Using and interpreting restricted cubic splines

Maarten L. Buis

Institut für Soziologie Eberhard Karls Universität Tübingen maarten.buis@ifsoz.uni-tuebingen.de

Outline

Introduction

Splines

Interpreting the results

A large part of daily statistical practice consists of estimating the relationship between two or more variables.

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- ► The default is often to assume the relationships are linear.

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- ► The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- ► The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- ► The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
 - ► The aim of a model is to simplify the situation such that mere mortals can understand the patterns present in the data.

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- ► The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
 - The aim of a model is to simplify the situation such that mere mortals can understand the patterns present in the data.
 - Assuming that a relationship is linear is a very natural and useful simplification.

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- ► The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
 - The aim of a model is to simplify the situation such that mere mortals can understand the patterns present in the data.
 - Assuming that a relationship is linear is a very natural and useful simplification.
- This talk deals with the rare situation where we want to consider non-linear effect.

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- ► The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
 - The aim of a model is to simplify the situation such that mere mortals can understand the patterns present in the data.
 - Assuming that a relationship is linear is a very natural and useful simplification.
- This talk deals with the rare situation where we want to consider non-linear effect.
- ► This could for example occur because:
 - the relationship is too non-linear to be meaningfully summarized by a linear relationship, or
 - we are substantively interested in the non-linearity.

Outline

Introduction

Splines

Interpreting the results

A linear association

How did I do that?

```
. sysuse auto, clear
(1978 Automobile Data)
. replace price = price / 1000
price was int now float
(74 real changes made)
. label variable price "price in 1000 dollars"
. reg price mpg
                                                         Number of obs =
      Source
                     SS
                               df
                                        MS
                                                         F( 1.
                                                                   72) =
                                                                            20.26
       Model
                 139.44947
                                    139.44947
                                                         Prob > F
                                                                          0.0000
    Residual
                495.615911
                                   6.88355432
                                                         R-squared
                                                                          0.2196
                                                         Adj R-squared =
                                                                          0.2087
       Total
                635.065382
                                   8.69952578
                                                         Root MSE
                                                                        = 2.6237
       price
                                                            [95% Conf. Interval]
                    Coef.
                             Std. Err.
                -.2388943
                             .0530767
                                                  0.000
                                                                        -.1330879
         mpq
                                         -4.50
                                                           -.3447008
                 11.25306
                             1.170813
                                          9.61
                                                  0.000
                                                            8.919088
                                                                         13.58703
       cons
```

```
. predict y_lin
(option xb assumed; fitted values)
. twoway scatter price mpg || ///
> line y_lin mpg,
> sort clstyle(solid)
```

A linear spline

How did I do that?

- . mkspline linsp_mpg1 18 linsp_mpg2= mpg
- . reg price linsp*

Source	SS	df		MS		Number of obs		74
Model Residual	278.152833 356.912549	2 71		076416		F(2, 71) Prob > F R-squared Adj R-squared		27.67 0.0000 0.4380 0.4222
Total	635.065382	73	8.69	952578		Root MSE		2.2421
price	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
linsp_mpg1 linsp_mpg2 _cons	-1.20196 0592943 27.16221	.1888	3009	-6.36 -1.04 8.52	0.000 0.300 0.000	-1.578556 1725521 20.80217		8253636 0539635 3.52225

```
. test linsp_mpg1 = linsp_mpg2
```

⁽¹⁾ linsp_mpg1 - linsp_mpg2 = 0 F(1, 71) = 27.59 Prob > F = 0.0000

[.] predict y_linsp

⁽option xb assumed; fitted values)

[.] twoway scatter price mpg || line y_linsp mpg, sort clstyle(solid)

A cubic spline

. mkspline cubsp_mpg1 18 cubsp_mpg2 = mpg, marginal

How did I do that?

```
. foreach var of varlist cubsp* {
            qui replace 'var' = 'var'^3
 3. }
. gen cubsp_sq = mpg^2
. gen cubsp_lin = mpg
. req price cubsp*
                     SS
     Source
                              df
                                        MS
                                                        Number of obs =
                                                        F( 4.
                                                                  69) =
                                                                           11.16
                249.529494
                                  62.3823734
                                                                       = 0.0000
      Model
                                                        Prob > F
   Residual
                385.535888
                              69 5.58747664
                                                        R-squared
                                                                       = 0.3929
                                                        Adj R-squared = 0.3577
       Total
                635.065382
                              73 8.69952578
                                                        Root MSE
                                                                       = 2.3638
                                                           [95% Conf. Interval]
       price
                    Coef.
                            Std. Err.
                                                 P>|t|
```

-1.29

1.18

1.37

0.201

0.241

0.175

0.138

0.078

-.0447597

-.0116172

-.446216

-43.14487

-14.61577

cubsp_mpg1

cubsp_mpg2

cubsp_sq

(option xb assumed; fitted values)

-.0175977

.0169481

.9787628

-18.52005

.0136154

.0143188

.7142946

12.34361

.0095643

.0455134

2,403742

6.104773

265.0482

cubsp_lin -_cons -

[.] twoway scatter price mpg || line y_cubsp mpg, sort clstyle(solid)

A restricted cubic spline

How did I do that?

```
. mkspline2 rc = mpg, cubic knots(15 20 25)
```

. reg price rc*

Source	ss	df		MS		Number of obs	
Model Residual	242.090418 392.974964			045209 485864		Prob > F R-squared	= 0.0000 = 0.3812
Total	635.065382	73	8.69	952578		Adj R-squared Root MSE	= 2.3526
price	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval
rc1 rc2 _cons	8567267 .5791311 21.79347	.151 .1344 2.663	838	-5.67 4.31 8.18	0.000 0.000 0.000	-1.158129 .3109781 16.48297	5553242 .8472842 27.1039

[.] adjustrcspline , noci addplot(scatter price mpg, msymbol(Oh))

Outline

Introduction

Splines

Interpreting the results

The postrcspline package

- Available from SSC
- consists of three programs:

mkspline2 The same as mkspline except that it

leaves information behind that can be

used by the other commands.

adjustrcspline Displays the adjusted predictions.

mfxrcspline Displays marginal effects.

▶ Show the predicted outcome against the spline variable.

- ▶ Show the predicted outcome against the spline variable.
- What if we have other covariates?

- Show the predicted outcome against the spline variable.
- What if we have other covariates?
- Predicted outcome for an observation with typical values on the other covariates

- Show the predicted outcome against the spline variable.
- What if we have other covariates?
- Predicted outcome for an observation with typical values on the other covariates

. reg price ro	c* rep78 forei	gn				
Source	SS	df	MS		Number of obs	
Model Residual	230.445919 346.351028		114798		F(4, 64) Prob > F R-squared	= 0.0000 = 0.3995
Total	576.796947	68 8.48	230805		Adj R-squared Root MSE	= 0.3620
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rc1 rc2 rep78 foreign _cons	8688077 .543387 0172764 1.607754 21.75074	.1627389 .1444228 .379311 .8049689 3.289008	-5.34 3.76 -0.05 2.00 6.61	0.000 0.000 0.964 0.050 0.000	-1.193916 .2548693 7750371 0003563 15.18019	5436995 .8319048 .7404844 3.215864 28.32128

[.] adjustrcspline, at(foreign=0)

Predicted price for domestic cars with average repair status

Marginal effects

Effect is how much does the predicted outcome change for a unit change in the explanatory variable.

Marginal effects

- ► Effect is how much does the predicted outcome change for a unit change in the explanatory variable.
- This is the first derivative.

Marginal effects

- Effect is how much does the predicted outcome change for a unit change in the explanatory variable.
- This is the first derivative.

```
. mfxrcspline, yline(0)
```

Change in predicted price for a unit change in mpg

▶ No, restricted cubic splines are just a transformation of an explanatory variable.

- No, restricted cubic splines are just a transformation of an explanatory variable.
- ➤ This transformed variable can be entered in any regression command like logit or glm.

- No, restricted cubic splines are just a transformation of an explanatory variable.
- This transformed variable can be entered in any regression command like logit or glm.
- This does influence how the adjusted prediction and marginal effects should be computed.

- No, restricted cubic splines are just a transformation of an explanatory variable.
- This transformed variable can be entered in any regression command like logit or glm.
- This does influence how the adjusted prediction and marginal effects should be computed.
- ► The postrcspline package will automatically recognize regress, logit, logistic, betafit, probit, poisson, cloglog, and glm.

Example of a non-linear model (1)

```
. glm price rc* rep78 foreign, link(log) eform
               log likelihood = -154.66296
Iteration 0:
Iteration 1:
              log likelihood = -151.66685
Iteration 2:
               log likelihood = -151.50983
Iteration 3:
               log\ likelihood = -151.50982
Generalized linear models
                                                    No. of obs
Optimization
                 : ML
                                                    Residual df
                                                    Scale parameter = 5.098444
Deviance
                 = 326.3004275
                                                     (1/df) Deviance = 5.098444
Pearson
                 = 326.3004275
                                                     (1/df) Pearson = 5.098444
Variance function: V(u) = 1
                                                     [Gaussian]
Link function
                 : g(u) = ln(u)
                                                     [Log]
                                                    ATC
                                                                     = 4.536517
                                                                     = 55.31761
Log likelihood
                 = -151.5098231
                                                    BIC
                                OIM
       price
                   exp(b)
                             Std. Err.
                                                 P> | z |
                                                            [95% Conf. Interval]
                                            Z
         rc1
                 .8763127
                             .0185517
                                         -6.24
                                                 0.000
                                                            .8406961
                                                                         .9134383
         rc2
                 1.082826
                             .0224177
                                          3.84
                                                 0.000
                                                            1.039767
                                                                         1.127667
       rep78
                 .9569288
                                         -0.75
                                                 0.451
                                                            .8533848
     foreign
                 1.445238
                                          2.56
                                                 0.010
                                                                        1.915907
```

- . adjustrcspline, at (foreign=0) name(a) title(Adjusted predictions)
- . mfxrcspline, at(foreign=0) yline(0) name(b) title(Marginal effects)
- . graph combine a b, ysize(3)

Example of a non-linear model (2)

Syntax adjustrcspline

```
adjustrcspline [if] [in] , [ at(var = #[var =
#[...]]) link(linkname)
custominvlink(inv_link_specification)
ciopts(rarea_options) noci level(#)
lineopts(line_options) addplot(plot)
generate(newvar1 [newvar2 newvar3]) ]
```

Syntax mfxrcspline

```
mfxrcspline [if] [in] , [ at(var = #[var = #[...]])
link(linkname) customdydxb(dydxb_specification)
showknots ciopts(rarea_options) noci level(#)
lineopts(line_options) addplot(plot)
generate(newvar1 [newvar2 newvar3]) ]
```

conclusion

Restricted cubic spline are an easy way of including an explanatory variable in a smooth non-linear way in a wide variety of models.

conclusion

- Restricted cubic spline are an easy way of including an explanatory variable in a smooth non-linear way in a wide variety of models.
- The postrcspline package provides tools for interpreting the results:
 - adjustrcspline graphs the adjusted predictions
 - mfxrcspline graphs the marginal effects

conclusion

- Restricted cubic spline are an easy way of including an explanatory variable in a smooth non-linear way in a wide variety of models.
- The postrcspline package provides tools for interpreting the results:
 - adjustrcspline graphs the adjusted predictions
 - mfxrcspline graphs the marginal effects
- ► These commands will work after regress, logit, logistic, betafit, probit, poisson, cloglog, and glm.