Assessing the reasonableness of an imputation model

Maarten L. Buis

Department of Social Research Methodology Vrije Universiteit Amsterdam http://home.fsw.vu.nl/m.buis/

Outline

Missing Data

Multiple Imputation

Weighting theory weightmis

Application

Outline

Missing Data

Multiple Imputation

Weighting theory weightmis

Application

- ▶ two problems:
 - 1. Loss of information
 - 2. bias

- two problems:
 - 1. Loss of information
 - 2. bias
- ► Solution: Multiple Imputation

- two problems:
 - 1. Loss of information
 - 2. bias
- Solution: Multiple Imputation
- model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)

- two problems:
 - Loss of information
 - bias
- Solution: Multiple Imputation
- model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)
 - Check whether imputation algorithm has converged (Royston 2005b)

- two problems:
 - Loss of information
 - 2. bias
- Solution: Multiple Imputation
- model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)
 - Check whether imputation algorithm has converged (Royston 2005b)
 - compare results with alternative method

- two problems:
 - Loss of information
 - 2. bias
- Solution: Multiple Imputation
- model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)
 - Check whether imputation algorithm has converged (Royston 2005b)
 - compare results with alternative method: weighting

Three types missingness

- Missing Completely At Random (MCAR)
 - Probability of being missing does not depend on any other variable.
 - Complete data is a random subsample of the original sample. So, loss of information, but no bias.

Three types missingness

- 1. Missing Completely At Random (MCAR)
 - Probability of being missing does not depend on any other variable.
 - Complete data is a random subsample of the original sample. So, loss of information, but no bias.
- 2. Missing At Random (MAR)
 - Probability of being missing depends on other variables but not on the missing value itself.
 - Both potential bias and loss of information.

Three types missingness

- 1. Missing Completely At Random (MCAR)
 - Probability of being missing does not depend on any other variable.
 - Complete data is a random subsample of the original sample. So, loss of information, but no bias.
- Missing At Random (MAR)
 - Probability of being missing depends on other variables but not on the missing value itself.
 - Both potential bias and loss of information.
- 3. Not Missing At Random (NMAR)
 - Probability of being missing depends on the missing value itself.
 - Both potential bias and loss of information.

Outline

Missing Data

Multiple Imputation

Weighting theory weightmis

Application

Estimate for each missing value a distribution of plausible values.

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple 'complete' datasets.

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple 'complete' datasets.
- Estimate the model of interest on each 'complete' dataset.

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple 'complete' datasets.
- Estimate the model of interest on each 'complete' dataset.
- Point estimate is the average of the point estimates over the different 'complete' datasets.

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple 'complete' datasets.
- Estimate the model of interest on each 'complete' dataset.
- Point estimate is the average of the point estimates over the different 'complete' datasets.
- Variances of the point estimates are the averages of the variances in the different 'complete' datasets, plus a correction for the fact that the imputed cases weren't real observations but only best guesses.

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple 'complete' datasets.
- Estimate the model of interest on each 'complete' dataset.
- Point estimate is the average of the point estimates over the different 'complete' datasets.
- Variances of the point estimates are the averages of the variances in the different 'complete' datasets, plus a correction for the fact that the imputed cases weren't real observations but only best guesses.
- The correction is based on the between dataset variance of the point estimates.

Multiple Imputation in Stata

- Within Stata the distribution of plausible values can be estimated with ice and hotdeck.
- Within Stata the estimates from the 'complete' datasets can be combined with mim.

Outline

Missing Data

Multiple Imputation

Weighting theory weightmis

Application

$$f(y|x,R_x) = \frac{f(y,x,R_x)}{f(x,R_x)}$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$
$$f(A|B) = \frac{f(A, B)}{f(B)}$$

$$f(y|\mathbf{x}, \mathbf{R}_{\mathbf{x}}) = \frac{f(y, x, \mathbf{R}_{\mathbf{x}})}{f(x, \mathbf{R}_{\mathbf{x}})}$$
$$f(A|\mathbf{B}) = \frac{f(A, B)}{f(B)}$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$
$$f(A|B) = \frac{f(A, B)}{f(B)}$$

$$f(y|x,R_x) = \frac{f(y,x,R_x)}{f(x,R_x)}$$
$$f(A|B) = \frac{f(A,B)}{f(B)}$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$
$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$f(A, B, C) = f(C|A, B)f(A|B)f(B)$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$f(A, B, C) = f(C|A, B)f(A|B)f(B)$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$f(A, B, C) = f(C|A, B)f(A|B)f(B)$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$f(A, B, C) = f(C|A, B)f(A|B)f(B)$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$= \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)}f(y|x)$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$= \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)}f(y|x)$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$= \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)}f(y|x)$$

MAR assumption

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$= \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)}f(y|x)$$

$$= \frac{\Pr(R_x|y)}{\Pr(R_x)}f(y|x)$$

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$= \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)}f(y|x)$$

$$= \frac{\Pr(R_x|y)}{\Pr(R_x)}f(y|x)$$

$$f(y|x) = \frac{\Pr(R_x)}{\Pr(R_x|y)}f(y|x, R_x)$$

1. Create a variable indicating whether or not *x* is observed:

```
gen Rx = !missing(x)
```

1. Create a variable indicating whether or not *x* is observed:

```
gen Rx = !missing(x)
```

2. Estimate $Pr(R_x)$ by:

```
logit Rx
predict PrRx, pr
```

1. Create a variable indicating whether or not x is observed:

```
gen Rx = !missing(x)
```

2. Estimate $Pr(R_x)$ by:

```
logit Rx
```

predict PrRx, pr

3. Estimate $Pr(R_x|y)$ by: logit Rx y

```
predict PrRxGy, pr
```

1. Create a variable indicating whether or not x is observed:

```
gen Rx = !missing(x)
```

2. Estimate $Pr(R_x)$ by:

```
logit Rx predict PrRx. pr
```

predict PrRx, pr

3. Estimate $Pr(R_x|y)$ by: logit Rx y predict PrRxGy, pr

4. generate the weight by:

```
gen w = PrRx/PrRxGy
```

Bayes' Rule

$$f(y|x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_y)}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_y)}$$

Bayes' Rule again

$$\begin{split} f(y|x_1, x_2, R_{x_1}, R_{x_2}, R_y) &= \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_y)}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_y)} \\ &= \frac{\Pr(R_{x_1}|y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2}|y, x_1, x_2, R_y) \Pr(R_y|y, x_1, x_2) f(y|x_1, x_2) f(x_1, x_2)}{\Pr(R_{x_1}|x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2}|x_1, x_2, R_y) \Pr(R_y|x_1, x_2) f(x_1, x_2)} \end{split}$$

$$f(y|x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y}) = \frac{f(y, x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}{f(x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2}) f(y|x_{1}, x_{2}) f(x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2}) f(x_{1}, x_{2})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})} f(y|x_{1}, x_{2})$$

$$f(y|x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y}) = \frac{f(y, x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}{f(x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2}) f(y|x_{1}, x_{2}) f(x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2}) f(x_{1}, x_{2})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})} f(y|x_{1}, x_{2})$$

MAR assumption

$$f(y|x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y}) = \frac{f(y, x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}{f(x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2}) f(y|x_{1}, x_{2}) f(x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2}) f(x_{1}, x_{2})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})} f(y|x_{1}, x_{2})$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})} f(y|x_{1}, x_{2})$$

$$f(y|x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y}) = \frac{f(y, x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}{f(x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2}) f(y|x_{1}, x_{2}) f(x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2}) f(x_{1}, x_{2})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})} f(y|x_{1}, x_{2})$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})} f(y|x_{1}, x_{2})$$

$$f(y|x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y}) = \frac{f(y,x_{1},x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}{f(x_{1}, x_{2}, R_{x_{1}}, R_{x_{2}}, R_{y})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2}) f(y|x_{1}, x_{2}) f(x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2}) f(x_{1}, x_{2})}$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, x_{2}, R_{y}) \Pr(R_{y}|y, x_{1}, x_{2})}{\Pr(R_{x_{1}}|x_{1}, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, x_{2}, R_{y}) \Pr(R_{y}|x_{1}, x_{2})} f(y|x_{1}, x_{2})$$

$$= \frac{\Pr(R_{x_{1}}|y, x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|y, x_{1}, R_{y})}{\Pr(R_{x_{1}}|x_{2}, R_{x_{2}}, R_{y}) \Pr(R_{x_{2}}|x_{1}, R_{y})} f(y|x_{1}, x_{2})$$

$$\begin{split} f(y|x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y}) &= \frac{f(y,x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y})}{f(x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y})} \\ &= \frac{\Pr(R_{x_{1}}|y,x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},x_{2},R_{y})\Pr(R_{y}|y,x_{1},x_{2})f(y|x_{1},x_{2})f(x_{1},x_{2})}{\Pr(R_{x_{1}}|x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},x_{2},R_{y})\Pr(R_{y}|x_{1},x_{2})f(x_{1},x_{2})} \\ &= \frac{\Pr(R_{x_{1}}|y,x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},x_{2},R_{y})\Pr(R_{y}|y,x_{1},x_{2})}{\Pr(R_{x_{1}}|x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},x_{2},R_{y})\Pr(R_{y}|x_{1},x_{2})} f(y|x_{1},x_{2}) \\ &= \frac{\Pr(R_{x_{1}}|y,x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},R_{y})}{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})} f(y|x_{1},x_{2}) \\ f(y|x_{1},x_{2}) &= \frac{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})}{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})} f(y|x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y}) \end{split}$$

Observed

$$\begin{split} f(y|x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y}) &= \frac{f(y,x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y})}{f(x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y})} \\ &= \frac{\Pr(R_{x_{1}}|y,x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},x_{2},R_{y})\Pr(R_{y}|y,x_{1},x_{2})f(y|x_{1},x_{2})f(x_{1},x_{2})}{\Pr(R_{x_{1}}|x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},x_{2},R_{y})\Pr(R_{y}|x_{1},x_{2})f(x_{1},x_{2})} \\ &= \frac{\Pr(R_{x_{1}}|y,x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},x_{2},R_{y})\Pr(R_{y}|y,x_{1},x_{2})}{\Pr(R_{x_{1}}|x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},x_{2},R_{y})\Pr(R_{y}|x_{1},x_{2})} f(y|x_{1},x_{2}) \\ &= \frac{\Pr(R_{x_{1}}|y,x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},R_{y})}{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})} f(y|x_{1},x_{2}) \\ f(y|x_{1},x_{2}) &= \frac{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})}{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})} f(y|x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y}) \end{split}$$

Not observed if x_1 is missing

$$\begin{split} f(y|x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y}) &= \frac{f(y,x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y})}{f(x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y})} \\ &= \frac{\Pr(R_{x_{1}}|y,x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},x_{2},R_{y})\Pr(R_{y}|y,x_{1},x_{2})f(y|x_{1},x_{2})f(x_{1},x_{2})}{\Pr(R_{x_{1}}|x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},x_{2},R_{y})\Pr(R_{y}|x_{1},x_{2})f(x_{1},x_{2})} \\ &= \frac{\Pr(R_{x_{1}}|y,x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},x_{2},R_{y})\Pr(R_{y}|y,x_{1},x_{2})}{\Pr(R_{x_{1}}|x_{1},x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},x_{2},R_{y})\Pr(R_{y}|x_{1},x_{2})} f(y|x_{1},x_{2}) \\ &= \frac{\Pr(R_{x_{1}}|y,x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|y,x_{1},R_{y})}{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})} f(y|x_{1},x_{2}) \\ f(y|x_{1},x_{2}) &= \frac{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})}{\Pr(R_{x_{1}}|x_{2},R_{x_{2}},R_{y})\Pr(R_{x_{2}}|x_{1},R_{y})} f(y|x_{1},x_{2},R_{x_{1}},R_{x_{2}},R_{y}) \end{split}$$

Estimating the weight $\frac{Pr(\cdot)}{Pr(R)}$

$$\frac{\Pr(R_{x_1}|x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,R_y)}{\Pr(R_{x_1}|y,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,R_y)}$$

1. The weight can be split up into two parts:

$$\frac{\Pr(R_{x_1}|x_2,R_{x_2},R_y)}{\Pr(R_{x_1}|y,x_2,R_{x_2},R_y)} \times \frac{\Pr(R_{x_2}|x_1,R_y)}{\Pr(R_{x_2}|y,x_1,R_y)}$$

Estimating the weight $\frac{\Pr(R_{x_1}|x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,R_y)}{\Pr(R_{x_1}|y,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,R_y)}$

1. The weight can be split up into two parts:

$$\frac{\Pr(R_{x_1}|x_2,R_{x_2},\frac{R_y}{R_y})}{\Pr(R_{x_1}|y,x_2,R_{x_2},\frac{R_y}{R_y})} \times \frac{\Pr(R_{x_2}|x_1,\frac{R_y}{R_y})}{\Pr(R_{x_2}|y,x_1,\frac{R_y}{R_y})}$$

2. For both the first and the second part only use cases which are observed on *y*.

Estimating the weight $\frac{\Pr(R_{x_1}|x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,R_y)}{\Pr(R_{x_1}|y,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,R_y)}$

1. The weight can be split up into two parts:

$$\frac{\Pr(R_{x_1}|x_2,R_{x_2},R_y)}{\Pr(R_{x_1}|y,x_2,R_{x_2},R_y)} \times \frac{\Pr(R_{x_2}|x_1,R_y)}{\Pr(R_{x_2}|y,x_1,R_y)}$$

- 2. For both the first and the second part only use cases which are observed on *y*.
- The first part can be estimated like before with logit and predict.

Estimating the weight $\frac{\Pr(R_{x_1}|x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,R_y)}{\Pr(R_{x_1}|y,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,R_y)}$

1. The weight can be split up into two parts:

$$\frac{\Pr(R_{x_1}|x_2,R_{x_2},R_y)}{\Pr(R_{x_1}|y,x_2,R_{x_2},R_y)} \times \frac{\Pr(R_{x_2}|x_1,R_y)}{\Pr(R_{x_2}|y,x_1,R_y)}$$

- 2. For both the first and the second part only use cases which are observed on *y*.
- 3. The first part can be estimated like before with logit and predict.
- 4. The second part can be estimated with logit and predict, but now with weights to correct for missing data in x₁.

A recursive algorithm

► In other words: With two xs with missing data the algorithm calls itself twice to solve two smaller missing data problems.

A recursive algorithm

- In other words: With two xs with missing data the algorithm calls itself twice to solve two smaller missing data problems.
- In principle this method could be expanded for any number of xs with missing data,

A recursive algorithm

- In other words: With two xs with missing data the algorithm calls itself twice to solve two smaller missing data problems.
- In principle this method could be expanded for any number of xs with missing data,
- but the number of calls to logit rises very quickly with the number of variables.

number of variables	1	2	3	4	5	6
number of calls to logit	2	8	22	52	114	240

Number of variables

- ➤ Often the same variable enters a regression equation multiple time, e.g.:
 - interaction terms
 - dummy variables
 - polynomials
 - splines

Number of variables

- Often the same variable enters a regression equation multiple time, e.g.:
 - interaction terms
 - dummy variables
 - polynomials
 - splines
- These variables count as one variable, thus diminishing the computational load.

weightmis syntax

```
weightmis varlist [if] [in] [pw], command (string) [missing (varlist) observed (varlist) double\# (varlist) generate (string) * ]
```

example 1

Say, y, x_1 , and x_2 contain missing values, and you want to estimate the following regression equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

```
weightmis y x1 x2, command(regress) /*
*/ missing(x1 x2)
```

example 2

Say, y, x_1 , and x_2 contain missing values, and you want to estimate the following regression equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

weightmis y x1 x2 x2sq, command(regress) /*
/* missing(x1 x2) double2(x2sq)

example 3

Say, y, x_1 , and x_2 contain missing values, and you want to estimate the following regression equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

weightmis y x1 x2 x1x2, command(regress) /*
*/ missing(x1 x2) double1(x1x2) double2(x1x2)

Outline

Missing Data

Multiple Imputation

Weighting theory weightmis

Application

The aim is to look at the strength of association between family background and child's highest achieved level of education

► The aim is to look at the strength of association between family background and child's highest achieved level of education, inequality of educational opportunity.

- The aim is to look at the strength of association between family background and child's highest achieved level of education, inequality of educational opportunity.
- International Stratification and Mobility File (ISMF) on the Netherlands.

- The aim is to look at the strength of association between family background and child's highest achieved level of education, inequality of educational opportunity.
- International Stratification and Mobility File (ISMF) on the Netherlands.
- ▶ 51 surveys held between 1958 and 2005 with information on cohorts 1906-1990.

- The aim is to look at the strength of association between family background and child's highest achieved level of education, inequality of educational opportunity.
- International Stratification and Mobility File (ISMF) on the Netherlands.
- ▶ 51 surveys held between 1958 and 2005 with information on cohorts 1906-1990.
- ▶ 96,761 respondents aged between 27 and 65.

- The aim is to look at the strength of association between family background and child's highest achieved level of education, inequality of educational opportunity.
- International Stratification and Mobility File (ISMF) on the Netherlands.
- ▶ 51 surveys held between 1958 and 2005 with information on cohorts 1906-1990.
- ▶ 96,761 respondents aged between 27 and 65.
- Number of cases are unequally distributed over cohorts.

Model

- Linear regression of highest achieved level of education (educyr) on:
 - father's occupational status (fisei),

Model

- Linear regression of highest achieved level of education (educyr) on:
 - father's occupational status (fisei),
 - Year in which the child is 12 (byr), and is added as a spline with three knots to allow for non-linearity,

Model

- Linear regression of highest achieved level of education (educyr) on:
 - ▶ father's occupational status (fisei),
 - Year in which the child is 12 (byr), and is added as a spline with three knots to allow for non-linearity,
 - an interaction between fisei and the splines of byr,

Model

- Linear regression of highest achieved level of education (educyr) on:
 - father's occupational status (fisei),
 - Year in which the child is 12 (byr), and is added as a spline with three knots to allow for non-linearity,
 - an interaction between fisei and the splines of byr,
 - and interactions of all variables with female.

Summary of missing values using misschk

```
# Variable # Missing % Missing
 1 educyr
           1125 1.2
 2 fisei
               10082 10.4
 3 female
                    0.0
                       0.0
 4 bvr
Missing for |
   which I
variables? | Freq. Percent Cum.
    12 | 330 0.34 0.34
    1___ | 795 0.82 1.16
          9,752 10.08 11.24
         85,884 88.76 100.00
   Total | 96,761 100.00
```

► Regress *fisei* on *educyr*, *female*, *byr* (in dummies), dummies for survey, and all interactions.

- ► Regress *fisei* on *educyr*, *female*, *byr* (in dummies), dummies for survey, and all interactions.
- ► For each missing value of *fisei* draw a random value from a normal distribution whose mean is the predicted value of *fisei* and and whose standard deviation is the standard deviation of the errors.

- ► Regress *fisei* on *educyr*, *female*, *byr* (in dummies), dummies for survey, and all interactions.
- ► For each missing value of *fisei* draw a random value from a normal distribution whose mean is the predicted value of *fisei* and and whose standard deviation is the standard deviation of the errors.
- ▶ Predictions can be improved by adding other variables, like father's education (*feducyr*), mother's education(*meducyr*), child's occupational status (*isei*).

In practice the interactions with survey number, female, and byr are modeled by estimating separate models for each combination of survey, gender, and three year birthcohort.

- In practice the interactions with survey number, female, and byr are modeled by estimating separate models for each combination of survey, gender, and three year birthcohort.
- feducyr, and meducyr are only used if they were asked in that survey.

- In practice the interactions with survey number, female, and byr are modeled by estimating separate models for each combination of survey, gender, and three year birthcohort.
- feducyr, and meducyr are only used if they were asked in that survey.
- Imputations are only made if enough complete observations are available (number of variables + 2).
 - ▶ Of 10,082 missing cases for *fisei* 191 could not be imputed.
 - Of 1,145 missing cases for educyr 148 could not be imputed.

Trends in Inequality of educational opportunity

Weight versus level of education

Weight versus cohort

Confidence intervals

→ 95% confidence interval

multiple imputation

Percentage of variance due to average variance across datasets and variance between datasets

Conclusion

► The imputation model becomes part of the statistical model when using Multiple Imputation, and needs to be checked.

Conclusion

- ► The imputation model becomes part of the statistical model when using Multiple Imputation, and needs to be checked.
- One possible way of doing that is to compare the results with an alternative method that should also result in valid results.

Conclusion

- ➤ The imputation model becomes part of the statistical model when using Multiple Imputation, and needs to be checked.
- One possible way of doing that is to compare the results with an alternative method that should also result in valid results.
- One such method is weighting, as (to be) implemented in weightmis

References

Patrick Royston.

Multiple Imputation of Missing Values: Update.

The Stata Journal, 5(2):188–201, 2005a.

Patrick Royston. Multiple Imputation of Missing Values: Update of ice. The Stata Journal, 5(4):527–636, 2005b.

Kobi Abayomi, Andrew Gelman, Marc Levy. Diagnostics for Multivariate Imputations.

http://www.stat.columbia.edu/~gelman/research/unpublished/paper73.pdf 2006