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Introduction

Goals of the talk

© Introduce structural equation models
® Describe Stata packages to fit them:
e confa:a 13mm hex wrench
e gllamm: a Swiss-army tomahawk
o gmm: do-it-yourself kit
e sem: the promised land?
©® Example 1: daily functioning in NHANES

@ Example 2: experimental ecology data set
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e Standard multivariate technique in social sciences

Structural

equation ¢ Incorporates constructs that cannot be directly

models

observed:
psychology: level of stress
sociology: quality of democratic institutions
biology: genotype and environment
health: difficulty in personal functioning
e Special cases:
e linear regression
o confirmatory factor analysis
e simultaneous equations
e errors-in-variables and instrumental variables
regression
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Causal modeling of Hubert Blalock (1961)

&

Factor analysis estimation of Karl Jéreskog (1969)

®

Econometric simultaneous equations of Arthur Goldberger
(1972)
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Structural equations model

Latent variables:
n=oa,+Bn+T{+¢ (1)
Measurement model for observed variables:

y=o,+Amn+e (@)
x=oa,+AE+6 3)

&, ¢, e, 6 are uncorrelated with one another
Joreskog (1973), Bollen (1989), Yuan & Bentler (2007)

Other re-expressions: Bentler & Weeks (1980), McArdle &
McDonald (1984).
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Denoting

Vgl =@, V[K]=9, V[e]=06., V[ =06y,

Formulation ) R = Ay([ _ B)*l, 7= <x>
Yy
obtain

a, + ARu
M(H)EEz:<y Y 5) (4)
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Identification

Before proceeding to estimation, the researcher needs to
verify that the SEM is identified:

Pr{X : f(X,0) =f(X,0) = 0=0} =1

Different parameter values should give rise to different
likelihoods/objective functions, either globally, or locally in a
neighborhood of a point in a parameter space.
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e Normal data = likelihood is the function of sufficient
statistic (z, 5):

—21logL(6,Y,X) ~ nlndet(2(0)) +nt[S(0)S]
+n(z = p(6))'S71(0)(Z - u(9)) — min (6)

e Generalized latent variable approach for mixed
response (normal, binomial, Poisson, ordinal, within the
same model):

~210gL(0,¥.X) ~ > [ . v[€. G O)AFE,J0) (7)
i=1

Bartholomew & Knott (1999), Skrondal &
Rabe-Hesketh (2004)
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Estimation methods

Normal theory MLE
Weighted least squares:

s =vechS, o(0) = vechX(0)
F=(s—0(0)V,(s—0c(8) — mein (8)

where V,, is weighting matrix:

« Optimal V{" = ¥[s — o(6)] (Browne 1984)

e Simplistic: least squares v =1

¢ Diagonally weighted least squares: VY = diag V[s — o]
Model-implied instrumental variables limited information
estimator (Bollen 1996)
Bounded influence/outlier-robust methods (Yuan,
Bentler & Chan 2004, Moustaki & Victoria-Feser 2006)

Empirical likelihood
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Estimation

Goodness of fit

The estimated model (6) is often related to the
“saturated” model ¥ = § and/or independence model
Yo = diag S

Likelihood formulation = LRT test, asymptotically x7

Non-normal data: LRT statistic ~ >, w;x7, can be
Satterthwaite-adjusted towards the mean and variance
of the appropriate x7 (Satorra & Bentler 1994, Yuan &
Bentler 1997)

Analogies with regression R? attempted, about three
dozen fit indices available (Marsh, Balla & Hau 1996)

Reliability of indicators: R? in regression of an indicator
on its latent variable

Signs and magnitudes of coefficient estimates
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@ Stata tools for SEM
sem
gllamm
confa
gmm

Now, some tools
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sem

sem?

As announced earlier this week, Stata 12 will be released
on 25 July 2011 and will have a full-fledge sem estimation
routine.
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Formulation

Estimation

™| Viewer - view sem2.smcl

File Edit History Help

@.,‘E\ s view semlsmel

view sem2.smcl X

»

e

Endogenous variables

Measurement: anomia67 pwless67 anomia7l pwless7l educ66 occstateé

Latent: Alien6?7 Alien7l

Exogenous wvariables

Latent: SES

Structural esquation modsl

Estimation wethod = ml

Log likelihood = -15246.469
{ 1] [anomia7]Alien67 = 1

[ S5 [anomia71]Alien7l = 1
i 3) [educ66] SES = 1

Mumber of

[=1= =

932

Coef. gtd. Err.

P>l z|

[95% Conf.

Interval]

Structural
Alien?l <-
Llienf? . 7046345 .0533512
SES -.1744151 0542489

13.21
-3.22

0.000
0.001

.6000681
-.280741

.8092008
-.0680891

Alieng? <-
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gllamm

Generalized Linear Latent And Mixed Models (Skrondal &
Rabe-Hesketh 2004, Rabe-Hesketh, Skrondal &
Pickles 2005, Rabe-Hesketh & Skrondal 2008)

e Exploits commonalities between latent and mixed
models
e Adds GLM-like links and family functions to them

¢ Allows heterogeneous response (different exponential
family members)

e Allows multiple levels
e Maximum likelihood via numeric integration of random
effects and latent variables (Gauss-Newton quadrature,

adaptive quadrature); hence one of the most
computationally demanding packages ever



SEM
Stas gllamm

Kolenikov
U of Missouri

One line of data per dependent variable x unit

Requires reshape 1long transformation of indicators
for latent variable models
Measurement model: eq () option
Structural model: geg () bmatrix () options
Families and links: family () fv () link() 1v ()
Tricks that Stas commonly uses:
e make sure the model is correctly specified: trace
noest options
e good starting values speed up convergence: from ()
option
e number of integration points gives tradeoff between

speed and accuracy: nip () option
e get an idea about the speed: dot option
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confa package

CONfirmatory Factor Analysis models, a specific class
of SEM
Maximum likelihood estimation
Arbitrary # of factors and indicators; correlated
measurement errors
Variety of standard errors (OIM, sandwich,
distributionally robust)
Variety of fit tests (LRT, various scaled tests)
Post-estimation:

o fit indices;

o factor scores (predictions)
e Bollen & Stine (1992) bootstrap
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Estimation command gmm introduced in Stata 11:
e Estimation by minimization of

8(X,0) V, g(X,0) — min

e Evaluator vs. “regression+instruments”
e Variety of weight matrices V,,

o Asy efficient estimator: V, = Vg(X, 0)
e Homoskedastic/unadjusted,

heteroskedastic/robust, cluster’ed and
HAC-consistent standard errors

e Overidentification (goodness of fit) J-test via estat
overid
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One possible set up for SEM
© Write a program to compute the implied moment matrix
%(0)
® Form observation-by-observation contributions to the
moment conditions
g(X,0) = vech|(x; — x)(x; — X)) — 3(6)]
® Feed into gmm using moment evaluator function

Some of these steps were simplified by the author’s
sem4gmm Which will be obsolete in Stata 12.
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e Rather than relying on covariance representation of
SEM, one can use regression representation instead

e Latent variables are measured with error = need to
use the techniques to account for that

e Observed indicators of latent variables are endogenous
variables in the model
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Account for endogeneity by
instrumental variables

Econometric technique of instrumental variables
adapted to SEM by Bollen (1996)

An instrumental variable:

e correlated with regressors
¢ not correlated with the error term

Single equation: ivregress
Simultaneous equations: all earlier determined
variables can serve as instruments

Full structural equation model: tracing rules Bollen &
Bauer (2004)

Can be implemented using the “interactive” version of
gmm

Tests of model specification: by equation and for the
system as a whole
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Comparison of functionality

gllamm

confa

gmm +3(6)

gmm + 1V

General SEM
Estimation
Overall test
Fit indices
Prediction
Ease of use
Speed

v
V

v
N

RSO SO
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NHANES
daily
functioning

NHANES data
NHANES 2007-08 data

Personal functioning section: “difficulty you may have doing
certain activities because of a health problem”

17 questions: Walking for a quarter mile; Walking up ten
steps; Stooping, crouching, kneeling; Lifting or carrying;
House chore; Preparing meals; Walking between rooms on
same floor; Standing up from armless chair; Getting in and
out of bed; Dressing yourself; Standing for long periods;
Sitting for long periods; Reaching up over head;
Grasp/holding small objects; Going out to movies, events;
Attending social event; Leisure activity at home

Response categories: “No difficulty”, “Some difficulty”, “Much
difficulty”, “Unable to do”

Research questions: How to summarize these items? What's
the relation between individual demographics and health?
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Estimation

NHANES
daily
functioning

1.414 Personal 0.605
House chores - functioning >
1.346 : 0.833
. H .
Standing for 1.580 1 0.888
long period
f Going out to ) ) !
511 movies, events Walking 1/4 mile Dressing oneself
515 51 310

Path diagram

Age splines

Gender High BP

¥2(4)=113.1

0.374 0.032,

Grasp/holding

small objects

Walking between
rooms on same floor

813

A multiple indicators and multiple causes (MIMIC) model

N

314
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NHANES example using confa

Only the measurement model can be estimated with confa,
as a preliminary step in gauging the performance of this
part of the model.

confa (difficulty: pfgx), from(iv)

confa (difficulty: pfqgx), from(iv)
> missing

Show results: estimates use cfa;
cfamiss_fromcfa; cfamiss_fromiv
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PF score, CFA model

Factor scores

1
1

20 40 60 80
Age at Screening Adjudicated - Recode
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Data management steps for g1 1amn:
@ Rename pfg061lb—pfql, pfg06lc—pfqg2,
...pfg06ls—pfqgl7
® reshape long pfqg, i(segn) j(item)
® Generate binary indicators g1-g17 of the items

@ Produce binary outcome measures:
bpfqg 'k’ = (“No difficulty”) of pfg k”’

NHANES Model setup steps:
daily . . .
functioning © Define loading equations:
eq items: gl g2 ...gl7

® Come up with good starting values
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NHANES example via gl 1lamm

Syntax of g11amm command:

gllamm /17

bpfg /// single dependent variable
al - gl7, nocons /// item-specific intercepts

i (seqn) /// “common factor”

f (bin) 1 (probit) /// linkand family
eq(items) /// loadings equation
from(...) copy starting values

The “common factor” is a latent variable that is constant
across the i () panel, but can be modified with loadings

Show results in Stata: est use cfa_via_gllamm;
gllamm



SEM

Stas
Kolenikov
U of Missouri

NHANES
daily
functioning

MIMIC model

Additional estimation steps:

@ Store the CFA results: mat hs_cfa = e (b)

® Define the explanatory variables for functioning:
eq rl: female bmi highbp age splines

® Extend the earlier command:

gllamm ..., geq(rl) from( hs_cfa, skip )

Parameter “complexity”:
© fixed effects
® loadings
® latent regression slopes
@ latent (co)variances

Show results in Stata: est use mimic_bmi;
show the diagram again.

gllamm;
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NHANES example via gmm

Full model:

1 latent variable = 1 variance
17 indicators = 17 loadings, 17 variances

e 7 explanatory variables = 7 - 8/2 covariances, 7

regression coefficients

e Total: 70 parameters, 300 moment conditions

Trimmed model:

1 latent variable = 1 variance
5 indicators = 5 loadings, 5 variances

4 explanatory variables = 4 - 5/2 covariances, 4
regression coefficients

Total: 25 parameters, 45 moment conditions
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NHANES example: syntax and
results

Show syntax: nhanes-def-sem-reduced.do,
nhanes—-gmm-est-reduced.do

Show results:
foreach eres in r_uls_homosked
ruls_heterosked r.dwls_ 2step_heterosked
reffls 2step_heterosked
reffls_igmm heterosked {

est use ‘eres’

gmm

est store ‘eres’

}

estimates table, se stats (J)
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@ Ecology example

Ecology example: observed

variables

: observed variables
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example:
observed
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SEM in ecology

Truly continuous variables, rather than Likert scales
Observed and/or composite variables

Small sample sizes (you’re lucky if you have a few
dozen)

Methodology is at early stages of adoption

Existing textbooks: Shipley (2000), Pugesek, Tomer &
von Eye (2002)
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example:
observed
variables

Richness
of colonist
pool (# species)

I

Richness vs. productivity

—

Richness of
local competitors
(# species on agar)

Nutrient
supply
rate (log N)

A

Standing
biomass
(chlorophile)

Gross
primary
production

A

A

Cardinale, Bennett, Nelson & Gross (2009)
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First step: regress

regress ///
dependent var ///
its predictors from the path diagram
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ivregress 2sls ///
dependent var ///
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certtaton from the path diagram ///
(its sl endogenous predictors = ///
variables before them ///
in the path model)
estat overid
Ecology
example:
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Systemwide estimation: reg3

reg3 ///
(depvarl explvarsl) ///
(depvar2 explvars2) ///

Stata figures out the instrumental variables as all

exogenous variables.
It will also implicitly correlate the errors to improve efficiency.
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Systemwide estimation: gmm

gmm ///
(explicit equation for first regression) ///
(explicit equation for first regression) ///
/17
, winitial (id) wmatrix (robust) [igmm] ///
instruments (1: instruments for first regression)

/17

estat overid
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observed
variables

Mediation, direct and indirect
effects

Is the effect of N on production mediated by biomass?
Direct effect: regression coefficient

Indirect effect: influence of N propagates through its
effects on richness of local competition and biomass

Algebraic expressions available, so this is the job for
nlcom
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