Robust income distribution analysis

Philippe Van Kerm

CEPS/INSTEAD Luxembourg

5th German Stata Users Group Meeting (RWI Essen, April 2, 2007)

[outline]

- 2 Robust estimation strategies
- 3 Stata Implementation of OBRE
- 4 A brief empirical illustration
- **5** Concluding remarks

- Income distribution analysis:
 - summary measures of inequality (and other distributional features)
 - dominance checks (stochastic dominance, Lorenz dominance)
- Both very sensitive to extreme incomes ('valid' outliers? contamination?)
 - unbounded influence function (Cowell & Victoria-Feser, *Econometrica* 1996, 2002)

- Income distribution analysis:
 - summary measures of inequality (and other distributional features)
 - dominance checks (stochastic dominance, Lorenz dominance)
- Both very sensitive to extreme incomes ('valid' outliers? contamination?)
 - unbounded influence function (Cowell & Victoria-Feser, *Econometrica* 1996, 2002)

The problem of data contamination/extreme incomes

PSELL-3 (equivalised) household income data (waves 1-3):

	0 (090.00	2	70.000.000		2010 (110						
	2002			2003			2004				
	Top 10 incomes										
		37,260		16,925				41,830			
	34,242 28,292			15,280 15,132			32,569				
							18,341				
					 10,464						
	15,407							11,095			
	Summary measures										
	Raw	Trim	Wins.	Raw	Trim	Wins.	Raw	Trim	Wins.		
	2,689	2,635	2,666	2,674	2,631	2,667	2,734	2,685	2,715		
Gini	0.272	0.259	0.266	0.262	0.252	0.259	0.262	0.250	0.257		
$\frac{CV^2}{2}$	0.192	0.129	0.147	0.138	0.116	0.129	0.159	0.112	0.123		

The problem of data contamination/extreme incomes

PSELL-3 (equivalised) household income data (waves 1-3):

	- (
	2002			2003			2004				
	Top 10 incomes										
		37,260		16,925			41,830				
		34,242		15,280			32,569				
		28,292		15,132			18,341				
	15,407			10,464			11,095				
	Summary measures										
	Raw	Trim	Wins.	Raw	Trim	Wins.	Raw	Trim	Wins.		
μ	2,689	2,635	2,666	2,674	2,631	2,667	2,734	2,685	2,715		
Gini	0.272	0.259	0.266	0.262	0.252	0.259	0.262	0.250	0.257		
	0.192	0.129	0.147	0.138	0.116	0.129	0.159	0.112	0.123		

The problem of data contamination/extreme incomes

PSELL-3 (equivalised) household income data (waves 1-3):

	2002			2003			2004			
	Top 10 incomes									
		37,260		16,925			41,830			
	34,242			15,280			32,569			
	28,292			15,132			18,341			
	15,407			10,464			11,095			
	Summary measures									
	Raw	Trim	Wins.	Raw	Trim	Wins.	Raw	Trim	Wins.	
μ	2,689	2,635	2,666	2,674	2,631	2,667	2,734	2,685	2,715	
Gini	0.272	0.259	0.266	0.262	0.252	0.259	0.262	0.250	0.257	
$\frac{CV^2}{2}$	0.192	0.129	0.147	0.138	0.116	0.129	0.159	0.112	0.123	

[outline]

The problem of data contamination/extreme incomes

2 Robust estimation strategies

3 Stata Implementation of OBRE

4 A brief empirical illustration

5 Concluding remarks

1 Remove extremely high incomes, or impose a top code

• Easy, but not efficient and dependence to trimming fractions

② Use functional form assumptions:

- model tails of distribution parametrically (e.g. Pareto distribution)¹
- model the full distribution parametrically (e.g. log-Normal, Gamma, Singh-Maddala)
- But... classical ML estimators are themselves non-robust to extreme incomes!

1 Remove extremely high incomes, or impose a top code

Easy, but not efficient and dependence to trimming fractions

Our Base State State

- model tails of distribution parametrically (e.g. Pareto distribution)¹
- model the full distribution parametrically (e.g. log-Normal, Gamma, Singh-Maddala)
- But... classical ML estimators are themselves non-robust to extreme incomes!

1 Remove extremely high incomes, or impose a top code

- Easy, but not efficient and dependence to trimming fractions
- **2** Use functional form assumptions:
 - model tails of distribution parametrically (e.g. Pareto distribution)¹
 - model the full distribution parametrically (e.g. log-Normal, Gamma, Singh-Maddala)
 - But... classical ML estimators are themselves non-robust to extreme incomes!

- 1 Remove extremely high incomes, or impose a top code
 - Easy, but not efficient and dependence to trimming fractions
- **2** Use functional form assumptions:
 - model tails of distribution parametrically (e.g. Pareto distribution)¹
 - model the full distribution parametrically (e.g. log-Normal, Gamma, Singh-Maddala)
 - But... classical ML estimators are themselves non-robust to extreme incomes!

- 1 Remove extremely high incomes, or impose a top code
 - Easy, but not efficient and dependence to trimming fractions
- **2** Use functional form assumptions:
 - model tails of distribution parametrically (e.g. Pareto distribution)¹
 - model the full distribution parametrically (e.g. log-Normal, Gamma, Singh-Maddala)
 - But... classical ML estimators are themselves non-robust to extreme incomes!

- 1 Remove extremely high incomes, or impose a top code
 - Easy, but not efficient and dependence to trimming fractions
- **2** Use functional form assumptions:
 - model tails of distribution parametrically (e.g. Pareto distribution)¹
 - model the full distribution parametrically (e.g. log-Normal, Gamma, Singh-Maddala)
 - But... classical ML estimators are themselves non-robust to extreme incomes!

Optimal B-Robust Estimators (OBRE)

A robust alternative to classical ML

- OBRE is an M-estimator: θ solution to $\sum_{i=1}^{N} \psi(x_i, \theta) = 0$
 - (For ML: $\psi(x_i, \theta^{ML}) = s(x_i, \theta^{ML})$ is the score function)
- OBRE estimator is the solution to

$$\psi(x_i, \theta^{OB}) = (s(x_i, \theta^{OB}) - a(\theta^{OB}))W_c(x_i; \theta^{OB})$$

$$W_{c}(x_{i}; \theta^{OB}) = \min\left(1; \frac{c}{G(s(x_{i}, \theta^{OB}), a(\theta^{OB}), A(\theta^{OB}))}\right)$$

- *W_c*(*x*; θ^{OB}) imposes a bound on influence function by downweighting extreme values (values deviating from model)
- *c* is a 'robustness' parameter to be determined (efficiency-robustness trade-off)

Optimal B-Robust Estimators (OBRE)

A robust alternative to classical ML

- OBRE is an M-estimator: θ solution to $\sum_{i=1}^{N} \psi(x_i, \theta) = 0$
 - (For ML: $\psi(x_i, \theta^{ML}) = s(x_i, \theta^{ML})$ is the score function)
- OBRE estimator is the solution to

$$\psi(x_i, \theta^{OB}) = (s(x_i, \theta^{OB}) - a(\theta^{OB}))W_c(x_i; \theta^{OB})$$

$$W_{c}(x_{i}; \theta^{OB}) = \min\left(1; \frac{c}{G(s(x_{i}, \theta^{OB}), a(\theta^{OB}), A(\theta^{OB}))}\right)$$

- *W_c*(*x*; θ^{OB}) imposes a bound on influence function by downweighting extreme values (values deviating from model)
- *c* is a 'robustness' parameter to be determined (efficiency-robustness trade-off)

Optimal B-Robust Estimators (OBRE)

A robust alternative to classical ML

- OBRE is an M-estimator: θ solution to $\sum_{i=1}^{N} \psi(x_i, \theta) = 0$
 - (For ML: $\psi(x_i, \theta^{ML}) = s(x_i, \theta^{ML})$ is the score function)
- OBRE estimator is the solution to

$$\psi(\mathbf{x}_i, \theta^{OB}) = (\mathbf{s}(\mathbf{x}_i, \theta^{OB}) - \mathbf{a}(\theta^{OB})) W_c(\mathbf{x}_i; \theta^{OB})$$

$$W_{c}(x_{i};\theta^{OB}) = \min\left(1;\frac{c}{G(s(x_{i},\theta^{OB}),a(\theta^{OB}),A(\theta^{OB}))}\right)$$

- *W_c*(*x*; θ^{OB}) imposes a bound on influence function by downweighting extreme values (values deviating from model)
- *c* is a 'robustness' parameter to be determined (efficiency-robustness trade-off)

Optimal B-Robust Estimators (OBRE)

A robust alternative to classical ML

- OBRE is an M-estimator: θ solution to $\sum_{i=1}^{N} \psi(x_i, \theta) = 0$
 - (For ML: $\psi(x_i, \theta^{ML}) = s(x_i, \theta^{ML})$ is the score function)
- OBRE estimator is the solution to

$$\psi(\mathbf{x}_i, \theta^{OB}) = (\mathbf{s}(\mathbf{x}_i, \theta^{OB}) - \mathbf{a}(\theta^{OB})) W_c(\mathbf{x}_i; \theta^{OB})$$

$$W_{c}(x_{i};\theta^{OB}) = \min\left(1;\frac{c}{G(s(x_{i},\theta^{OB}),a(\theta^{OB}),A(\theta^{OB}))}\right)$$

- *W_c*(*x*; θ^{OB}) imposes a bound on influence function by downweighting extreme values (values deviating from model)
- *c* is a 'robustness' parameter to be determined (efficiency-robustness trade-off)

Optimal B-Robust Estimators (OBRE)

A robust alternative to classical ML

- OBRE is an M-estimator: θ solution to $\sum_{i=1}^{N} \psi(x_i, \theta) = 0$
 - (For ML: $\psi(x_i, \theta^{ML}) = s(x_i, \theta^{ML})$ is the score function)
- OBRE estimator is the solution to

$$\psi(\mathbf{x}_i, \theta^{OB}) = (\mathbf{s}(\mathbf{x}_i, \theta^{OB}) - \mathbf{a}(\theta^{OB})) W_c(\mathbf{x}_i; \theta^{OB})$$

$$W_{c}(x_{i};\theta^{OB}) = \min\left(1;\frac{c}{G(s(x_{i},\theta^{OB}),a(\theta^{OB}),A(\theta^{OB}))}\right)$$

- *W_c*(*x*; θ^{OB}) imposes a bound on influence function by downweighting extreme values (values deviating from model)
- *c* is a 'robustness' parameter to be determined (efficiency-robustness trade-off)

Optimal B-Robust Estimators (OBRE) (ctd.)

A robust alternative to classical ML

•
$$a(\theta^{OB})$$
 and $A(\theta^{OB})$ are such that

$$E(\psi(x,\theta^{OB})\psi(x,\theta^{OB})') = (A(\theta^{OB})A(\theta^{OB})')^{-1}$$
$$E(\psi(x,\theta^{OB})) = 0$$

The resulting estimator is the optimal (minimum variance) M-estimator with bounded influence function²

• If $c \to \infty$ then $\theta^{OB} = \theta^{ML}$

Optimal B-Robust Estimators (OBRE) (ctd.)

A robust alternative to classical ML

• $a(\theta^{OB})$ and $A(\theta^{OB})$ are such that

$$\begin{split} E(\psi(x,\theta^{OB})\psi(x,\theta^{OB})') &= (A(\theta^{OB})A(\theta^{OB})')^{-1} \\ E(\psi(x,\theta^{OB})) &= 0 \end{split}$$

The resulting estimator is the optimal (minimum variance) M-estimator with bounded influence function²

• If $c \to \infty$ then $\theta^{OB} = \theta^{ML}$

²For a thorough treatment, see Hampel et al. (1986), *Robust Statistics: The approach based on influence functions.*

Optimal B-Robust Estimators (OBRE) (ctd.)

A robust alternative to classical ML

• $a(\theta^{OB})$ and $A(\theta^{OB})$ are such that

$$\begin{split} E(\psi(x,\theta^{OB})\psi(x,\theta^{OB})') &= (A(\theta^{OB})A(\theta^{OB})')^{-1} \\ E(\psi(x,\theta^{OB})) &= 0 \end{split}$$

The resulting estimator is the optimal (minimum variance) M-estimator with bounded influence function²

• If
$$c \to \infty$$
 then $\theta^{OB} = \theta^{ML}$

²For a thorough treatment, see Hampel et al. (1986), *Robust Statistics: The approach based on influence functions.*

[outline]

- 2 Robust estimation strategies
- 3 Stata Implementation of OBRE
- 4 A brief empirical illustration
- 6 Concluding remarks

- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I follow Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Estimation involves
 - matrix operations
 - 2 numerical integration
 - \Rightarrow Mata!

- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I follow Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Estimation involves
 - matrix operations
 - 2 numerical integration
 - \rightarrow Mata!

- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I follow Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Estimation involves
 - matrix operations
 - 2 numerical integration
 - \Rightarrow Mata

- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I follow Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Estimation involves
 - matrix operations
 - 2 numerical integration
 - \implies Mata!

Implementation (ctd.)

- Implementation is relatively easy with Mata (but familiarity with matrix algebra can help!)
- Builds on suite of commands by Stephen Jenkins to fit functional forms to unit record data by ML³
 - just replace ML engine by home-brewed OBRE engine (call a Mata function, rather than ml model)
- I implemented Pareto Type I distribution and 3-parameters Singh-Maddala distribution⁴
- Compatible with Nick Cox's diagnostic commands \mathtt{psm} and \mathtt{qsm}

```
<sup>3</sup>ssc describe smfit
<sup>4</sup>paretofit to fit Pareto by ML will soon be added to Jenkins' collection.
```


Implementation (ctd.)

- Implementation is relatively easy with Mata (but familiarity with matrix algebra can help!)
- Builds on suite of commands by Stephen Jenkins to fit functional forms to unit record data by ML³
 - just replace ML engine by home-brewed OBRE engine (call a Mata function, rather than ml model)
- I implemented Pareto Type I distribution and 3-parameters Singh-Maddala distribution⁴
- Compatible with Nick Cox's diagnostic commands \mathtt{psm} and \mathtt{qsm}

³ssc describe smfit

(ERS

⁴paretofit to fit Pareto by ML will soon be added to Jenkins' collection.

Implementation (ctd.)

- Implementation is relatively easy with Mata (but familiarity with matrix algebra can help!)
- Builds on suite of commands by Stephen Jenkins to fit functional forms to unit record data by ML³
 - just replace ML engine by home-brewed OBRE engine (call a Mata function, rather than ml model)
- I implemented Pareto Type I distribution and 3-parameters Singh-Maddala distribution⁴
- Compatible with Nick Cox's diagnostic commands \mathtt{psm} and \mathtt{qsm}

³ssc describe smfit

TERS

⁴paretofit to fit Pareto by ML will soon be added to Jenkins' collection.

Implementation (ctd.)

- Implementation is relatively easy with Mata (but familiarity with matrix algebra can help!)
- Builds on suite of commands by Stephen Jenkins to fit functional forms to unit record data by ML³
 - just replace ML engine by home-brewed OBRE engine (call a Mata function, rather than ml model)
- I implemented Pareto Type I distribution and 3-parameters Singh-Maddala distribution⁴
- Compatible with Nick Cox's diagnostic commands psm and qsm

```
<sup>3</sup>ssc describe smfit
<sup>4</sup>paretofit to fit Pareto by ML will soon be added to Jenkins' collection.
```


Implementation (ctd.)

- Implementation is relatively easy with Mata (but familiarity with matrix algebra can help!)
- Builds on suite of commands by Stephen Jenkins to fit functional forms to unit record data by ML³
 - just replace ML engine by home-brewed OBRE engine (call a Mata function, rather than ml model)
- I implemented Pareto Type I distribution and 3-parameters Singh-Maddala distribution⁴
- Compatible with Nick Cox's diagnostic commands \mathtt{psm} and \mathtt{qsm}

```
<sup>3</sup>ssc describe smfit
<sup>4</sup>paretofit to fit Pareto by ML will soon be added to Jenkins' collection.
```


Practical programming issues

- Precision of numerical integration functions revealed very important
- Difficulty to set multiple tolerance and precision parameters – trade-off between speed and accuracy (still subject to changes...)
- As in ML estimation, using re-parameterization $\tilde{\theta} = \ln(\theta)$ can help convergence (in all models considered, $\theta > 0$)

Practical programming issues

- Precision of numerical integration functions revealed very important
- Difficulty to set multiple tolerance and precision parameters – trade-off between speed and accuracy (still subject to changes...)
- As in ML estimation, using re-parameterization $\tilde{\theta} = \ln(\theta)$ can help convergence (in all models considered, $\theta > 0$)

Practical programming issues

- Precision of numerical integration functions revealed very important
- Difficulty to set multiple tolerance and precision parameters – trade-off between speed and accuracy (still subject to changes...)
- As in ML estimation, using re-parameterization θ
 [˜] = ln(θ) can help convergence (in all models considered, θ > 0)

A brief empirical illustration

[outline]

- 2 Robust estimation strategies
- 3 Stata Implementation of OBRE
- 4 A brief empirical illustration
- 6 Concluding remarks

Empirical illustration

- Data from panel survey PSELL-3 (Panel 'Living in Luxembourg'), 2003–2005
- Representative of Luxembourg residents
- Single-adult-equivalent real household income (incomes of 2002-2004)

ML vs. OBRE parameter estimates

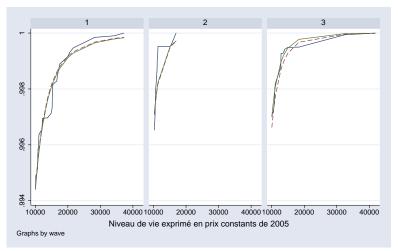
Pareto Type I parameters

		ML	OBRE			
			<i>c</i> = 200	<i>c</i> = 5	<i>c</i> = 3	<i>c</i> = 2
Pareto Type I	2002	3.635	3.635	3.633	3.720	3.926
(upper 5%)	2003	4.075	4.075	4.060	4.007	3.911
	2004	4.306	4.306	4.383	4.425	4.498

ML vs. OBRE parameter estimates Pareto Type I parameters

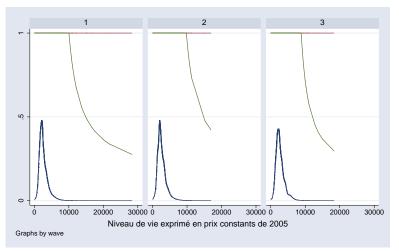
		ML	OBRE			
			<i>c</i> = 200	<i>c</i> = 5	<i>c</i> = 3	<i>c</i> = 2
Pareto Type I	2002	3.635	3.635	3.633	3.720	3.926
(upper 5%)	2003	4.075	4.075	4.060	4.007	3.911
	2004	4.306	4.306	4.383	4.425	4.498

Empirical CDF and estimated Pareto Type I CDF



OBRE robustness weights

Pareto Type I distribution



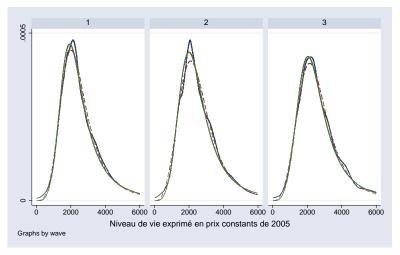
Singh-Maddala parameters

		ML		OBRE		
			<i>c</i> = 200	<i>c</i> = 10	<i>c</i> = 5	<i>c</i> = 4
Singh-Maddala	2002	4.131	4.141	4.170	4.417	4.726
		2,159	2,159	2,146	2,022	1,912
		0.797	0.797	0.784	0.664	0.555
	2003	3.643	3.463	3.713	4.035	4.326
		2,477	2,477	2,428	2,214	2,060
		1.094	1.094	1.040	0.822	0.666
	2004	3.666	3.666	3.716		4.262
		2,529	2,529	2,496	2,278	2,124
		1.091	1.091	1.058	0.841	0.684

Singh-Maddala parameters

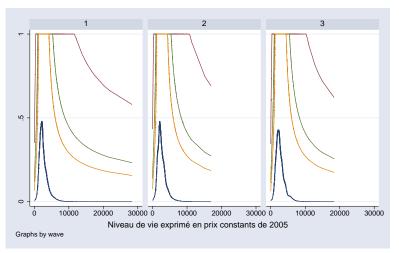
-		ML	OBRE			
			<i>c</i> = 200	<i>c</i> = 10	<i>c</i> = 5	<i>c</i> = 4
Singh-Maddala	2002	4.131	4.141	4.170	4.417	4.726
		2,159	2,159	2,146	2,022	1,912
		0.797	0.797	0.784	0.664	0.555
	2003	3.643	3.463	3.713	4.035	4.326
		2,477	2,477	2,428	2,214	2,060
		1.094	1.094	1.040	0.822	0.666
	2004	3.666	3.666	3.716	3.980	4.262
		2,529	2,529	2,496	2,278	2,124
_		1.091	1.091	1.058	0.841	0.684

Non-parametric estimates and estimated Singh-Maddala PDFs



OBRE robustness weights

Singh-Maddala distribution



- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in income distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is a prototype (but looks ok). Minor developments still needed for
 - fixing precision and tolerance thresholds
 - allowing svy: prefix (?)
 - adding additional distributions (log-normal, gamma, Dagum) (?) – transplanting code to other distributions is easy

- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in income distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is a prototype (but looks ok). Minor developments still needed for
 - fixing precision and tolerance thresholds
 - allowing svy: prefix (?)
 - adding additional distributions (log-normal, gamma, Dagum) (?) – transplanting code to other distributions is easy

- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in income distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is a prototype (but looks ok). Minor developments still needed for
 - fixing precision and tolerance thresholds
 - allowing svy: prefix (?)
 - adding additional distributions (log-normal, gamma, Dagum) (?) – transplanting code to other distributions is easy

- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in income distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is a prototype (but looks ok). Minor developments still needed for
 - fixing precision and tolerance thresholds
 - allowing svy: prefix (?)
 - adding additional distributions (log-normal, gamma, Dagum) (?) – transplanting code to other distributions is easy

- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in income distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is a prototype (but looks ok). Minor developments still needed for
 - fixing precision and tolerance thresholds
 - allowing svy: prefix (?)
 - adding additional distributions (log-normal, gamma, Dagum) (?) – transplanting code to other distributions is easy

Concluding remarks (ctd.)

• Now entering more thorough testing phase:

- Monte-Carlo simulations
- Benchmarking against the software IneQ (by Cowell and Gomulka)
- Further applications
- Then need to develop add-on software to help exploit these tools for deriving complete, robust inequality/poverty estimates

Concluding remarks (ctd.)

- Now entering more thorough testing phase:
 - Monte-Carlo simulations
 - Benchmarking against the software IneQ (by Cowell and Gomulka)
 - Further applications
- Then need to develop add-on software to help exploit these tools for deriving complete, robust inequality/poverty estimates

Concluding remarks (ctd.)

- Now entering more thorough testing phase:
 - Monte-Carlo simulations
 - Benchmarking against the software IneQ (by Cowell and Gomulka)
 - Further applications
- Then need to develop add-on software to help exploit these tools for deriving complete, robust inequality/poverty estimates

