2009 German Stata Users Group Meeting

Performing within and between analysis (WABA) in Stata

Sven-Oliver Spieß

Outline

Introduction Where are constructs in hierarchical data really associated?

- Within and between analysis
 - The basic idea
 - Simple ANOVA
 - Partitioning of correlations
 - Graphical demonstration
- wabacorr.ado in Stata

Introduction

- Many names for one common problem: Fallacy of composition, ecological fallacy, atomistic fallacy, individualistic fallacy, Simpson's paradox, ...
 - \rightarrow Fallacies of the wrong level
- Therefore global correlations potentially misleading
 - E.g. Corr(Job Satisfaction, Commitment) = .72
 - But at which level is the association?
 Individuals? Work groups? Departments?
- Particularly problematic in applied settings
 - No simple random samples
 - Interventions

Introduction

UNIVERSITÄT Mannheim

r_{Job Satisfaction,Commitment} = .72

• At which level is the association?

Outline

- Introduction
 Where are constructs in hierarchical data really associated?
- Within and between analysis
 - The basic idea
 - Simple ANOVA
 - Partitioning of correlations
 - Graphical illustration
- wabacorr.ado in Stata

• The idea:

Let's split up the total correlation into a component within the groups and another component between the groups

 \rightarrow similar to idea behind analysis of variance (ANOVA)

Simply needs to be adjusted to correlations

 Data prerequisites: variables in question must be metric and levels must be nested

Simple ANOVA

8 • $X_{ii} = (X_{ij} - \mu_{ij}) + \mu_{ij}$ 6 SS_{Total} = SS_{Error} + SS_{Group} 4 $(X_{ij} - \mu_{..})^2 = (X_{ij} - \mu_{.j})^2 + (\mu_{.j} - \mu_{..})^2$ Grandmean 2ø • $\eta^2 = SS_{Group} / SS_{Total}$ 2 3 1 4 Group $=> \eta^2$ between measure

Partitioning of correlations

Adjusted to correlations:

- $\eta_{B} = corr(\mu_{i,X_{ij}})$
- $\eta_W = corr[(X_{ij} \mu_{ij}), X_{ij}]$

 Central question: is between or within component (i.e. higher or lower level, or both) of total correlation more important?

 \Leftrightarrow

Partitioning of correlations

- 1. Univariate comparison of the within and between variances
- 2. Bivariate comparison of the within and between correlations
- 3. Summary judgment on the importance of the within and between components for the total correlation

$$\mathbf{r}_{xy} = \mathbf{\eta}_{Bx} * \mathbf{\eta}_{By} * \mathbf{r}_{Bxy} + \mathbf{\eta}_{Wx} * \mathbf{\eta}_{Wy} * \mathbf{r}_{Wxy}$$

$$\mathbf{r}_{xy} = \mathbf{\eta}_{Bx} * \mathbf{\eta}_{By} * \mathbf{r}_{Bxy} + \mathbf{\eta}_{Wx} * \mathbf{\eta}_{Wy} * \mathbf{r}_{Wxy}$$

$$r_{xy} = C_B + C_W$$

4 possible outcomes/inductions:

- 1. Parts
- 2. Wholes
- 3. Equivocal
- \rightarrow lower level/within
- → higher level/between
- \rightarrow meaningful association at both levels
- 4. Inexplicable \rightarrow noise

Sven-Oliver Spieß

NIVER

Graphical illustration: Step 1 (η_B)

Sven-Oliver Spieß

NIVFR

Graphical illustration: Step 1 (η_B)

Sven-Oliver Spieß

NIVFR

Graphical illustration: Step 1 (η_B)

Sven-Oliver Spieß

NIVFR

Graphical illustration: Step 1 (η_W)

Sven-Oliver Spieß

NIVFR

Sven-Oliver Spieß

UNIVER

Sven-Oliver Spieß

UNIVERSI

Sven-Oliver Spieß

UNIVER

Sven-Oliver Spieß

UNIVERSI

Outline

- Introduction
 Where are constructs in hierarchical data really associated?
- Within and between analysis
 - The basic idea
 - Simple ANOVA
 - Partitioning of correlations
 - Graphical illustration
- wabacorr.ado in Stata

Sven-Oliver Spieß

• General syntax:

wabacorr varlist [if] [in] [fweight], by(grpvar) [detail]

- Examples based on Detect Data set A
 - 40 persons in 20 dyads in 10 groups in 4 collectivities
 - 4 metric variables: negotiation, satisfaction, performance, taskclarity

. wabacorr negotiation satisfaction performance taskclarity, by(dyad)

Within and between analysis	Number of obs	=	40
Group variable: dyad	Number of groups	=	20
	Obs per group: min	=	2
	avg	=	2.0
	max	=	2

Within- and between-groups Etas and Eta-squared values:

Variable	 +-	Eta-betw	 Eta-with	Eta-b^2	Eta-w^2	F	p>F
negotiation satisfaction performance taskclarity	 	0.2846 0.2783 0.9988 0.9944	0.9586 0.9605 0.0493 0.1054	$\begin{array}{c} 0 & 0810 \\ 0 & 0774 \\ 0 & 9976 \\ 0 & 9889 \end{array}$	Parts ⁹⁰ 0.0024 0.0111	10.7769 11.3170 431.6194 93.7529	0.0000 0.0000 0.0000 0.0000

UNIVERSITÄ

Within- and between-groups correlations:

Variables	r-betw	r-with	z '	p>z '	
isfaction	-0.1973	0.8441	-3.0614	0.0011	⇒ Parts
erformance	0.1413	-0.0477	0.2794	0.3900	
askclarity	-0.0589	0.0502	0.0257	0.4897	
erformance	-0.0346	0.0695	-0.1037	0.4587	\Rightarrow noise
askclarity	0.0526	0.1568	-0.3119	0.3776	
askclarity	-0.9679	-0.1157	5.7429	0.0000	\Rightarrow Wholes

negotiation-satisfaction
negotiation-performance
negotiation-taskclarity
satisfaction-performance
satisfaction-taskclarity
performance-taskclarity

Total correlation and components:

Variables	 r +	-total	betw-comp	with-comp	z '	p> z'
negotiation-satisfaction		0.7616	-0.0156	0.7772	-3.0239	0.0025
negotiation-performance	I	0.0379	0.0402	-0.0023	0.1122	0.9107
negotiation-taskclarity	I -	0.0116	-0.0167	0.0051	arts 0.0343	0.9726
satisfaction-performance	I -	0.0063	-0.0096	0.0033	0.0187	0.9851
satisfaction-taskclarity	I	0.0304	0.0145	0.0159	-0.0039	0.9969
performance-taskclarity	I -	0.9620	-0.9614	-0.0006	5.8045	0.0000

- Induction for the correlation between negotiation and satisfaction is parts
- Thus variables should not be aggregated, but higher level information could be disregarded without a big loss

- What if induction is wholes (as with performance and taskclarity) or equivocal?
- If possible repeat WABA at the next higher level until induction is parts
 - New number of cases N equals the number of groups M during the previous analysis
 - Input/initial values are correspondingly the means µ, of the previous analysis
 - This is called *multiple* WABA
 - In unbalanced data the means must be weighted to avoid distortions (wabacorr supports frequency weights)
 - Aggregate data no higher than level of first parts induction, but do not disregard levels where inductions were equivocal
- Stata again:

UNIVERSITÄT Mannheim

- . collapse (mean) performance taskclarity group collectivity (count) obs=performance, by(dyad)
- . wabacorr performance taskclarity [fweight=obs], by(group)

Within and between analysis			Number of obs	=	20
Group variable: group			Number of group	os =	10
			Obs per group:	min =	2
				avg =	2.0
				max =	2
Number of weighted obs =	40	Weighted	obs per group:	min =	4
				avg =	4.0
				max =	4

:::
Output omitted
:::

- . collapse (mean) performance taskclarity collectivity
 (rawsum) obs [fweight=obs], by(group)
- . wabacorr performance taskclarity [fweight=obs], by(collectivity)

Sven-Oliver Spieß

- UNIVERSITÄT Mannheim
- . wabacorr performance taskclarity [fweight=obs], by(collectivity)

Within and between analysis			Number o	of obs		=	10
Group variable: collectivity		Number of groups		=	4		
			Obs per	group:	min	=	2
					avg	=	2.5
					max	=	3
Number of weighted obs =	40	Weighted	obs per	group:	min	=	8
					avg	=	10.0
					max	=	12

```
:::
Output omitted
:::
```

- Induction remains wholes even at the highest level
- Data could thus be aggregated by collectivities

Example for an Analysis: Dansereau et al. (2006)

UNIVERSITÄT Mannheim

TABLE 3

Hypothesis 2: Illustration of Group Parts Result for

Trustworthiness (x) and Delegated Activities (y)

Number of persons	40	
Number of groups	20	
Total correlation (individual level; from Table 1)	.76**	\rightarrow Initial value
Between-group model		
Between-group correlation (r_{axy})	197	→ Step 2
Between-group variation		•
Trustworthiness (eta η_{gg})	.285	A Chain 4
Delegated activities (eta η_{sv})	.278	
Between-group component		
$(r_{RXY})(\eta_{RX})(\eta_{RY})$	(197)(.285)(.278) =02	\rightarrow Step 3
Within-group model		•
Within-group correlation (rwxr)	.844**	\rightarrow Step 2
Within-group variation		
Trustworthiness (eta η_{wx})	.959	
Delegated activities (eta η_{uv})	.961	\rightarrow Step 1
Within-group component		
$(r_{\mu\nu\nu})(\eta_{\mu\nu})(\eta_{\mu\nu})$	(.844)(.959)(.961) = .78	\rightarrow Step 3
Differences		-
Between correlation versus within correlation		
A test	81"	
Z test	-3.06**	\rightarrow Step 2
Trustworthiness		
Between variation versus within variation		
$E \text{ ratio} = \eta_{\mu}/\eta_{w}$.30**	\rightarrow Stop 1
$F \text{ ratio} = (1/E^2)(J-1)/(N-J)$	10.78**	-> Step 1
Delegated activities		
Between variation versus within variation		
$E \text{ ratio} = \eta_{\mu}/\eta_{w}$.29**	
$F \text{ ratio} = (1/E^2)(J-1)/N-J$	11.32**	\rightarrow Step 1
Induction	Group parts	•

 $^{\dagger}\theta^{\circ} > 15^{\circ}$. $^{\dagger\dagger}\theta^{\circ} > 30^{\circ}$. $^{*}p < .05$. $^{**}p < .01$.

Conclusions I

UNIVERSITÄT Mannheim

Within and between analysis

- provides a detailed picture of patterns of associations between variables at different levels in nested hierarchical data instead of an all-or-nothing decision as with ANOVA or intra-class correlations (ICC)
- has its greatest added value in equivocal cases
- can reveal important results even if total correlation is nil
- can be employed at two levels (single WABA) or successively at more levels (multiple WABA)
- can also be employed in multivariate contexts like regression analysis (cf. Dansereau et al. (2006))
- can inform further analyses, like the choice of levels in multi level modeling (MLM), and selection of starting points for interventions

Conclusions II

- wabacorr.ado
 - performs WABA of correlations in Stata 9.2 or higher
 - also provides tests of practical significances with 'detail' option
 - supports frequency weights to allow multiple WABA with unbalanced data
 - stores results for further use by the user

Further sources

• Method:

- Dansereau, F., Cho, J. and Francis J. Yammarino. (2006). Avoiding the "Fallacy of the Wrong Level": A Within and Between Analysis (WABA) Approach. *Group & Organization Management, 31,* 536 - 577.
- O'Connor, B. P. (2004). SPSS and SAS programs for addressing interdependence and basic levels-of-analysis issues in psychological data. *Behavior Research Methods, Instrumentation, and Computers, 36* (1), 17-28.
- Detect software: <u>http://www.levelsofanalysis.com</u>
- wabacorr.ado:
 - <u>http://www.wip-mannheim.de/</u>
 - http://www.svenoliverspiess.net/stata
 - Soon: Statistical Software Components

Thank you!

