Comparing coefficients of nested nonlinear probability models using khb

Ulrich Kohler

Joined Work with Kristian B. Karlson and Anders Holm

9th German Stata Users Group Meeting Bamberg 01 July 2011

- Introduction
- The KHB-method
- The command khb
- 4 Application
- References

- Introduction
- 2 The KHB-method
- The command khb
- Application
- 6 References

The problem

We are interested in obtaining $\beta_R - \beta_F$ from the following models for latent Y^* :

$$Y^* = \alpha_F + \beta_F X + \gamma_F Z + \delta_F C + \epsilon \tag{1}$$

$$Y^* = \alpha_R + \beta_R X + \delta_R C + \varepsilon \tag{2}$$

Having ovserved Y with value 0 if $Y^* < \tau$ and 1 if $Y^* \ge \tau$ we can obtain the logit/probit estimates with

$$b_F = \frac{\beta_F}{\sigma_F}$$
 and $b_R = \frac{\beta_R}{\sigma_R}$ (3)

Note: We identify the underlying coefficients of interest relative to a scale unknown to us.

- Introduction
- 2 The KHB-method
- The command khb
- Application
- 5 References

General idea

The KHB-method extracts from Z the information that is not contained in X. This is done by calculating the residuals of a linear regression of Z on X, i.e,

$$R = Z - (a + bX) \quad , \tag{4}$$

where *a* and *b* are the estimated regression parameters of a linear regression.

Instead of using equation (2) we then use

$$Y^* = \widetilde{\alpha}_R + \widetilde{\beta}_R X + \widetilde{\gamma}_R R + \widetilde{\delta}_R C + \epsilon \quad . \tag{5}$$

Difference of coefficients

As R and Z differ only in the component in Z that is correlated with X, model (1) is no more predictive than model (5), and consequently the residuals have the same standard deviation so that

$$\widetilde{\sigma}_{R} = \sigma_{F}$$
 (6)

As $\widetilde{\beta}_B = \beta_B$ we can write

$$\widetilde{b}_{R} - b_{F} = \frac{\widetilde{\beta}_{R}}{\widetilde{\sigma}_{R}} - \frac{\beta_{F}}{\sigma_{F}} = \frac{\beta_{R} - \beta_{F}}{\sigma_{F}} \quad . \tag{7}$$

Hence, the difference obtained reflects the difference searched divided by some common scale.

Derived statistics

Confounding ratio

$$\frac{\tilde{b}_R}{b_F} = \frac{\frac{\beta_R}{\sigma_F}}{\frac{\beta_F}{\sigma_F}} = \frac{\beta_R}{\beta_F} \quad , \tag{8}$$

Counfounding percentage

$$100 \cdot \frac{\widetilde{b}_R - b_F}{\widetilde{b}_R} = 100 \cdot \frac{\frac{\beta_R}{\sigma_F} - \frac{\beta_F}{\sigma_F}}{\frac{\beta_R}{\sigma_F}} = 100 \cdot \frac{\beta_R - \beta_F}{\beta_R} \quad , \quad (9)$$

01 July 2011

Significance test for the difference in effects

- Analytically derived standard errors for the difference in effects exist.
- Based on the delta method (Sobel, 1982).
- Simple for one X and ond Z but fairly complicated for situations with more than one X, Z.
- Karlson et al. (2010) has more details; also see our Stata Journal publications (in Press)

- Introduction
- 2 The KHB-method
- The command khb
- Application
- 6 References

Svntax

khb model-type depvar key-vars | mediator-vars [if][in][, options] *model-type* can be any of regress, logit, ologit, probit,

oprobit, cloglog, slogit, scobit, rologit, clogit, and mlogit.

key-vars may contain factor variables

aweights, fweights, iweights, and pweights are allowed if they are allowed for the specified model type.

Options (most important ones)

options	description
<pre>concomitant(varlist)</pre>	concomitants
disentangle	disentangle difference of effects
summary	summary of decomposition
vce (<i>vcetype</i>)	robust or cluster clustvar
ape	decomposition using avg. partial effects
verbose	show restricted and full model
<u>k</u> eep	keep residuals of mediators

- Introduction
- 2 The KHB-method
- The command khb
- Application
- 6 References

Preliminaries

- Examples from educational sociology
- Subset of Danish National Longitudinal Survey (DLSY).
- Reproduce analysis presented by Karlson and Holm (2011).

17 Jan 2011 10:26

```
. use dlsy_khb, clear
. describe
```

Contains data from dlsy khb.dta obs: 1.896

vars:

49,296 (99.9% of memory free) size:

variable name	storage type	display format	value label	variable label
edu	byte	%20.0g	edu	Educational attainment
upsec	byte	%10.0g	yesno	Complete upper secondary education (Gymnasium)
univ	byte	%13.0g	yesno	Complete University education
fgroup	byte	%9.0g	fgroup	Father's social group/class
fses	float	%9.0g		Father's SES, standardized with mean 0 and sd 1
abil	double	%10.0g		Standardized ability measure, with mean 0 and sd 1
intact	byte	%9.0q	vesno	Intact family
bov	bvte	%9.0a	vesno	Bov

15/25

Basic use

. khb logit univ fses || abil, c(intact boy)

Decomposition using the KHB-Method

Model-Type: logit Variables of Interest: fses

Variables of Interest: ises Z-variable(s): abil

Z-variable(s): abii

Concomitant: intact boy

univ	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
fses						
Reduced	.5459815	.0779806	7.00	0.000	.3931424	.6988206
Full	.3817324	.0778061	4.91	0.000	.2292353	.5342295
Diff	.1642491	.0293249	5.60	0.000	.1067734	.2217247

Number of obs

Pseudo R2

1896

0.19

Confounding ratio/percentage

1.4302727

fses

```
. khb logit univ fses || abil, c(intact boy) summary notable

Decomposition using the KHB-Method

Model-Type: logit Number of obs = 1896

Variables of Interest: fses Pseudo R2 = 0.19

Z-variable(s): abil

Concomitant: intact boy

Summary of confounding

Variable | Conf_ratio Conf_Pct Resc_Fact
```

30.08

1.0602422

Option ape

. khb logit univ fses || abil, c(intact boy) ape summary

Decomposition using the APE-Method

Model-Type: logit Number of obs 1896 Variables of Interest: fses 0.19 Pseudo R2

Z-variable(s): abil Concomitant: intact boy

[95% Conf. Interval] univ Coef. Std. Err. Z P>|z| fses Reduced .0384906 .0054429 7.07 0.000 .0278226 .0491585 Full .0269113 .0054476 4.94 0.000 .0162343 .0375884 Diff .0115792 .0020667 5.60 0.000 .0075286 .0156298

Note: Standard errors of difference not known for APE method Summary of confounding

Variable	Conf_ratio	Conf_Pct	Dist_Sens
fses	1.4302727	30.08	.95931864

Disentangle contributions of mediators

. khb logit univ fses || abil intact boy, s d not

Decomposition using the KHB-Method

Model-Type: logit Variables of Interest: fses Z-variable(s): abil intact boy

Summary of confounding

Variable	Conf_ratio	Conf_Pct	Resc_Fact	
fses	1.5207722	34.24	1.1317064	

Components of Difference

Z-Varia	able	Coef	Std_Err	P_Diff	P_Reduced
fses					
ä	abil	.1661177	.0301003	83.56	28.61
int	tact	.020142	.0144611	10.13	3.47
	boy	.0125359	.011524	6.31	2.16

Number of obs

Pseudo R2

1896

0 19

More than one key variable

. khb logit univ boy intact || abil, c(fses) s

Decomposition using the KHB-Method

Model-Type: logit Number of obs 1896 Variables of Interest: boy intact Pseudo R2 0.19

Z-variable(s): abil Concomitant: fses

univ	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
bov						
Reduced	1.06178	.1848087	5.75	0.000	.6995613	1.423998
Full	.9821406	.1848351	5.31	0.000	.6198704	1.344411
Diff	.0796391	.133004	0.60	0.549	1810438	.3403221
intact						
Reduced	1.129767	.7386976	1.53	0.126	3180536	2.577588
Full	1.08391	.7386558	1.47	0.142	3638292	2.531648
Diff	.0458575	.1328438	0.35	0.730	2145116	.3062266

Summary of confounding

Variable	Conf_ratio	Conf_Pct	Resc_Fact
boy	1.0810873	7.50	1.0033213
intact	1.0423075	4.06	1.03542

Categorical variables

```
. xtile catabil = abil, n(4)
. tab catabil, gen(catabil)
. khb logit univ i.fgroup || catabil2-catabil4, c(intact boy) s d
```


Ordered outcome

. esttab, scalars("ratio_fses Conf.-Ratio" "pct_fses Conf.-Perc.")

	(1)	(2)	(3)
	edu	edu	edu
fses			
Reduced	-0.103***	0.0643***	0.0385***
	(-11.33)	(10.72)	(9.27)
Full	-0.0755***	0.0472***	0.0283***
	(-8.02)	(7.76)	(7.23)
Diff	-0.0272***	0.0170***	0.0102***
	(-6.50)	(6.44)	(5.95)
N	1896	1896	1896
ConfRatio	1.360	1.360	1.360
ConfPerc.	26.48	26.48	26.48

```
t statistics in parentheses
```


^{*} p<0.05, ** p<0.01, *** p<0.001

Multinomial outcome

```
. forv i = 2/3 {    2.    quietly eststo: khb mlogit edu fses || abil, out(`i') base(1) s 3. }
```

. esttab, scalars("ratio_fses Conf.-Ratio" "pct_fses Conf.-Perc.")

	(1) edu	(2) edu
fses		
Reduced	0.423*** (7.63)	0.779*** (9.30)
Full	0.313*** (5.70)	0.552*** (6.68)
Diff	0.109*** (5.93)	0.227*** (6.04)
N	1896	1896
ConfRatio	1.349	1.411
ConfPerc.	25.88	29.15

```
t statistics in parentheses
```


^{*} p<0.05, ** p<0.01, *** p<0.001

- Introduction
- 2 The KHB-method
- The command khb
- Application
- References

References

- Karlson, K. B. and A. Holm. 2011. Decomposing primary and secondary effects: A new decomposition method. Research in Stratification and Social Mobility 29: XXXX.
- Karlson, K. B., A. Holm, and R. Breen. 2010. Comparing regression coefficients between models using logit and probit: a new method. Unpublished paper (currently under review).
- Sobel, M. E. 1982. Asymptotic confidence intervals for indirect effects in structural equation models. In Sociological Methodology 1982, ed. L. S., 290–312. Washington D.C.: American Sociological Association.

