. log wages) \bar{X} : mean vector of regressors (e.g. education, experience, etc.)

The Econometrics of Discrimination What about Standard Errors?

The Two-Fold Division

$$\begin{split} R &= (\bar{X}_1 - \bar{X}_2)'\beta^* + \left[\bar{X}_1'(\hat{\beta}_1 - \beta^*) + \bar{X}_2'(\beta^* - \hat{\beta}_2)\right] \\ & \text{"explained"} \\ & \text{part } (Q) \end{split}$$

where β^* is a set of benchmark coefficients (i.e. the coefficients from the non-discriminatory wage structure). Examples for β^* are:

$$\beta^* = \hat{\beta}_1 \text{ or } \beta^* = \hat{\beta}_2 \text{ (Oaxaca 1973; Blinder 1973)}$$
 $\beta^* = 0.5\hat{\beta}_1 + 0.5\hat{\beta}_2 \text{ (Reimers 1983)}$

coefficients from the pooled sample (Neumark 1988)

Alternative Specification (Oaxaca/Ransom 1994)

The two-fold decomposition can also be expressed as

$$egin{aligned} R &= (ar{X}_1 - ar{X}_2)'[W \hat{eta}_1 + (I-W) \hat{eta}_2] & (ext{explained part}) \ &+ [ar{X}_1'(I-W) + ar{X}_2'W] (\hat{eta}_1 - \hat{eta}_2) & (ext{unexplained part}) \end{aligned}$$

where W represents a matrix of relative weights given to the coefficients of the first group (I = identity matrix). Examples:

- W = I corresponds to $\beta^* = \hat{\beta}_1$, W = 0 to $\beta^* = \hat{\beta}_2$
- W = 0.5I corresponds to $\beta^* = 0.5\hat{\beta}_1 + 0.5\hat{\beta}_2$
- $W = (X'_1X_1 + X'_2X_2)^{-1}X'_1X_1$ is equivalent to using the coefficients from the pooled sample as β^*

Sampling Variances?

- The computation of the decomposition components is straight forward: Estimate OLS models and insert the coefficients and the means of the regressors into the formulas.
- However, deriving standard errors for the decomposition components seems to cause problems. At least, hardly any paper applying these methods reports standard errors or confidence intervals.
- This is problematic because it is hard to evaluate the significance of reported decomposition results without knowing anything about their sampling distribution.

Approaches to Estimating the Standard Errors

- An obvious solution is to use the bootstrap technique.
- However, bootstrap is slow and it would be desirable to have easy to compute asymptotic formulas.
- Previously proposed estimators (Oaxaca/Ransom 1998; Greene 2003:53–54) produce biased results in most applications because they assume fixed regressors (as will be shown below).
- Thus, new unbiased variance estimators for the components of the three-fold and the two-fold decomposition the will be presented in the following.

Step I: Variance of Mean Prediction

How can the sampling variance of the mean prediction $\bar{Y} = \bar{X}'\hat{\beta}$ be estimated?

If the regressors are fixed, then \bar{X} is constant. Thus:

$$\widehat{V}(\bar{X}'\hat{eta}) = \bar{X}'\widehat{V}(\hat{eta})\bar{X}$$

In most applications, however, the regressors and therefore X
 are stochastic. Fortunately, X
 and β
 are uncorrelated (as long as Cov(ε, X) = 0 holds). Thus:

$$\widehat{V}(\bar{X}'\hat{\beta}) = \bar{X}'\widehat{V}(\hat{\beta})\bar{X} + \hat{\beta}'\widehat{V}(\bar{X})\hat{\beta} + \operatorname{tr}\left(\widehat{V}(\bar{X})\widehat{V}(\hat{\beta})\right)$$

(proof in the Appendix).

lidgenössische Technische Hochschule Züric

Step II: Variance of Difference in Mean Prediction

As long as the two samples are independent, the variance estimator for the group difference in mean predictions immediately follows as:

$$\begin{split} \widehat{V}(R) &= \widehat{V}(\bar{X}_1'\hat{\beta}_1 - \bar{X}_2'\hat{\beta}_2) \\ &= \widehat{V}(\bar{X}_1'\hat{\beta}_1) + \widehat{V}(\bar{X}_2'\hat{\beta}_2) \\ &= \bar{X}_1'\widehat{V}(\hat{\beta}_1)\bar{X}_1 + \hat{\beta}_1'\widehat{V}(\bar{X}_1)\hat{\beta}_1 + \operatorname{tr}\left(\widehat{V}(\bar{X}_1)\widehat{V}(\hat{\beta}_1)\right) \\ &\quad + \bar{X}_2'\widehat{V}(\hat{\beta}_2)\bar{X}_2 + \hat{\beta}_2'\widehat{V}(\bar{X}_2)\hat{\beta}_2 + \operatorname{tr}\left(\widehat{V}(\bar{X}_2)\widehat{V}(\hat{\beta}_2)\right) \end{split}$$

 New Variance Estimators

 Results
 A New Stata Command

 Summary
 Bootstrap results

Step III: Three-Fold Decomposition

Similarly:

$$\begin{split} \widehat{V}([\bar{X}_{1} - \bar{X}_{2}]'\widehat{\beta}_{2}) &= (\bar{X}_{1} - \bar{X}_{2})'\widehat{V}(\widehat{\beta}_{2})(\bar{X}_{1} - \bar{X}_{2}) \\ &+ \widehat{\beta}_{2}'\left[\widehat{V}(\bar{X}_{1}) + \widehat{V}(\bar{X}_{2})\right]\widehat{\beta}_{2} + \mathrm{tr}(.) \\ \widehat{V}(\bar{X}_{2}'[\widehat{\beta}_{1} - \widehat{\beta}_{2}]) &= \bar{X}_{2}'\left[\widehat{V}(\widehat{\beta}_{1}) + \widehat{V}(\widehat{\beta}_{2})\right]\bar{X}_{2} \\ &+ (\widehat{\beta}_{2} - \widehat{\beta}_{2})'\widehat{V}(\bar{X}_{2})(\widehat{\beta}_{2} - \widehat{\beta}_{2}) + \mathrm{tr}(.) \\ \widehat{V}([\bar{X}_{1} - \bar{X}_{2}][\widehat{\beta}_{1} - \widehat{\beta}_{2}]) &= (\bar{X}_{1} - \bar{X}_{2})'\left[\widehat{V}(\widehat{\beta}_{1}) + \widehat{V}(\widehat{\beta}_{2})\right](\bar{X}_{1} - \bar{X}_{2})' \\ &+ (\widehat{\beta}_{1} - \widehat{\beta}_{2})'\left[\widehat{V}(\bar{X}_{1}) + \widehat{V}(\bar{X}_{2})\right](\widehat{\beta}_{1} - \widehat{\beta}_{2}) + \mathrm{tr}(.) \end{split}$$

 New Variance Estimators

 Results
 A New Stata Command

 Summary
 Bootstrap results

Step IV: Two-Fold Decomposition

Finally:

$$\begin{split} \widehat{V}(Q) &= \operatorname{tr}(.) + \\ &+ (\bar{X}_1 - \bar{X}_2)' \left[W \widehat{V}(\hat{\beta}_1) W' + (I - W) \widehat{V}(\hat{\beta}_2) (I - W)' \right] (\bar{X}_1 - \bar{X}_2) \\ &+ \left[W \hat{\beta}_1 + (I - W) \hat{\beta}_2 \right]' \left[\widehat{V}(\bar{X}_1) + \widehat{V}(\bar{X}_2) \right] \left[W \hat{\beta}_1 + (I - W) \hat{\beta}_2 \right] \\ \widehat{V}(U) &= \operatorname{tr}(.) + \\ &+ \left[(I - W)' \bar{X}_1 + W' \bar{X}_2 \right]' \left[\widehat{V}(\hat{\beta}_1) + \widehat{V}(\hat{\beta}_2) \right] \left[(I - W)' \bar{X}_1 + W' \bar{X}_2 \right] \\ &+ (\hat{\beta}_1 - \hat{\beta}_2)' \left[(I - W)' \widehat{V}(\bar{X}_1) (I - W) + W' \widehat{V}(\bar{X}_2) W \right] (\hat{\beta}_1 - \hat{\beta}_2) \end{split}$$

(Note: W is assumed fixed.)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

The oaxaca Command

The proposed formulas are implemented in a new post-estimation command called oaxaca. The syntax is:

where est1 and est2 are the names of stored estimates.

- fixed identifies fixed regressors
- eform transforms all results to exponentiated form

Other options: detailed decomposition for individual regressors/groups of regressors, specify W, use β^* from pooled model, adjust for selection terms

Desire Redeep | Institute of Technology Zurich

Motivation	
Results	A New Stata Command

. quietly regress lnwage educyrs exp exp2 tenure boss if female==0

. estimates store male

. quietly regress lnwage educyrs exp exp2 tenure boss if female==1

. estimates store female

. oaxaca male female, se (high estimates: **male**; low estimates: **female**)

Results of linear decomposition:

lnwage	Pred. H	Pred. L	R=H-L	Е	С	CE
Total	3.725382	3.483212	.2421702	.0950089	.1330691	.0140922
Std. error	.006801	.0106372	.0126255	.0088171	.0112131	.0068167

H: mean prediction high model; L: mean prediction low model R: raw differential; E: differential due to endowments C: diff. due to coefficients; CE: diff. due to interaction

Explained ($Q = E + W^*CE$):

lnwage	W=0	W=1	W=.5
Total	.0950089	.1091011	.102055
Std. error	.0088171	.0075205	.007452

Unexplained (U = C + [I-W]*CE):

lnwage	W=0	W=1	W=.5
Total	.1471613	.1330691	.1401152
Std. error	.012253	.0112131	.0112391

 Motivation
 New Variance Estimator

 Results
 A New Stata Command

 Summary
 Bootstrap results

Empirical Application

- The accuracy of the proposed estimators can be demonstrated by Monte-Carlo experiments under ideal conditions.
- But how do the estimators perform on "real" data compared to, e.g., bootstrap estimators?
- Application: Decomposition of the gender wage gap using data from the Swiss Labor Force Survey 2000 (SLFS; Swiss Federal Statistical Office).

Sample: Employees aged 20–62, working fulltime, only one job. Dependent variable: Log hourly wages.

	Motiv R Sun	vation New Variar esults A New Sta mary Bootstrap	nce Estimators ta Command results	
	Men		Women	
Log wages	Coef.	Mean	Coef.	Mean
Education	0.0754	12.0239	0.0762	11.6156
	(0.0023)	(0.0414)	(0.0044)	(0.0548)
Experience	0.0221	19.1641	0.0247	14.0429
	(0.0017)	(0.2063)	(0.0031)	(0.2616)
Exp. ² /100	-0.0319	5.1125	-0.0435	3.0283
	(0.0036)	(0.0932)	(0.0079)	(0.1017)
Tenure	0.0028	10.3077	0.0063	7.6729
	(0.0007)	(0.1656)	(0.0014)	(0.2013)
Supervisor	0.1502	0.5341	0.0709	0.3737
	(0.0113)	(0.0086)	(0.0193)	(0.0123)
Constant	2.4489	-	2.3079	
	(0.0332)		(0.0564)	
R^2	0.3470		0.2519	
N. of cases	3383		1544	ETH
				Eidgenössische Technische H Swiss Federal Institute of Tec

 vivation
 New Variance Estima

 Results
 A New Stata Comma

 ummary
 Bootstrap results

Decomposition and Standard Errors

	Value	BS	STO	FIX
Differential (R)	0.2422	0.0122	0.0126	0.0107
Explained (Q) :				
W = 0	0.0950	0.0094	0.0088	0.0059
W = I	0.1091	0.0076	0.0075	0.0031
W = 0.5I	0.1021	0.0078	0.0075	0.0033
$W = W^*$	0.1144	0.0081	0.0076	0.0026
Unexplained (U):				
W = 0	0.1472	0.0122	0.0123	0.0122
W = I	0.1331	0.0113	0.0112	0.0111
W = 0.5I	0.1401	0.0112	0.0112	0.0112
$W = W^*$	0.1277	0.0104	0.0104	0.0103

BS = bootstrap standard errors, STO = stochastic regressors assumed, FIX = fixed regressors assumed

Swiss Federal Institute of Technology Zurich

Summary

- Standard errors for the Blinder–Oaxaca decomposition are rarely reported in the literature. However, relatively simple estimators do exist.
- These estimators seem to work quite all right on real data (using bootstrap estimates as a benchmark).
- Neglecting the stochastic nature of the regressors yields a considerable underestimation of the standard errors for the "explained" part of the differential.
- Outlook
 - Unsolved problem: The estimates may be biased if W is stochastic.

LEMMA: The variance of the product of two uncorrelated random vectors is:

$$V(u_1'u_2) = \mu_1'\Sigma_2\mu_1 + \mu_2'\Sigma_1\mu_2 + tr(\Sigma_1\Sigma_2)$$

where $u_j \sim (\mu_j, \Sigma_j)$, j = 1, 2

PROOF:

 $E(x + y) = E(x) + E(y), \quad E(xy) = E(x)E(y) + Cov(x, y)$

Thus, if u_1 and u_2 are uncorrelated:

$$E(u'_1u_2) = \mu'_1\mu_2, \quad E(u_ju'_j) = \mu_j\mu'_j + \Sigma_j$$

Appendix

Proof References

Proof II

and

$$\begin{split} E([u_1'u_2]^2) &= E(u_1'u_2u_2'u_1) = \mathrm{tr}\big(E(u_1u_1'u_2u_2')\big) \\ &= \mathrm{tr}\big(E(u_1u_1')E(u_2u_2')\big) \\ &= \mathrm{tr}\big((\mu_1\mu_1'+\Sigma_1)(\mu_2\mu_2'+\Sigma_2)\big) \\ &= \mathrm{tr}\big(\mu_1\mu_1'\mu_2\mu_2'\big) + \mathrm{tr}\big(\mu_1\mu_1'\Sigma_2\big) \\ &\quad + \mathrm{tr}\big(\Sigma_1\mu_2\mu_2'\big) + \mathrm{tr}(\Sigma_1\Sigma_2) \\ &= (\mu_1'\mu_2)^2 + \mu_1'\Sigma_2\mu_1 + \mu_2'\Sigma_1\mu_2 + \mathrm{tr}(\Sigma_1\Sigma_2) \end{split}$$

Finally:

$$V(u'_1u_2) = E([u'_1u_2]^2) - [E(u'_1u_2)]^2$$

= $\mu'_1 \Sigma_2 \mu_1 + \mu'_2 \Sigma_1 \mu_2 + tr(\Sigma_1 \Sigma_2)$

Appendix

Proof References

References I

- Blinder, A. S. (1973) Wage Discrimination: Reduced Form and Structural Estimates *The Journal of Human Resources* 8(4):436–455.
- Greene, W. H. (2003) *Econometric Analysis*, 5th edn.
- Neumark, D. (1988) Employers' Discriminatory Behavior and the Estimation of Wage Discrimination The Journal of Human Resources 23:279–295.
- Oaxaca, R. (1973) Male-Female Wage Differentials in Urban Labor Markets International Economic Review 14:693–709.
- Oaxaca, R., and M. R. Ransom (1994) On discrimination and the decomposition of wage differentials *Journal of Econometrics* 61:5–21.

References II

- Oaxaca, R. L., and M. Ransom (1998) Calculation of approximate variances for wage decomposition differentials *Journal of Economic and Social Measurement* 24:55–61.
- Reimers, C. W. (1983) Labor Market Discrimination Against Hispanic and Black Men *The Review of Economics and Statistics* 65:570–579.
- Winsborough, H. H., and P. Dickinson (1971) Components of Negro-White Income Differences *Proceedings of the Social Statistics Section*:6–8.

