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Tobit model

Model
Censoring of the dependent variable is traditionally dealt with using
the Tobit model

yi = y∗

i = xiβ + ε1 if y∗

i > 0 otherwise yi = 0

Likelihood function
L =

∏

0

(

1 − Φ
(

xi β
σε1

))

+
∏

+

(

1
σε1

φ
(

yi−xi β

σε1
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Cragg’s formulation

Model
Cragg (1971) proposed the extension that the probability of a zero
realisation, 1 − Φ(.), is not directly to the density for a continuous
realisation, φ (.), but instead governed by some other process

yi = y∗

i = xiβ + ε1i if xiβ + ε1i > 0 and ziα + ε2i > 0
= 0 if xiβ + ε1i ≤ 0 and ziα + ε2i > 0

or xiβ + ε1i > 0 and ziα + ε2i ≤ 0
or xiβ + ε1i ≤ 0 and ziα + ε2i ≤ 0
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Cragg’s formulation - errors

Independent

The original model made the assumption that the two error terms
were jointly normal,
(

ε1

ε2

)

∼ N (0,Σ), and uncorrelated, Σ =

(

σ2
ε1

0
0 1

)

Likelihood function
L =

∏

0

(

1 − Φ
(

xi β
σε1

)

· 1 − Φ(ziα)
)

∏

+

(

Φ(ziα) 1
σε1

φ
(

yi−xi β

σε1

))
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Estimation

Separability

Similar to that demonstrated by McDowell (2003) for count models in
Stata, the separability of the likelihood function permits the use of a
combination of Stata command to estimate this model: truncreg
and probit
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Jones’ extension

Correlated errors
This assumption has been relaxed in later work, e.g. Jones (1992),

where Σ =

(

σ2
ε1

σε1ρ
σε1ρ 1

)

Likelihood function

L =
∏

0
[1 − F2 (ziα, xiβ/σ, ρ)]

∏

+
Φ

(

zi α+ ρ

σ
(y−xi β)√

1−ρ2

)

1
σ
φ

(

(y−xi β)
σ

)

Julian Fennema and Mathias Sinning Double-Hurdle Models with Dependent Errors and Heteroscedasticity



Treatment of zeroes
Double hurdle model

Extensions

Cragg
Estimation
Jones
Estimation

Estimation

Non-separable

Both parts of this likelihood function must, however, be maximised
simultaneously; there is no two-step equivalent. This has been
available in Stata, on an ad hoc basis since 2004 using the dhurdle
command written for Stata 7.

Syntax

dhurdle y x1 x2, sel(d x1 t1)
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Comparison to Flood and Gråsjö

Stata Gauss
True value Bias(%) RMSE Bias(%) RMSE

β0 -0.2 -23.3 .665 -18.0 .836
β1 0.2 -17.6 .152 3.7 .085
β2 1 .34 .081 2.7 .182
α0 0.7 49.0 1.25 175 8.065
α1 0.2 24.6 .881 -44.7 1.325
α2 -0.2 27.3 .392 -80.7 .570
σ 2 1.38 .256 -.2 .227
ρ -0.5 -26.3 .261 31.2 .447
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Assumptions on the error terms

There is, by now, a wide variety of literature demonstrating that if the
assumption of homoscedatic, normally-distributed, errors is violated
then ML parameter estimates are inconsistent.

Solutions
Two extensions

1. Heteroscdastic errors

2. Non-normal errors
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dhurdle now can incorporate variance dependent on a set of
independent variables.

Syntax

dhurdle y x1 x2, sel(d x1 t1) het(.)
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Non-normality

Non-normality

Robinson (1982) showed that ML estimation of LDV models leads to
inconsistent parameter estimates if the assumption of normally
distributed errors does not hold.

Syntax

dhurdle y x1 x2, sel(d x1 t1) ihs

Julian Fennema and Mathias Sinning Double-Hurdle Models with Dependent Errors and Heteroscedasticity



Treatment of zeroes
Double hurdle model

Extensions

Heteroscedasticity
Non-normality
Pipeline

Pipeline

Work in progress

The final steps to complete the estimation package that are currently
underway are

1. Finalise predict options for the double hurdle.

2. Code a series of LR tests to test model specification
post-estimation.
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Testing 1, 2, 3

Using the IHS as the general form, the imposition of the following
restrictions is feasible

1. If γ = 0 then conventional formulation without transformation.

2. If σ is constant then homoscedastic errors.

3. If ρ = 0 then independent double hurdle.

4. If
∏

+
Φ(ziα) then no censoring present and model simplifies to a

Heckman.

5. If Φ(ziα) and ρ = 0 then no censoring or selection present and
model simplifies to a Tobit.
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