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Motivation

• Fixed-effects models allow to take into account time-constant
unobserved heterogeneity that may be correlated with
observables

• Datasets often allow to include more than one fixed effect into
the analysis.

• Examples: linked employer-employee data, linked
student-teacher data, individual effects and region (county)
effects

• With high number of panel units (”high-dimensional fixed
effects”) ⇒ Computer restrictions

• I propose the Stata module felsdvreg for a memory saving
way to compute such a model
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Linear two-way fixed-effects model

• Notation for one observation:

yit = x ′itβ + θi + ψJ(it) + εit , (1)

• Matrix notation:

y = Xβ + Dθ + Fψ + ε, (2)

• X - observed time-varying characteristics (may include further
fixed effects: e.g. time effects, school effects, etc.)

• D - person effects, F - firm effects
(Dummy variable matrices)

• coefficient vectors β, θ and ψ

• assumption: error term is orthogonal to all regressors,
including the individual and firm effects
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How estimate the model?

Include the firm effects as dummy variables and sweep-out the
person effects by the within-transformation (”time-demeaning”).
Andrews et al. (2006) call this ”FEiLSDVj method”.

Transformed model: ỹ = X̃β + F̃ψ + ε̃. (3)

Imagine a big linked employer-employee dataset:
J = 10, 000 firms, N∗ = 20 million person-years
K = 50 time-varying regressors, 4 bytes per data cell (float)

Matrix Dimension Storage requirement

(X̃ , F̃ ) N∗ × (K + J) 800 GB.

(X̃ , F̃ )′(X̃ , F̃ ) (K + J)× (K + J) 0.4 GB
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How to reduce storage requirements ?

Note the cross-product matrices (X̃ , F̃ )′(X̃ , F̃ ) and (X̃ , F̃ )′ỹ are
much smaller than (X̃ , F̃ ).

The OLS normal equations (X̃ , F̃ )′(X̃ , F̃ )

(
β̂

ψ̂

)
= (X̃ , F̃ )′ỹ

involve these cross-product matrices.

Main idea of the paper: Create cross-product matrices without
fully creating the F and F̃ matrix.

F is a sparse matrix and it is a very inefficient way to store the
information in which firm worker i works at time t. This
information is much more efficiently stored in the firm identifier
variable.
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The cross product matrix

Let’s look in more detail at (X̃ , F̃ )′(X̃ , F̃ ). This can be written as:

(X̃ , F̃ )′(X̃ , F̃ ) =

(
X̃ ′X̃ X̃ ′F̃

F̃ ′X̃ F̃ ′F̃

)

Due to the possibility of the row-wise decomposition this can be
written as:

∑
i

(
X̃ ′i X̃i X̃ ′i F̃i

F̃ ′i X̃i F̃ ′i F̃i

)
Are there any regularities about F̃i?
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What are F and F̃ like?
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Reduction of the problem

1. Stayers contribute nothing to F̃ ′F̃ and F̃ ′X̃ .

(X̃ , F̃ )′(X̃ , F̃ ) =

(
X̃ ′X̃ 0

0 0

)
+

∑
i∈ Movers

(
0 X̃ ′i F̃i

F̃ ′i X̃i F̃ ′i F̃i

)

2. Each mover contributes only to specific cells of F̃ ′F̃ and
specific rows of F̃ ′X̃ . Which cells these are and which values a
mover contributes can be computed from the firm identifier
variable.

For the product (X̃ , F̃ )′ỹ the argument is similar.

⇒ This idea is implemented in a Stata program felsdvreg.
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The Stata module -felsdvreg-

net search felsdvreg, The Stata Journal 8(2), pp. 170-189.

1. Identifies stayers and movers.

2. Identifies groups of workers and firms that are connected by
worker mobility and drops one firm effect per group.

3. Estimates the model by least squares implementing the
memory-saving creation of the cross-product matrices and
returns:

a) coefficient estimates and standard errors
b) the predicted person and firm effects,
c) a mover indicator variable
d) a grouping indicator (identifying the different groups connected

by mobility)
e) a variable containing the number of movers per firm
f) a variable containing the number of observations per person
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The Stata module -felsdvreg-
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�
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�
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T. Cornelissen 11

. felsdvreg y x1 x2, ivar(i) jvar(j) feff(feffhat) peff(peffhat) xb(xb) res(res)
> mover(mover) group(group) mnum(mnum) pobs(pobs)
Memory requirement for moment matrices in GB:

2.17600e-06

Computing generalized inverse, dimension: 11
Start: 6 Mar 2008 18:06:02
End: 6 Mar 2008 18:06:02

N=100

Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.029258 .2151235 4.78 0.000 .6000987 1.458418
x2 -.7094819 .2094198 -3.39 0.001 -1.127263 -.2917009

F-test that person and firm effects are equal to zero: F(28,69)=9.81 Prob > F = 0
F-test that person effects are equal to zero: F(19,69)=8.64 Prob > F = 0
F-test that firm effects are equal to zero: F(9,69)=9.97 Prob > F = 0

In big datasets, the crucial steps of the estimation concerns the question of whether
the moment matrices fit into memory, and how much computing time is required when
solving for the coefficients (computing the inverse). The above default output contains
information on these points. The firm and person effects can be displayed as follows:

. table j, contents(m feffhat)

j mean(feffhat)

1 0
2 0
3 0
4 13.2617
5 13.95499
6 0
7 8.559977
8 5.433106
9 11.44951
10 0
11 16.76837
12 10.01551
13 0
14 -10.19694
15 2.526721
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Time constraint for solving the LGS ?

• felsdvreg uses the fact that (X̃ , F̃ ) is a sparse matrix in
order to create its cross-product in a memory-saving way

• The program then solves the system of normal equations in a
direct way (Cholesky decomposition or generalized inverse)

• This way of solving the LGS is of mathematical complexity
O(N3), i.e. multiplying the number of firm effects by 10
increases computing time by a factor of 1000.

• For big problems different methods might be worthwhile ⇒
preconditioned conjugate gradient method (Abowd,
Creecy and Kramarz 2002)

• Could take advantage of the fact that (X̃ , F̃ )′(X̃ , F̃ ) is sparse,
too.

11



Motivation Model Estimation Stata module Restrictions ahead Alternatives Conclusion

Alternatives:

• a2reg by Ouazad (2008) (net search a2reg)

• Implements preconditioned conjugate gradient algorithm
• Solves for coefficients, not for standard errors (⇒ Booststrap)
• The algorithm does not automatically detect regressors

collinear to fixed effects (the generalized inverse used in
felsdvreg drops these regressors automatically)

• Andrews, Schank, Upward (2006): Spell fixed effects

• Call the unique combinations of the two fixed effects ’spells’
• Estimate a one-way fixed-effects model using the spells as

panel units
This controls effectively for the unobserved heterogeneity but
does not allow to recover the two fixed effects.
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Conclusion

• Creating the fixed-effects dummies in a two-way fixed effects
estimation is inefficient (memory-wise)

• A memory-saving way of computing the cross-product
matrices for the system of normal equations has been
presented

• The method is implemented in the Stata module felsdvreg

• The program takes care of identification issues, drops collinear
regressors and provides summary statistics on the mobility
structure among panel units

• A further restriction one should be aware of is the computing
time to solve the system of normal equations

• Algorithms for solving/inverting sparse systems can tackle this
restriction, but will only be fully satisfactory if they also cope
with regressors collinear to the fixed effects
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