Stas Kolenikov U of Missouri

Introduction

Structura equation

Formulation

Path diagram:

-

Estimation

SEM

sem

confa

NHANES

daily

example: observed

Poforonoos

Structural Equation Modeling Using gllamm, confa and gmm

Stas Kolenikov

Department of Statistics University of Missouri-Columbia The World Bank, Washington, DC

Joint work with Kenneth Bollen (UNC)

July 1, 2011

Stas Kolenikov U of Missouri

Introduction

Structura equation

Formulation

Path diagram Identification

Communication

SEM

gllamm confa gmm

NHANES daily functioning

Ecology example: observed

References

Goals of the talk

- Introduce structural equation models
- 2 Describe Stata packages to fit them:
 - confa: a 13mm hex wrench
 - gllamm: a Swiss-army tomahawk
 - gmm: do-it-yourself kit
 - sem: the promised land?
- 3 Example 1: daily functioning in NHANES
- 4 Example 2: experimental ecology data set

Stas Kolenikov U of Missouri

ntroduction

Structural equation models

Poth diagram

Path diagra

Estimation

Stata tools

sem gllamm confa

gmm

daily

Ecology example

variables

References

First, some theory

- 1 Introduction
- 1 Structural equation models
 Formulation
 Path diagrams
 Identification
 Estimation
- 2 Stata tools for SEM

sem

gllamm

confa

gmm

- 3 NHANES daily functioning
- 4 Ecology example: observed variables
- 5 References

Stas Kolenikov U of Missouri

ntroduction

Structural equation models

Path diagram

Stata tools

sem gllamm confa gmm

NHANES daily functioning

Ecology example: observed variables

References

Structural equation modeling (SEM)

- Standard multivariate technique in social sciences
- Incorporates constructs that cannot be directly observed:
 - psychology: level of stress
 - sociology: quality of democratic institutions
 - biology: genotype and environment
 - health: difficulty in personal functioning
- · Special cases:
 - linear regression
 - confirmatory factor analysis
 - simultaneous equations
 - errors-in-variables and instrumental variables regression

Stas Kolenikov U of Missouri

ntroduction

Structural equation models

Formulation

Path diagrar

Estimation

Stata tools fo

SEM

gllamm

NHANES daily

Ecology example: observed

References

Origins of SEM

Path analysis of Sewall Wright (1918)

(<

Causal modeling of Hubert Blalock (1961)

 \otimes

Factor analysis estimation of Karl Jöreskog (1969)

8

Econometric simultaneous equations of Arthur Goldberger (1972)

Stas Kolenikov U of Missouri

ntroduction

Structura equation models

Formulation Path diagrams

Path diagrams Identification Estimation

Stata tools for

sem gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

Structural equations model

Latent variables:

$$\eta = \alpha_{\eta} + B\eta + \Gamma\xi + \zeta \tag{1}$$

Measurement model for observed variables:

$$y = \alpha_{y} + \Lambda_{y} \eta + \varepsilon \tag{2}$$

$$x = \alpha_x + \Lambda_x \xi + \delta \tag{3}$$

 $\xi, \zeta, \varepsilon, \delta$ are uncorrelated with one another

Jöreskog (1973), Bollen (1989), Yuan & Bentler (2007)

Other re-expressions: Bentler & Weeks (1980), McArdle & McDonald (1984).

Stas Kolenikov U of Missouri

ntroductio

Structura equation models

Formulation

Identification

Estimation

sem gllamm

gllamm confa gmm

daily functioning

Ecology example: observed variables

References

Implied moments

Denoting

$$\mathbb{V}[\boldsymbol{\xi}] = \Phi, \quad \mathbb{V}[\boldsymbol{\zeta}] = \Psi, \quad \mathbb{V}[\boldsymbol{\varepsilon}] = \Theta_{\varepsilon}, \quad \mathbb{V}[\boldsymbol{\delta}] = \Theta_{\delta},$$
$$R = \mathbf{\Lambda}_{y}(I - B)^{-1}, \quad z = \begin{pmatrix} x \\ y \end{pmatrix}$$

obtain

$$\mu(\boldsymbol{\theta}) \equiv \mathbb{E}[z] = \begin{pmatrix} \alpha_y + \Lambda_y R \boldsymbol{\mu}_{\xi} \\ \alpha_x + \Lambda_x \boldsymbol{\mu}_{\xi} \end{pmatrix}$$
(4)

$$\Sigma(\boldsymbol{\theta}) \equiv \mathbb{V}[z] = \begin{pmatrix} \boldsymbol{\Lambda}_x \Phi \boldsymbol{\Lambda}_x' + \Theta_{\delta} & \boldsymbol{\Lambda}_x \Phi \Gamma' R' \\ R \Gamma \Phi \boldsymbol{\Lambda}_x' & R(\Gamma \Phi \Gamma' + \Psi) R' + \Theta_{\varepsilon} \end{pmatrix} \quad (5)$$

Stas Kolenikov U of Missouri

ntroduction

Structura

Formulation

Path diagrams Identification

Estimation

Stata tools to

sem gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

Path diagrams

Stas Kolenikov U of Missouri

ntroduction

Structura

Formulation

Path diagran

Identification

Estimation

Stata tools for

SEM

sem gllamm confa

NHANES daily

Ecology example observed

References

Identification

Before proceeding to estimation, the researcher needs to verify that the SEM is *identified*:

$$\Pr\{X : f(X, \theta) = f(X, \theta') \Rightarrow \theta = \theta'\} = 1$$

Different parameter values should give rise to different likelihoods/objective functions, either globally, or locally in a neighborhood of a point in a parameter space.

Estimation

01-1-1-1-6

SEM

sem gllamm confa gmm

NHANES daily functioning

Ecology example: observed variables

References

Likelihood

 Normal data ⇒ likelihood is the function of sufficient statistic (z̄, S):

$$-2\log L(\theta, Y, X) \sim n \ln \det(\Sigma(\theta)) + n \operatorname{tr}[\Sigma^{-1}(\theta)S] + n(\bar{z} - \mu(\theta))' \Sigma^{-1}(\theta)(\bar{z} - \mu(\theta)) \to \min_{\theta}$$
 (6)

 Generalized latent variable approach for mixed response (normal, binomial, Poisson, ordinal, within the same model):

$$-2\log L(\theta, Y, X) \sim \sum_{i=1}^{n} \ln \int f(y_i, x_i | \xi, \zeta; \theta) dF(\xi, \zeta | \theta)$$
 (7)

Bartholomew & Knott (1999), Skrondal & Rabe-Hesketh (2004)

Stas Kolenikov U of Missouri

ntroduction

Structura

models

Path diagram

Estimation

Estimation

Stata tools SEM

sem gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

Estimation methods

- Normal theory MLE
- Weighted least squares:

$$s = \operatorname{vech} S, \quad \sigma(\theta) = \operatorname{vech} \Sigma(\theta)$$

$$F = (s - \sigma(\theta))' V_n(s - \sigma(\theta)) \to \min_{\theta}$$
(8)

where V_n is weighting matrix:

- Optimal $\hat{V}_n^{(1)} = \hat{\mathbb{V}}[s \sigma(\theta)]$ (Browne 1984)
- Simplistic: least squares $V_n^{(2)} = I$
- Diagonally weighted least squares: $\hat{V}_n^{(3)} = \operatorname{diag} \hat{\mathbb{V}}[s-\sigma]$
- Model-implied instrumental variables limited information estimator (Bollen 1996)
- Bounded influence/outlier-robust methods (Yuan, Bentler & Chan 2004, Moustaki & Victoria-Feser 2006)
- Empirical likelihood

Stas Kolenikov U of Missouri

troduction

Structura equation models

Formulation
Path diagram
Identification
Estimation

SEM sem

gllamm confa gmm

daily functioning

Ecology example: observed variables

References

Goodness of fit

- The estimated model $\Sigma(\hat{\theta})$ is often related to the "saturated" model $\Sigma \equiv S$ and/or independence model $\Sigma_0 = \operatorname{diag} S$
- Likelihood formulation \Rightarrow LRT test, asymptotically χ_k^2
- Non-normal data: LRT statistic $\sim \sum_j w_j \chi_1^2$, can be Satterthwaite-adjusted towards the mean and variance of the appropriate χ_k^2 (Satorra & Bentler 1994, Yuan & Bentler 1997)
- Analogies with regression R² attempted, about three dozen fit indices available (Marsh, Balla & Hau 1996)
- Reliability of indicators: R² in regression of an indicator on its latent variable
- Signs and magnitudes of coefficient estimates

Stas Kolenikov U of Missouri

ntroduction

Structur

Formulatio

Path diagrams

Tation et a

Stata tools for

SEM

gllam

gmm

NHANES daily

Ecology

observed variables

References

Now, some tools

- 1 Introduction
- 1 Structural equation models
 Formulation
 Path diagrams
 Identification
 Estimation
- 2 Stata tools for SEM

sem

gllamm

confa

gmm

- 3 NHANES daily functioning
- 4 Ecology example: observed variables
- 5 References

ntroductio

Structura equation

Formulation Path diagrams

Identification

Estimatio

Stata tools to

sem gllamm

confa

NHANES daily

Ecology example observed

References

sem?

As announced earlier this week, Stata 12 will be released on 25 July 2011 and will have a full-fledge sem estimation routine.

Formulation
Path diagrams

Estimation

Stata tools to

sem gllamm

NHANES

daily functioning

Ecology example: observed variables

References

sem

atroduction

Structura equation

Formulation Path diagrams

Identification Estimation

Stata tools to

sem gllamm confa

NHANES daily

functioning

example: observed variables

References

Formulation
Path diagrams
Identification
Estimation

Stata tools fo SEM

sem
gllamm
confa
gmm

NHANES daily functioning

Ecology example: observed variables

References

gllamm

Generalized Linear Latent And Mixed Models (Skrondal & Rabe-Hesketh 2004, Rabe-Hesketh, Skrondal & Pickles 2005, Rabe-Hesketh & Skrondal 2008)

- Exploits commonalities between latent and mixed models
- Adds GLM-like links and family functions to them
- Allows heterogeneous response (different exponential family members)
- Allows multiple levels
- Maximum likelihood via numeric integration of random effects and latent variables (Gauss-Newton quadrature, adaptive quadrature); hence one of the most computationally demanding packages ever

Formulation
Path diagram
Identification

Stata tools fo

sem
gllamm
confa

NHANES daily

Ecology example: observed variables

References

gllamm

- One line of data per dependent variable × unit
- Requires reshape long transformation of indicators for latent variable models
- Measurement model: eq () option
- Structural model: geq() bmatrix() options
- Families and links: family() fv() link() lv()
- Tricks that Stas commonly uses:
 - make sure the model is correctly specified: trace noest options
 - good starting values speed up convergence: from() option
 - number of integration points gives tradeoff between speed and accuracy: nip() option
 - get an idea about the speed: dot option

Stas Kolenikov U of Missouri

ntroduction

Structura equation models

Path diagrams Identification Estimation

Stata tools to

gllamm confa gmm

NHANES daily functioning

Ecology example: observed variables

References

confa package

- CONfirmatory Factor Analysis models, a specific class of SEM
- Maximum likelihood estimation
- Arbitrary # of factors and indicators; correlated measurement errors
- Variety of standard errors (OIM, sandwich, distributionally robust)
- Variety of fit tests (LRT, various scaled tests)
- Post-estimation:
 - · fit indices;
 - factor scores (predictions)
 - Bollen & Stine (1992) bootstrap

ntroduction

Structura equation

Formulation Path diagram

Identification Estimation

Stata tools SEM

gllamm

gmm

NHANES daily functioning

Ecology example: observed variables

References

Estimation command gmm introduced in Stata 11:

Estimation by minimization of

$$g(X,\theta)' V_n g(X,\theta) \to \min_{\theta}$$

- Evaluator vs. "regression+instruments"
- Variety of weight matrices V_n
- Asy efficient estimator: $V_n = \widehat{\mathbb{V}}g(X, \hat{\theta})$
- Homoskedastic/unadjusted, heteroskedastic/robust, cluster'ed and HAC-consistent standard errors
- Overidentification (goodness of fit) J-test via estat overid

Stas Kolenikov U of Missouri

ntroduction

Structura

Formulation Path diagrai

Identification Estimation

Stata tools for SEM

sem gllamm confa

gmm

NHANES daily functioning

Ecology example observed variables

References

One possible set up for SEM

- 2 Form observation-by-observation contributions to the moment conditions

$$g(X, \theta) = \operatorname{vech}[(x_i - \bar{x})(x_i - \bar{x})' - \Sigma(\theta)]$$

3 Feed into gmm using moment evaluator function

Some of these steps were simplified by the author's sem4gmm which will be obsolete in Stata 12.

Stas Kolenikov U of Missouri

ntroduction

Structural equation

Formulation
Path diagran
Identification

Stata tools for

gllamm confa

gmm

NHANES daily functioning

Ecology example: observed variables

References

Another possible set up for SEM

- Rather than relying on covariance representation of SEM, one can use regression representation instead
- Latent variables are measured with error ⇒ need to use the techniques to account for that
- Observed indicators of latent variables are endogenous variables in the model

Stas Kolenikov U of Missouri

ntroduction

Structura equation

Formulation
Path diagrams
Identification

SEM

gllamm

NHANES

daily functioning

Ecology example: observed variables

References

Account for endogeneity by instrumental variables

- Econometric technique of instrumental variables adapted to SEM by Bollen (1996)
- An instrumental variable:
 - · correlated with regressors
 - not correlated with the error term
- Single equation: ivregress
- Simultaneous equations: all earlier determined variables can serve as instruments
- Full structural equation model: tracing rules Bollen & Bauer (2004)
- Can be implemented using the "interactive" version of gmm
- Tests of model specification: by equation and for the system as a whole

Stas Kolenikov U of Missouri

troduction

Structural equation models

Formulation Path diagrams

Identification

Estimatio

SEM

gllamm confa

gmm

NHANES daily functioning

Ecology example observed variables

References

Comparison of functionality

	gllamm	confa	$\operatorname{gmm} + \Sigma(\theta)$	gmm + IV
General SEM		_		
Estimation		$\sqrt{}$	$\sqrt{}$	
Overall test	<u> </u>		$\sqrt{}$	$\sqrt{}$
Fit indices	<u> </u>		_	_
Prediction			_	_
Ease of use	_		_	
Speed	_		_	$\sqrt{}$

Stas Kolenikov U of Missouri

ntroduction

Structura

Formulation

Path diagrams

Identificati

Stata tools

SEM

gllamm

NHANES daily functioning

Ecology example: observed variables

References

Finally, examples

- 1 Introduction
- 1 Structural equation models
 Formulation
 Path diagrams
 Identification
 Estimation
- 2 Stata tools for SEM

sem gllar

confa

gmm

- 3 NHANES daily functioning
- 4 Ecology example: observed variables
- 5 References

Stas Kolenikov U of Missouri

troduction

Structura equation models Formulation

Path diagrams Identification Estimation

Stata tools SEM

gllamm confa gmm

NHANES daily functioning

Ecology example: observed variables

References

NHANES data

- NHANES 2007–08 data
- Personal functioning section: "difficulty you may have doing certain activities because of a health problem"
- 17 questions: Walking for a quarter mile; Walking up ten steps; Stooping, crouching, kneeling; Lifting or carrying; House chore; Preparing meals; Walking between rooms on same floor; Standing up from armless chair; Getting in and out of bed; Dressing yourself; Standing for long periods; Sitting for long periods; Reaching up over head; Grasp/holding small objects; Going out to movies, events; Attending social event; Leisure activity at home
- Response categories: "No difficulty", "Some difficulty", "Much difficulty", "Unable to do"
- Research questions: How to summarize these items? What's the relation between individual demographics and health?

Stas Kolenikov U of Missouri

ntroduction

Structura equation

Formula

Path diagrams Identification

Stata tools fo

gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

Path diagram Age splines Gender High BP BMI 0.374 0.032 $\chi^2(4)=113.1$ (0.957) 1.414 0.605 Personal Grasp/holding House chores functioning small objects 1.346 0.833 δ5 Standing for 0.888 δ14 Walking between 1.580 long period rooms on same floor

A multiple indicators and multiple causes (MIMIC) model

Walking 1/4 mile

Dressing oneself

δ10

δ13

Going out to

movies, events

815

δ11

Stas Kolenikov U of Missouri

ntroduction

Structural

Formulation

Path diagram Identification Estimation

Stata tools to SEM

sem gllamm confa gmm

NHANES daily functioning

Ecology example observed variables

References

NHANES example using confa

Only the measurement model can be estimated with confa, as a preliminary step in gauging the performance of this part of the model.

```
. confa (difficulty: pfq*), from(iv)
```

- . confa (difficulty: pfq*), from(iv)
- > missing

Show results: estimates use cfa; cfa_miss_fromcfa; cfa_miss_fromiv

Stas Kolenikov U of Missouri

ntroduction

Structural equation models

Formulation Path diagram Identification

Estimation

tata tools for FM

sem gllamm confa gmm

NHANES daily functioning

Ecology example: observed variables

References

Factor scores

ntroduction

Structural equation

Path diagrams Identification

Stata tools for

sem gllamm confa gmm

NHANES daily functioning

Ecology example: observed variables

References

NHANES example via gllamm

Data management steps for gllamm:

- 1 Rename pfq061b→pfq1, pfq061c→pfq2, ...pfq061s→pfq17
- 2 reshape long pfq, i(seqn) j(item)
- 4 Produce binary outcome measures: bpfq'k' = !("No difficulty") of pfq'k'

Model setup steps:

- ① Define loading equations:
 - eq items: q1 q2 ...q17
- 2 Come up with good starting values

```
SEM
```

ntroduction

Structura equation

Formulation Path diagram

Identifica Estimation

Stata tools t

sem gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

NHANES example via gllamm

Syntax of gllamm command:

```
///
gllamm
                    ///
                         single dependent variable
bpfa
q1 - q17, nocons ///
                         item-specific intercepts
                   /// "common factor"
i(seqn)
f(bin) l(probit) ///
                         link and family
eq(items)
                   ///
                         loadings equation
from(...) copy
                         starting values
```

The "common factor" is a latent variable that is constant across the i () panel, but can be modified with loadings

Show results in Stata: est use cfa_via_gllamm; gllamm

```
SEM
```

Introduction

Structura equation

Formulation Path diagran

Stata tools for

sem gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

MIMIC model

Additional estimation steps:

- 1 Store the CFA results: mat hs_cfa = e(b)
- 2 Define the explanatory variables for functioning:
 eq r1: female bmi highbp age splines
- 3 Extend the earlier command:

```
gllamm ..., geq(r1) from( hs_cfa, skip )
```

Parameter "complexity":

- fixed effects
- 2 loadings
- 3 latent regression slopes
- 4 latent (co)variances

Show results in Stata: est use mimic_bmi; gllamm; show the diagram again.

Stas Kolenikov U of Missouri

ntroduction

Structura

Formulation Path diagram Identification

Stata tools for

sem gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

NHANES example via gmm

Full model:

- 1 latent variable ⇒ 1 variance
- 17 indicators ⇒ 17 loadings, 17 variances
- 7 explanatory variables ⇒ 7 · 8/2 covariances, 7 regression coefficients
- Total: 70 parameters, 300 moment conditions

Trimmed model:

- 1 latent variable ⇒ 1 variance
- 5 indicators ⇒ 5 loadings, 5 variances
- 4 explanatory variables ⇒ 4 · 5/2 covariances, 4 regression coefficients
- Total: 25 parameters, 45 moment conditions

```
SEM
```

troduction

Structura

Formulation Path diagrams

Identifica Estimation

State toole f

SEM

gllamm

NHANES daily functioning

Ecology example: observed variables

References

NHANES example: syntax and results

Show syntax: nhanes-def-sem-reduced.do, nhanes-gmm-est-reduced.do

Show results:

```
foreach eres in r_uls_homosked
r_uls_heterosked r_dwls_2step_heterosked
r_effls_2step_heterosked
r_effls_igmm_heterosked {
   est use 'eres'
   gmm
   est store 'eres'
}
estimates table, se stats(J)
```

Stas Kolenikov U of Missouri

ntroduction

Structur

Formulation

Path diagran

Estimation

Estimation
Chata to ale

sem gllamm

confa

NHANES daily

Ecology example: observed variables

References

Ecology example: observed variables

- Introduction
- 1 Structural equation models
 Formulation
 Path diagrams
 Identification
 Estimation
- 2 Stata tools for SEM

sem
gllamm
confa

- 3 NHANES daily functioning
- 4 Ecology example: observed variables
- 6 References

Stas Kolenikov U of Missouri

ntroduction

Structura equation models

Formulation Path diagram Identification

Stata tools for

sem gllamm confa gmm

NHANES daily functioning

Ecology example: observed variables

References

SEM in ecology

- Truly continuous variables, rather than Likert scales
- Observed and/or composite variables
- Small sample sizes (you're lucky if you have a few dozen)
- Methodology is at early stages of adoption
- Existing textbooks: Shipley (2000), Pugesek, Tomer & von Eye (2002)

Stas Kolenikov U of Missouri

atroduction

Structura

Eormula

Path diagrams

Estimation

Stata tools f

sem gllamm confa

NHANES

daily

Ecology example: observed variables

References

Richness vs. productivity

Cardinale, Bennett, Nelson & Gross (2009)

Stas Kolenikov U of Missouri

ntroduction

Structura equation

Formulation

Path diagrams

Identification

Estimation

Stata tools for

sem

confa

NHANE

daily functioning

Ecology example: observed variables

References

First step: regress

```
regress ///
  dependent var ///
  its predictors from the path diagram
```

Stas Kolenikov U of Missouri

troduction

Structura

Formulation Path diagrams

Path diagram

Estimation

Stata tool

sem gllamm

confa gmm

NHANES daily functioning

Ecology example: observed variables

References

Account for endogeneity: ivregress

```
ivregress 2sls ///
  dependent var ///
  its exogenous predictors ///
    from the path diagram ///
  (its sl endogenous predictors = ///
    variables before them ///
    in the path model)
```

```
SEM
```

Stas Kolenikov U of Missouri

ntroduction

Structura

Formulation

Path diagran

Estimation

Stata tools fo

sem gllamm confa

NHANES daily

Ecology example: observed variables

References

Systemwide estimation: reg3

```
reg3 ///
  (depvar1 explvars1) ///
  (depvar2 explvars2) ///
```

Stata figures out the instrumental variables as all exogenous variables.

It will also implicitly correlate the errors to improve efficiency.

```
SEM
```

Stas Kolenikov U of Missouri

Introduction

Structura equation

Formulation

Path diagran

Estimatio

Stata tools fo

sem gllamm confa

NHANES

daily functioning

Ecology example: observed variables

References

Systemwide estimation: gmm

```
gmm ///
  (explicit equation for first regression) ///
    (explicit equation for first regression) ///
    ... ///
    , winitial(id) wmatrix(robust) [igmm] ///
    instruments(1: instruments for first regression)
///
    ...
estat overid
```

Stas Kolenikov U of Missouri

ntroduction

Structura equation

Formulation
Path diagram

Estimation
State tools for

SEM

gllamm confa gmm

NHANES daily functioning

Ecology example: observed variables

References

Mediation, direct and indirect effects

- Is the effect of N on production mediated by biomass?
- Direct effect: regression coefficient
- Indirect effect: influence of N propagates through its effects on richness of local competition and biomass
- Algebraic expressions available, so this is the job for nlcom

Stas Kolenikov U of Missouri

ntroduction

Structura

models

Path diagran

Identification

Stata tools for

sem gllamm

gmm NHANES

daily functioning

Ecology example: observed variables

References

What I covered was...

- Introduction
- 1 Structural equation models
 Formulation
 Path diagrams
 Identification
- Estimation

 2 Stata tools for SEM

sem gllamm

confa

gmm

- 3 NHANES daily functioning
- 4 Ecology example: observed variables
 - 6 References

Stas Kolenikov U of Missouri

ntroduction

Structura equation models

Formulation
Path diagram
Identification
Estimation

Stata tools for SEM

sem gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

References I

- Bartholomew, D. J. & Knott, M. (1999), Latent Variable Models and Factor Analysis, Vol. 7 of Kendall's Library of Statistics, 2nd edn, Arnold Publishers, London.
- Bentler, P. M. & Weeks, D. G. (1980), 'Linear structural equations with latent variables', *Psychometrika* **45**, 289–308.
- Billock, H. M. (1961), 'Correlation and causality: The multivariate case', Social Forces **39**(3), 246–251.
- Bollen, K. A. (1989), Structural Equations with Latent Variables, Wiley, New York.
- Bollen, K. A. (1996), 'An alternative two stage least squares (2SLS) estimator for latent variable models', *Psychometrika* **61**(1), 109–121.
- Bollen, K. A. & Bauer, D. J. (2004), 'Automating the selection of model-implied instrumental variables', *Sociological Methods Research* **32**(4), 425–452.

Stas Kolenikov U of Missouri

ntroduction

Structura equation models

Path diagrams Identification Estimation

Stata tools for SEM

gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

References II

- Billen, K. A. & Stine, R. (1992), 'Bootstrapping goodness of fit measures in structural equation models', *Sociological Methods and Research* **21**, 205–229.
- when, M. W. (1984), 'Asymptotically distribution-free methods for the analysis of the covariance structures', *British Journal of Mathematical and Statistical Psychology* **37**, 62–83.
- Pardinale, B. J., Bennett, D. M., Nelson, C. E. & Gross, K. (2009), 'Does productivity drive diversity or vice versa? a test of the multivariate productivity-diversity hypothesis in streams', *Ecology* 90(5), 1227–1241.
- Gildberger, A. S. (1972), 'Structural equation methods in the social sciences', *Econometrica* **40**(6), 979–1001.
- Jöreskog, K. G. (1969), 'A general approach to confirmatory maximum likelihood factor analysis', *Psychometrika* **34**(2), 183–202.

Stas Kolenikov U of Missouri

troduction

Structura equation models

Path diagrams
Identification
Estimation

SEM

gllamr confa gmm

NHANES daily functioning

Ecology example: observed variables

References

References III

- structural equation system, *in* A. S. Goldberger & O. D. Duncan, eds, 'Structural Equation Models in the Social Sciences', Academic Press, New York, pp. 85–112.
- Marsh, H. W., Balla, J. R. & Hau, K.-T. (1996), An evaluation of incremental fit indices: A clarification of mathematical and empirical properties, *in* G. Marcoulides & R. Schumaker, eds, 'Advanced Structural Equation Modeling Techniques', Erlbaum, Mahwah, NJ, pp. 315–353.
- Mardle, J. J. & McDonald, R. P. (1984), 'Some algebraic properties of the reticular action model for moment structures.', *The British Journal of Mathematical and Statistical Psychology* **37**, 234–251.
- wustaki, I. & Victoria-Feser, M.-P. (2006), 'Bounded-influence robust estimation in generalized linear latent variable models', *Journal of the American Statistical Association* **101**(474), 644–653.

Stas Kolenikov U of Missouri

troduction

Structura equation models

Path diagrams Identification Estimation

Stata tools for SEM

gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

References IV

- Pugesek, B. H., Tomer, A. & von Eye, A., eds (2002), Structural Equation Modeling: Applications in Ecological and Evolutionary Biology, Cambridge University Press.
- models for medical research', *Statistical Methods in Medical Research* **17**(1), 5–32.
- be-Hesketh, S., Skrondal, A. & Pickles, A. (2005), 'Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects', *Journal of Econometrics* **128**(2), 301–323.
- standard errors in covariance structure analysis, *in* A. von Eye & C. C. Clogg, eds, 'Latent Variable Analysis', Sage, Thousands Oaks, CA, chapter 16, pp. 399–419.
- path analysis, structural equations and causal inference, Cambridge Unversity Press, Cambridge, UK.

Stas Kolenikov U of Missouri

ntroduction

Structural equation models

Path diagrams Identification Estimation

SEM

gllamm confa

NHANES daily functioning

Ecology example: observed variables

References

References V

- Frondal, A. & Rabe-Hesketh, S. (2004), *Generalized Latent Variable Modeling*, Chapman and Hall/CRC, Boca Raton, Florida.
- Wight, S. (1918), 'On the nature of size factors', Genetics 3, 367–374.
- with heavy tailed distributions', *Psychometrika* **69**(3), 421–436.
- man, K.-H. & Bentler, P. M. (1997), 'Mean and covariance structure analysis: Theoretical and practical improvements', *Journal of the American Statistical Association* **92**(438), 767–774.
- Man, K.-H. & Bentler, P. M. (2007), Structural equation modeling, in C. Rao & S. Sinharay, eds, 'Handbook of Statistics: Psychometrics', Vol. 26 of *Handbook of Statistics*, Elsevier, chapter 10.