Implementation of a multinomial logit model with fixed effects

Klaus Pforr
Mannheim Centre for European Social Research (MZES)
University of Mannheim
klaus.pforr@mzes.uni-mannheim.de
July 1, 2011,
Ninth German Stata Users Group Meeting, Bamberg

Outline

Motivation

Statistical model

Implementation

First applications

Outlook

Motivation

Why mlogit?

- Fixed effect models available for continuous, binary and count data dependent variables.
- Polytomous categorical dependent variables commonly used in all fields of social sciences.

Why fixed effects?
Counter omitted variable bias!

- With fixed effects models no assumptions about α_{i} necessary.
- Random effects and pooled models basically assume no correlation of α_{i} and $X_{i t}$.

Statistical model

mlogit across time with unobserved heterogeneity

$$
\begin{aligned}
\operatorname{Pr}\left(y_{i t}=j\right) & =\frac{\exp \left(\alpha_{i j}+X_{i t} \beta_{j}^{\prime}\right)}{1+\sum_{k=1, k \neq B}^{J} \exp \left(\alpha_{i j}+X_{i t} \beta_{k}^{\prime}\right)} \quad \text { for } j \neq \text { base outcome } B \\
\operatorname{Pr}\left(y_{i t}=B\right) & =\frac{1}{1+\sum_{k=1, k \neq B}^{J} \exp \left(\alpha_{i j}+X_{i t} \beta_{k}^{\prime}\right)}
\end{aligned}
$$

Solution by Chamberlain(1980)

- $\sum_{t=1}^{T_{i}} y_{i t j}$ is sufficient statistic for $\alpha_{i j}$
- Cond. probability model: Prob. of sequence $y_{i 1}, \ldots, y_{i T_{i}}$ cond. of "overall tendency" to each outcome $j \neq B$.
- α_{i} disappeares!
$\operatorname{Pr}\left(y_{i} \mid \bigwedge_{j \neq B} \sum_{t=1}^{T_{i}} y_{i t j}\right)=\frac{\prod_{t=1}^{T_{i}} \prod_{j=1, j \neq B}^{J} \exp \left(X_{i t} \beta_{j}^{\prime}\right)^{y_{i t j}}}{\left.\sum_{d_{i} \in \Delta_{i}}\left(\Pi_{t=1}^{T_{i}} \prod_{j=1, j \neq B}^{J} \exp \left(X_{i t} \beta_{j}^{\prime}\right)^{d_{i j}}\right)\right)}$
with
$\Delta_{i}=\left\{\left(d_{i 1}, \ldots, d_{i T_{i}}\right)^{\prime} \mid \forall j=1, \ldots, J, j \neq B: \sum_{t=1}^{T_{i}} d_{i t j}=k_{i j}\right\}$.

Statistical model (cont.)

Δ_{i} is the set of all permutations of y_{i}.
Example: Let $y_{i}=(1,2,3)$.

$$
\Delta_{i}=\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\} .
$$

Estimation with maximum-likelihood
The log. likelihood function:

$$
\ln L=\sum_{i}\left(\sum_{j \neq B} \sum_{t} y_{i t j} X_{i t} \beta_{j}^{\prime}-\ln \sum_{\Delta_{i}} \exp \sum_{j \neq B} \sum_{t} d_{i t j} X_{i t} \beta_{j}^{\prime}\right)
$$

Implementation: General layout

Top-level ado

- Syntax
- Further preparation

Actual estimation with maximum likelihood

- Iteration management \& display of results via Stata ml
- Log likelihood, gradient, Hessian with Mata evaluator function

Implementation: Top-level ado

"Outer shell"

- Standard parsing with syntax: varlist, group id, optional base outcome
- Missings: Standard listwise deletion via markout
- Collinear Variables: Copied \& adjusted _rmcoll from mlogit
- Matsize check: Copied \& adjusted from clogit
- Editing of equations for ml: Copied \& adjusted from mlogit
- Offending observations/groups, i.e. checks variance in dep. \& indep. var's; copied \& adjusted from clogit
- Init. values: inspired by clogit
- Remaining preparation for mata function:
- Globals for group id var., indep. var's for ml evaluator function
- Matrix out2eq: Mapping from outcome indices to outcomes values and equation indices.

Implementation: Maximum likelihood

"Interface": Stata ml
Putting equations in Stata's ml terminology

- Panel structure \Rightarrow no likelihood defined at observation level \Rightarrow d-family method
- Computation speed and accurary $\Rightarrow \mathrm{d} 2$ method, i.e. In L, g, H have to be analytically derived
- J-1 equations, i.e.
$\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{J-1}\right)=\left(y_{1}, \ldots, y_{B-1}, y_{B+1}, \ldots, y_{J}\right)$
- J-1 parameters $\theta_{j}=X_{i t} \beta_{j}^{\prime}$; not used, direct use of $(J-1) \times M$ coefficients $\beta_{j m}$

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute $\ln L, g, H$ with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute $\ln L, g, H$ with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:

1. Declare variables.

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
2. Get data, etc. from Stata.

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
3. Derive N, T, J.

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
4. Loop over i using panelsetup

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
5. Compute $A=\sum_{j \neq B} \sum_{t} y_{i t j} X_{i t} \beta_{j}^{\prime}$

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
6. At gradient-step (if (todo>0)), compute $C_{(j, m)}=\sum_{t} y_{i t j} x_{i t m}$

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
7. Loop over Δ_{i} (permutations of y_{i}) using cvpermute

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
8. Add up $B=\sum_{\Delta_{i}} \exp \left(\sum_{j \neq B} \sum_{t} d_{i t j} X_{i t} \beta_{j}^{\prime}\right)$

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
9. At gradient-step (if (todo>0)), add up $D_{(j, m)}=\sum_{\Delta_{i}} \sum_{t} d_{i t j} X_{i t m} \exp \left(\sum_{j \neq B} \sum_{t} d_{i t j} X_{i t} \beta_{j}^{\prime}\right)$

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
10. At Hessian-step (if (todo>1)), add up

$$
E_{(j, m)(k, l)}=\sum_{\Delta_{i}} \sum_{t} d_{i t j} x_{i t m} \sum_{t} d_{i t k} x_{i t l} \exp \left(\sum_{j \neq B} \sum_{t} d_{i t j} X_{i t} \beta_{j}^{\prime}\right)
$$

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
11. After loop over Δ_{i}, build panel-wise $\ln L_{i}, g_{i}, H_{i}$

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
12. After loop over i, build sample $\ln L, g, H$

Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

- Compute InL, g, H with current coef. vector

$$
\begin{aligned}
\ln L & =\sum_{i}(A-\ln B) \\
\frac{\partial \ln L}{\partial \beta_{j m}} & =\sum_{i}\left(C_{(j, m)}-\frac{D_{(j, m)}}{B}\right) \quad \text { for } j \neq B \\
\frac{\partial^{2} \ln L}{\partial \beta_{j m} \partial \beta_{k l}} & =\sum_{i}\left(\frac{D_{(j, m)}^{\prime} D_{(k, l)}}{B^{2}}-\frac{E_{(j, m)(k, l)}}{B}\right) \quad \text { for } j, k \neq B
\end{aligned}
$$

Process step-by-step:
And that's it! (with one ml-step)

First applications: How to use it

Syntax
femlogit depvar indepvars, group(varlist) [baseoutcome(\#)]
Data structure

- Long panel-wise, condensed alternative-wise:

i	t	$y_{i t}$	$x_{i t}$
1	1	1	.5
1	2	2	.2
1	3	3	.9
2	1	1	.1
2	2	2	.3
2	3	1	.2

- t not necessary.

Examples: Benchmark clogit

How precise and how fast is it?
Comparison with clogit for $J=2$.

- Data used:
http://www.stata-press.com/data/r11/union.dta
- Relative difference of coefficients: 9.078e-16.
- Speed: clogit: 2.42 sec., femlogit: 101.58 sec..

Examples: Simulated data

Performance with more alternatives
Simulated data

- $N=1000, T=5, J=5$
- Unobs. het. $\alpha_{i j}$: over all i random draw $\left(\alpha_{i 1}, \ldots, \alpha_{i 5}\right)$ from uniform distribution over 4-simplex Δ^{4}.
- Error $\varepsilon_{i t j}$: over all i and t , for each j indep. draws from Gumbel-distribution $\left(\mathrm{E}\left(\varepsilon_{i t j}\right)=\gamma, \operatorname{Var}\left(\varepsilon_{i t j}\right)=\pi / \sqrt{6}\right)$.
- Indep. variable: x correlated with α
- $x_{i t}=u_{i t}+\alpha_{i 2}$,
- $u_{i t}$ drawn from uniform distribution.
- Coefficients $\beta_{2}=2, \beta_{3}=3, \beta_{4}=4, \beta_{5}=5$.

Examples: Simulated data (cont.)

- Utility $U_{i t j}$: for each i and t

$$
\begin{aligned}
& U_{i t 1}=\varepsilon_{i t 1} \\
& U_{i t 2}=10 \alpha_{i 2}+\beta_{2} x_{i t}+\varepsilon_{i t 2} \\
& \quad \vdots \\
& U_{i t 5}=10 \alpha_{i 5}+\beta_{5} x_{i t}+\varepsilon_{i t 5}
\end{aligned}
$$

- Dep. var.: $y_{i t}=j$ with $U_{i t j}=\max _{k}\left(U_{i t k}\right)$

Examples: Simulated data (cont.)

Results

informative observations: $\mathrm{N}=3405$; speed: 20.83 sec .

Outlook

Things to do

- "tomorrow"
- Document and publish
- in near future
- Add standard options (if/in-able, ml-options, etc.)
- Think about special postestimation
- Robust estimates
- in far future
- Intuitive Interpretation
- Nested logit with fixed effects
- Parametric serial correlation
- Implementation of RE-Models \& Hausman-Test

Thank you!

Example 1: clogit

. clogit union age grade not_smsa south black, group(idcode) note: multiple positive outcomes within groups encountered.
note: 2744 groups (14165 obs) dropped because of all positive or all negative outcomes.
note: black omitted because of no within-group variance.

Iteration 0:	\log likelihood $=-4521.3385$
Iteration 1:	\log likelihood $=-4516.1404$
Iteration 2:	log likelihood $=-4516.1385$
Iteration 3:	\log likelihood $=-4516.1385$

Conditional (fixed-effects) logistic regression

Number of obs	$=$	12035
LR chiz(4)	$=$	68.09
Prob > chiz	$=$	0.0000
Pseudo RZ	$=$	0.0075

| union | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | :---: | :---: | :---: | ---: |
| age | .0170301 | .004146 | 4.11 | 0.000 | .0089042 | .0251561 |
| grade | .0853572 | .0418781 | 2.04 | 0.042 | .0032777 | .1674368 |
| not_smsa | .0083678 | .1127963 | 0.07 | 0.941 | -.2127088 | -2294445 |
| south | -.748023 | .1251752 | -5.98 | 0.000 | -.9933619 | -.5026842 |
| black | (omitted) | | | | | |

Example 2: femlogit

- femlogit union age grade not_smsa south black, group(idcode) b(0)
note: 2744 groups (14165 obs) dropped because of all positive or all negative outcomes.
note: black omitted because of no within-group variance.
Iteration 0: $\quad \log$ likelihood $=\mathbf{- 4 5 2 1 . 3 3 8 5}$
Iteration 1: log likelihood $=\mathbf{- 4 5 1 6 . 1 4 0 4}$
Iteration 2: $\quad \log$ likelihood $=\mathbf{- 4 5 1 6 . 1 3 8 5}$
Iteration 3: log likelihood $=\mathbf{- 4 5 1 6 . 1 3 8 5}$

likelihood $=-4516.1385$				Number of obs Wald chiz(4) Prob $>$ chiz		12035
union	Coef.	Std. Err.	z	P> $\|z\|$	[95\%	Interval]
age	. 0170301	. 004146	4.11	0.000	. 0089	. 0251561
grade	. 0853572	. 0418781	2.04	0.042	. 0032	. 1674368
not_smsa	. 0083678	. 1127963	0.07	0.941	-. 21270	. 2294445
south black	$-.748023$ (omitted)	. 1251752	-5.98	0.000	-. 9933	-. 5026842

