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Cluster-robust standard errors

The importance of cluster-robust standard errors
In working with linear regression models, researchers are increasingly
likely to abandon the assumption of i .i .d . errors in favor of a more
realistic error structure. The use of ‘robust’ standard errors has
become nearly ubiquitous in the applied literature.

There are many settings where allowing for heteroskedasticity at the
level of the observation is warranted, but that single deviation from an
i .i .d . structure may not be sufficient to account for the behavior of the
error process.

In the context of time series data and large-T asymptotics, one might
naturally consider HAC standard errors: those robust to both
heteroskedasticity and autocorrelation, familiar to economists as
‘Newey–West’ standard errors.
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Cluster-robust standard errors

In this talk, we will consider how a broader set of assumptions on the
error process may often be warranted, in the contexts of
cross-sectional data of a hierarchical nature or in panel data.

The key concept to be considered is that of the cluster-robust
covariance matrix, or cluster VCE, which relaxes the i .i .d . assumption
of independent errors, allowing for arbitrary correlation between errors
within clusters of observations.

These clusters may represent some hierarchical relationship in a
cross-section, such as firms grouped by industries, or households
grouped by neighborhood. Alternatively, they may be the observations
associated with each unit (or time period) in a panel dataset.
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Cluster-robust standard errors

As discussed in prior talks by Nichols and Schaffer (UKSUG’07) and in
recent work by Cameron and Miller (UC Davis WP, 2010), estimation of
the VCE without controlling for clustering can lead to understated
standard errors and overstated statistical significance. Just as the use
of the classical (i .i .d .) VCE is well known to yield biased estimates of
precision in the absence of the i .i .d . assumptions, ignoring potential
error correlations within groups, or clusters, may lead to erroneous
statistical inference.

The standard approach to clustering generalizes the ‘White’
(robust/sandwich) approach to a VCE estimator robust to arbitrary
heteroskedasticity: in fact, robust standard errors in Stata correspond
to cluster-robust standard errors computed from clusters of size one.
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Cluster-robust standard errors Simple one-way clustering

Simple one-way clustering In simple one-way clustering for a linear
model, we consider that each observation (i = 1, . . . ,N) is a member
of one non-overlapping cluster, g (g = 1, . . . ,G).

yig = x′igβ + uig

The error is assumed to be independent across clusters:

E(uigujg′xig ,xjg′) = 0

for i 6= j unless g = g′.

How might this behavior of the error process arise?
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Cluster-robust standard errors Common shocks

Common shocks The simplest example of within-cluster correlation of
errors arises when the errors are not i .i .d ., but rather contain a
common time-invariant shock component as well as an idiosyncratic
component:

uig = νg + ζig

where νg is a common shock, or cluster-specific error, itself i .i .d ., and
ζig is an i .i .d . idiosyncratic error. This is equivalent to the error
representation in the two-way error components model of panel data,
but may just as well arise in a cross-sectional context.

As in random effects, Var [uig] = σ2
ν + σ2

ζ and Cov [uig ,ujg] = σ2
ν , ∀i 6= j .

Here, g is indexing the panel unit and i is indexing time in the typical
case where these are repeated observations on a single panel.
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Cluster-robust standard errors Common shocks

The intraclass correlation, common to all pairs of errors in a cluster, is

ρu = Corr [uig ,ujg] =
σ2
ν

(σ2
ν + σ2

ζ )

This constant within-cluster correlation is appropriate where
observations within a cluster are exchangeable, in Stata parlance, with
no implicit ordering. Individuals living in a household, families within a
village or firms within an industry might follow this assumption.

If common shocks are the primary cause of error clustering, classical
OLS standard errors are biased downward, and should be inflated by a
factor taking the intraclass correlation into account. The inflation factor
for a particular regressor’s coefficient is also an increasing function of
the within-cluster correlation of the regressor.
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Cluster-robust standard errors Common shocks

It is important to note that the bias in classical OLS standard errors is,
in the general case, a function of both the intraclass correlation of the
errors, ρu, and the intraclass correlation of the regressors, ρx . If either
of the intraclass correlations is zero, OLS standard errors are OK.
Conversely, the bias is worst when the intraclass correlations are high.
Group-invariant regressors are a special case where this can be a big
problem: for example, a dataset on individuals from different regions,
where the local unemployment rate is a regressor.
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Cluster-robust standard errors Common shocks

In fact, if we had a dataset containing a number of clusters, regressors
taking on constant values within those clusters, and errors that are
entirely shared by cluster members, OLS estimation on these data is
equivalent to estimating the model

ȳg = x′gβ + ūg

where ȳ contains within-cluster averages of the dependent variable.
There are really only G observations in the model, rather than N.
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Cluster-robust standard errors Common shocks

If OLS is applied to the individual data, for a constant regressor
within-cluster, the true variance of an estimated coefficient is
(1 + ρu(N∗− 1)) times larger than the classical OLS estimate, where ρu
is the intraclass correlation and N∗ is the number of observations in
each cluster.

This problem has been known in the statistics literature since the
1960s (Kish); it was introduced in the economics literature by Moulton
(REStat, 1990). Moulton demonstrated that in many settings this
adjustment factor, and the consequent overstatement of precision, can
be sizable even when ρu is fairly small. In his example, with N = 18946
and G = 49 (US states), ρ̂u = 0.032: a quite modest intrastate error
correlation. With average group size of 387, the correction factor is
13.3, so that cluster-corrected standard errors are

√
13.3 = 3.7 times

larger for a state-level regressor than those computed by standard OLS
techniques.
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Cluster-robust standard errors Panel/longitudinal data

Panel/longitudinal data The preceding makes use of a simple
specification where the within-cluster error νg is invariant within the
cluster. But this is just an expositional simplification. Panel data error
components estimators such as random or fixed effects or
first-differences is unlikely to be a complete answer to the problem in
many applications. With a within-panel time dimension (multiple
observations on a household), or a within-panel spatial dimension
(multiple counties in a state), the assumption of equi-correlated errors
from the common shocks model is unlikely to be appropriate, as the
strength of unit-specific autocorrelations will depend on their time
difference or spatial difference.

For instance, in the case of AR(1) errors uit = ρui,t−1 + ζit , the
within-cluster error correlation becomes ρ|t−τ | for observations dated t
and τ , respectively. The decline in correlation for longer time spans
implies that taking account of the presence of clustering will have a
smaller effect than in the common shocks model.
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The cluster-robust VCE estimator

The cluster-robust VCE estimator Cluster-robust VCE estimates are
generalizations of the ‘sandwich’ method used to compute
heteroskedasticity-robust standard errors (Stata’s robust option), as
developed by Eicker, Huber, White et al. The relationships between the
different VCEs are perhaps easiest to see if we maintain the panel
data notation of i = 1...N to index panels and t = 1...T to index
observations within a panel, and assume a balanced panel structure.
The cluster-robust estimate uses the sandwich estimator

VCE(β̂) = (X′X)−1Ω̂( X′X)−1

where the filling of the sandwich is

Ω̂ =
1

NT

N∑
i=1

X′iûi û′i Xi =
1

NT

N∑
i=1

(
T∑
t

xit ûit

)(
T∑
t

xit ûit

)′

with ûi ≡ (ûi1 . . . ûiT )′,and Xi ≡ (xi1 . . . xiT )′.
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The cluster-robust VCE estimator

To see where this formula comes from, let’s back up to the unclustered
case, or, alternatively, one observation per cluster i = 1...N. As t = 1
for every observation, we can drop t and the total sample size is N.
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The cluster-robust VCE estimator The classical VCE estimator

Consider the population moments, E(xiui), where ui are the error
terms. The corresponding sample moments are

ḡ(β̂) =
1
N

N∑
i=1

ĝi =
1
N

N∑
i=1

xi ûi

where ûi are the residuals computed from point estimates β̂ and
ĝi ≡ xi ûi .

The VCE of β̂ is, by the sandwich formula,

V = Q−1
xx ΩQ−1

xx

where Ω is the asymptotic variance of
√

Nḡ, i.e., i.e.,√
ngn →d N(0,Ω).
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The cluster-robust VCE estimator Estimating the classical VCE estimator

Estimating Q−1
xx is easy: we simply use the sample analog

Q̂−1
xx ≡ ( 1

N X′X)−1 The key question is, how do we estimate Ω? How we
go about it depends directly on the assumptions we are willing to make.

Ω is the asymptotic variance of
√

Nḡ. Let’s multiply out
√

Ng ∗
√

Ng′:

Ngg′ =
1
N

N∑
i=1

gi

N∑
i=1

g′i

=
1
N

(x1u1...+ xiui + ...+ xNuN) (x1u1...+ xiui + ...+ xNuN)′
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The cluster-robust VCE estimator Estimating the classical VCE estimator

and after collecting terms:

Ngg′ =
1
N

N∑
i=1

xix ′i u
2
i + 2

1
N

N∑
i=1

N∑
j 6=i

xiuix ′j uj

If we make the assumption of independence, the double-sum term
disappears in expectation. And if we assume conditional
homoskedasticity as well, then

Ω = E(gig′i ) = E(xix ′i u
2
i ) = E(xix ′i )E(u2

i ) = Qxxσ
2
u

and the natural estimator is the usual classical estimator of Ω:

Ω̂ = Q̂xxs2

where s2 is a consistent estimate of σ2
u. Plugging this into the

sandwich formula V̂ = Q̂−1
xx Ω̂Q̂−1

xx gives us our V̂ .
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The cluster-robust VCE estimator The robust VCE estimator

Return to
√

Ng ∗
√

Ng′:

Ngg′ =
1
N

N∑
i=1

xix ′i u
2
i + 2

1
N

N∑
i=1

N∑
j 6=i

xiuix ′j uj

Maintain the assumption of independence (so the double-sum still
disappears in expectation) relax the assumption of conditional
homoskedasticity. The natural estimator of Ω for this set of
assumptions is the Eicker–Huber–White ’robust’ estimator

Ω̂ =
1
N

N∑
i=1

xix′i û
2
i

with the VCE estimator as

V̂ = Q̂−1
xx Ω̂Q̂−1

xx

This is the VCE invoked by the robust option in Stata.
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The cluster-robust VCE estimator The cluster-robust VCE estimator

We can now finally return to the cluster-robust estimator.

Consider again Ω, the asymptotic variance of
√

Nḡ, but bring back in
the clustered structure of the data, so that there is more than one
observation per cluster and the time subscripts reappear:
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The cluster-robust VCE estimator The cluster-robust VCE estimator

NTgg′ =
1

NT
(x11u11 . . .+ x1T u1T x1T u1T + . . .+ xituit + ...+ xNT uNT )

× (x11u11 . . .+ x1T u1T x1T u1T + . . .+ xituit + ...+ xNT uNT )′

=
1

NT

(
T∑

t=1

x1tu1t + . . .+
T∑

t=1

xituit + . . .+
T∑

t=1

xNtuNt

)

×

(
T∑

t=1

x1tu1t + . . .+
T∑

t=1

xituit + . . .+
T∑

t=1

xNtuNt

)′

=
1

NT

N∑
i=1

(
T∑

t=1

xituit

)(
T∑

t=1

xituit

)′

+2
1

NT

N∑
i

N∑
j 6=i

(
T∑

t=1

xituit

)(
T∑

t=1

xjtujt

)′
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The cluster-robust VCE estimator The cluster-robust VCE estimator

The first set of terms is all the within-cluster cross-products. The
second set of terms is all the between-cluster cross-products. In
expectations, everything in the second set of terms disappears
because all the between-cluster correlations are zero by assumption,
leaving us with just the first set of terms.

This is the motivation for the cluster-robust covariance estimator of Ω:

Ω̂ =
1

NT

N∑
i=1

(
T∑

t=1

xit ûit

)(
T∑

t=1

xit ûit

)′

Note that we can interpret the clusters as ’super-observations’.
Furthermore, in the special case where errors are heteroskedastic but
still independently distributed, the number of clusters N is equal to the
number of observations, NT , and each cluster has one observation. In
this case the cluster-robust formula reduces to the standard
heteroskedasticity-robust Eicker–Huber–White formula implemented
by Stata’s robust option, as presented above. Finally, recall that the
asymptotics here are holding T fixed and sending N →∞.
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The cluster-robust VCE estimator Bias in the cluster-robust estimator

Bias in the cluster-robust estimator
While the formula for Ω̂ is appropriate as the number of clusters N
goes to infinity, finite-sample corrections are usually applied to deal
with downward bias in the cluster-robust standard errors. Stata uses√

cûi in computing Ω̂, with c ' N
N−1 . Simulations have shown that the

bias is larger when clusters are unbalanced: for instance, in a dataset
with 50 clusters, in which half the data are in a single cluster and the
other 49 contain about one percent of the data. A further finite-sample
adjustment factor NT−1

NT−K can also be applied.

As a rule of thumb, Nichols and Schaffer (2007) suggest that the data
should have at least 20 balanced clusters or 50 reasonably balanced
clusters. Rogers’ seminal work (Stata Tech.Bull., 1993) suggested that
no cluster should contain more than five per cent of the data.
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The cluster-robust VCE estimator Cluster-robust t and F tests

Cluster-robust t and F tests When a cluster-robust VCE has been
calculated, Wald t or F test statistics should take account of the
number of clusters, rather than relying on the asymptotically behavior
of the statistic as NT →∞. The approach that Stata follows involves
using the t distribution with N − 1 degrees of freedom rather than
NT − k degrees of freedom. If the number of clusters is small, this will
substantially increase the critical values relative to those computed
from the standard Normal (t with large d.f.).

Some authors (e.g., Donald and Lang (Rev.Ec.Stat., 2007)
recommend using tN−L, where L is the number of regressors constant
within cluster, as an even more conservative approach.
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By what shall we cluster?

By what shall we cluster? In many microeconometric datasets there
may be several choices for clustering. In cross-sectional
individual-level data, we may consider clustering at the household
level, assuming that individuals’ errors will be correlated with those of
other household members, but may also cluster at a higher level of
aggregation such as neighborhood, city or state. With nested levels of
clustering, clusters should be chosen at the most aggregate level (e.g.,
at the state level) to allow for correlations among individuals at that
level. This advice must be tempered with the concern that a
reasonable number of clusters is defined.
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By what shall we cluster?

Moving away from pure cross-sectional data to the realm of pooled
cross-section time-series data, we should consider alternative
assumptions on the independence of errors over the time dimension.

For instance, individuals’ errors may be clustered at the level of
household, city or state, but clustering on one of those variables
assumes that a common intraclass correlation applies to all pairs of
errors belonging to individuals in the cluster over time. As discussed
earlier, this may make sense in the unit dimension, but is less sensible
in the time dimension.
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By what shall we cluster?

Conversely, clustering may be defined for a given aggregation and time
period: e.g., in a household study, at the state-year level. However, this
form of clustering maintains the assumption that for a given state,
individuals’ errors are independent over time. This may be quite
unrealistic, given the existence of state-level variables that have
sizable correlations over time, even if they exhibit variation at the
individual level (such as marginal tax rates).

This issue would be similarly relevant if we worked with firm-level panel
data where clustering was defined at the industry-year level. High
autocorrelations among industry-level measures would tend to
invalidate the assumptions that errors for an industry are uncorrelated
over time. If the clustering scheme was defined only in terms of
industry, no restrictions would be placed on those correlations.
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By what shall we cluster?

In panel data where we cluster by the unit identifier (e.g., firm id code),
we allow for within-firm error correlations, but rule out across-firm error
correlations such as those arising from common shocks. On the other
hand, clustering by time period allows for common shocks, but
assumes that errors associated with a given firm are independently
distributed: a questionable assumption. One-way clustering by either
firm or time period has its limitations.
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By what shall we cluster?

In some cases, one-way clustering may be adequate: with errors
clustered by firms and by year, the latter error correlations might be
completely due to common shocks. In that case, the introduction of
time fixed effects would absorb all within-year clustering, and one-way
clustering on firms would be appropriate. However, if these shocks
have a meaningful firm-level component, contemporaneous error
correlations across firms will remain.

These concerns naturally lead to the generalization of the
cluster-robust estimator to two or more dimensions.
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Two-way clustering

Two-way clustering One-way clustering relies on the assumption that
E(uiujxix′j) = 0 unless observations i , j belong to the same cluster. In
two-way clustering, the same assumption is made, and the matrix Ω̂
defined earlier is generalized to

Ω̂ =
N∑

i=1

N∑
j=1

T∑
t=1

T∑
s=1

I(it , js)
[
xitx′js ûit ûjs

]
where I(it , js) = 1 for observations in the same cluster, and 0
otherwise.
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Two-way clustering

Computation of the two-way cluster-robust VCE is straightforward, as
Thompson (2010) illustrates. The VCE may be calculated from

VCE(β̂) = VCE1(β̂) + VCE2(β̂)− VCE12(β̂)

where the three VCE estimates are derived from one-way clustering on
the first dimension, the second dimension and their intersection,
respectively. As these one-way cluster-robust VCE estimates are
available from most Stata estimation commands, computing the
two-way cluster-robust VCE involves only a few matrix manipulations.

This procedure has been automated in Baum, Schaffer, Stillman’s
ivreg2 and Schaffer’s xtivreg2 routine on SSC, which may be
employed to estimate OLS models as well as models employing
instrumental variables, IV-GMM and LIML.
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Two-way clustering

One concern that arises with two-way (and multi-way) clustering is the
number of clusters in each dimension. With one-way clustering, we
should be concerned if the number of clusters N is too small to
produce unbiased estimates. The theory underlying two-way clustering
relies on asymptotics in both dimensions, i.e., both N and T . The
two-way clustering approach is thus sensible only if there is a sizable
number of clusters in each dimension.
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Two-way clustering

Just as in one-way clustering, finite-sample adjustments should be
made for the number of clusters. One approach, followed by Cameron
et al.’s cgmreg routine, adjusts each of the three covariance matrices
by a ratio reflecting the number of clusters in that matrix.

An alternate approach, implemented in ivreg2, computes VCE(β̂)
and then scales by M

M−1 , where M = min(G1,G2) and G1 and G2 are
the number of clusters in the two dimensions. Both approaches can
also include a finite-sample adjustment factor based on the number of
regressors K . In ivreg2, both adjustment factors are invoked with the
small option.
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Two-way clustering

We must keep in mind that the cluster-robust concept is much more
general than the panel data setting. For instance, we may have
firm-level data, categorized by both industry and region, and we may
doubt the independence of errors within industry (for firms in different
regions) as well as within region (for firms in different industries).

If we created a single clustering variable from the intersection of
industries and regions, we would allow for error correlations between
firms that were both in industry i and region j , and rule out correlations
among all other pairs of firms: possibly an overly restrictive approach.
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Two-way clustering

Revisiting the two-way clustering formula, you can see that one-way
clustering by the intersection of the two dimensions would correspond
to the third term in the formula, VCE12(β̂), whereas full two-way
clustering by industry and region would allow for correlated errors
across those dimensions as well.

Note, however, that we have to add an independence assumption
(Kolenikov–Nichols 2011). Not only do we have to believe in
independence across clusters in the first dimension (cluster i vs.
cluster j), and in the second dimension (cluster t vs. cluster s), we also
have to believe in independence across the two dimensions combined
(observation it vs. observation js). Kolenikov and Nichols (2011) also
demonstrate that in practice, the two-way clustering VCE may not be
positive definite, even with large numbers of observations in both
dimensions.
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Multi-way clustering

Multi-way clustering With that caveat in mind, we may extend the
notion of cluster-robust VCEs to three or more non-nested dimensions.
Multi-way clustering is described by Cameron, Gelbach, Miller [CGM]
(JBES, 2011; UC Davis WP 09-9). For instance, we might consider
data on individual workers, clustered by industry, occupation and US
state.

The logic to compute the Ω̂ matrix, as CGM show, is a generalization
of the formula for two-way clustering, and may be implemented using
only one-way cluster-robust estimates available from many Stata
estimation commands. Alternatively, CGM provide the cgmreg
command, downloadable from
http://www.econ.ucdavis.edu/faculty/dlmiller/statafiles/

which implements multi-way clustering for linear regressions.

But because the asymptotic requirements increase with each
dimension (each dimension is→∞), practical applications of
multi-way clustering will be limited.
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HAC vs. cluster-robust

HAC vs. cluster-robust methods In the pure time-series context, the
HAC (’kernel-robust’, e.g. Newey–West/Bartlett kernel) estimator of the
VCE allows for arbitrary serial correlation. The HAC estimator requires
large-T asymptotics. The HAC VCE estimator can be easily applied in
the panel data context; it amounts to applying the kernel-robust
approach to each panel. Note that the arbitrary serial correlation is
addressed using large-T asymptotics, and we need a panel with a long
time series for this to work. The cross-section dimension can be small.

Contrast this with the simple one-way cluster-robust VCE, where we
cluster in the N-dimension, on panel units. In that case, we obtain a
VCE that is robust to arbitrary serial correlation using large-N
asymptotics, and we need a dataset with a lot of observations in the
cross-section dimension for this to work. The time-series dimension
can be small.

Note that in both approaches, we are still assuming independence
across panel units.
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HAC vs. cluster-robust

Can these approaches be combined? Yes, if we cluster in the
T -dimension, on time periods If we employ clustering by time period,
we can relax the independence assumption and allow for common
shocks across panel units. Combining clustering on time with the HAC
kernel-robust method means that we can obtain a VCE that allows for
arbitrary shocks that are shared by panel units, and which arbitrarilyy
serially correlated. Note that this relies on large-T asymptotics.

We can go further (Thompson, 2010) and combine two-way clustering
and HAC. This provides SEs and statistics that are robust to
autocorrelated within-panel disturbances (clustering on panel id) and
to autocorrelated across-panel disturbances (clustering on time
combined with kernel-based HAC). Now, however, we also require
large-N asymptotics.
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Clustering and heteroskedasticity

Heteroskedasticity and cluster-robust vs. cluster-only-robust The
cluster-robust VCE discussed so far is robust to both clustering and
heteroskedasticity. In fact, a VCE that is robust to clustering only and
that assumed homoskedasticity is available. This is Kiefer’s (1980)
VCE :

Ω̂ =
1
N

N∑
i=1

xi V̂ux ′i

V̂u =
1
N

N∑
i=1

ûi û′i

where V̂u is an estimate of the T × T covariance matrix of ui , and ui is
the column of T errors for observation i .

Baum, Nichols, Schaffer (BC / UI / HWU) Cluster-Robust Covariance Matrices GSUG’11, July 2011 37 / 57



Clustering and heteroskedasticity

The Kiefer VCE has not been widely used, partly for the same reasons
that HAC covariance estimators are much more widely used than AC
estimators that assume homoskedasticity, and partly because the
generalization to unbalanced panels is tricky. But the Kiefer
cluster-only-robust VCE is useful in a specification testing setting, a
point made by Kézdi and to which we return below.
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Fixed effects models with clustering

Fixed effects models with clustering In any context where we
identify clusters, we could consider including a fixed-effect parameter
for each cluster, as in

yit = αi + x′itβ + uit

As is well known from analysis of this model in the special case of
longitudinal or panel data, the inclusion of the αi parameters centers
each cluster’s residuals around zero. However, the inclusion of these
fixed-effect parameters is a solution the intra-cluster correlation of
errors only in the very special case of time-invariant correlation. For
this reason, it is usually advisable to question the i .i .d . error
assumption and produce cluster-robust estimates of the VCE.
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Fixed effects models with clustering

Another reason to use the cluster-robust VCE is because it is robust to
heteroskedasticity as well as autocorrelation. In fact, Stock–Watson
(2008) have shown that the naive Eicker–Huber–White
heteroskedasticity-robust VCE is not a consistent estimate of V for
T > 2. (The reason is the same incidental parameters problem that
makes the naive classical VCE inconsistent, and which is addressed by
a dof adjustment.) For this reason, Stata’s official xtreg automatically
reports the cluster-robust VCE when the user specifies the fixed effects
estimator combined with the robust option.
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Fixed effects models with clustering

Note, however, that the Stock–Watson results also show that the bias
in the naive Eicker–Huber–White heteroskedasticity-robust VCE.for the
fixed-effects estimator disappears as T gets large. Thus a user with a
large-T small-N panel with fixed effects may prefer this VCE estimator
to the cluster-robust one. Stock and Watson also provide a
bias-corrected heteroskedasticity-robust VCE.for the fixed effects
estimator. Both are available in Schaffer’s xtivreg2 routine, the latter
via the undocumented sw option.
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Testing for cluster effects

Testing for cluster effects We might naturally wish to test whether
the computation of the cluster-robust VCE is warranted, as in the case
of ‘robust’ standard errors, the classical VCE estimate is to be preferred
if i .i .d . assumptions are satisfied.

For the case of one-way clustering in fixed-effects panel models, Kézdi
(Hungarian Stat. Rev., 2004) presents a test based on White’s
(Econometrica, 1980) direct test for heteroskedasticity. The motivation
of the original White test for heteroskedasticity is that, under the null of
conditional homoskedasticity, the difference between the classical and
heteroskedasticity-robust Ω̂ should disappear as the sample gets large:

Ω̂HC − Ω̂classical =

[
1
N

N∑
i=1

xix ′i û
2
i − Q̂xxs2

]
→p 0

A quadratic form in the vector of contrasts yields a test statistic
distributed χ2 under the null of conditional homoskedasticity; a large
test statistic indicates rejection of the null in favor of the alternative of
heteroskedasticity.
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Testing for cluster effects Kézdi’s test

Kézdi’s test uses the same reasoning. Underlying the test is the point
that, under the null of conditional homoskedasticity and independence,
the difference between the classical and cluster-robust Ω̂ should
disappear as the sample gets large:

Ω̂CR−Ω̂classical =
1

NT

N∑
i=1

( T∑
t=1

xit ûit

)(
T∑

t=1

xit ûit

)′
− s2

T∑
t=1

xitx ′it

→p 0

Kézdi’s specific application was to the fixed effects estimator, but it can
equally easily be applied to other settings. His study of his test’s
properties suggests that it performs well, even in the common ‘small T ,
large N ’ setting, and also is reliable in models where T becomes large.
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Versions of Kézdi’s test

Kézdi’s test can be easily extended to other specification tests by
choosing the Ω̂s appropriately:

heteroskedasticity+clustering vs. homoskedasticity+independence
(Ω̂CR − Ω̂classical )
heteroskedasticity+clustering vs. heteroskedasticity only
(Ω̂CR − Ω̂HR)
clustering vs. homoskedasticity+independence (Ω̂Kiefer − Ω̂classical )
heteroskedasticity+clustering vs. clustering-only (Ω̂CR − Ω̂Kiefer )

We have implemented a preliminary version of the Kézdi test for the
hypothesis that the errors are i .i .d . versus the alternative that they
exhibit within-cluster dependence as Stata command chatest, with
the panel counterpart xtchatest.
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Versions of Kézdi’s test A note in passing

A note in passing: White’s general test, and Kézdi’s cluster version,
are based on a vector of contrasts constructed from every element of
the VCE. Note that, in effect, we are looking for evidence of
heteroskedasticity or clustering in every possible direction that could
bias our VCE. But researchers are rarely equally interested in all their
parameters and all possible combinations of tests of these parameters;
usually they are interested in just one or two. Heteroskedasticity or
clustering that affects inference involving the parameters of interest is
a worry; if it affects inference involving the other parameters, so what?
(More about this below, time permitting.)
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Some empirical examples

Some empirical examples
Compare VCE estimates from a cross-section dataset computed under
assumptions:

i .i .d .
robust
cluster-robust by industry (9 categories)
cluster-robust by occupation (9 categories)
two-way cluster-robust
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Some empirical examples

Table: Wage equation using modified nlsw88

(1) (2) (3) (4) (5)
iid robust clus_ind clus_occ clus_2way

hours 0.0545∗∗∗ 0.0545∗∗∗ 0.0545∗∗ 0.0545∗∗ 0.0545∗∗
(0.0114) (0.0113) (0.0166) (0.0222) (0.0199)

ttl_exp 0.268∗∗∗ 0.268∗∗∗ 0.268∗∗∗ 0.268∗∗∗ 0.268∗∗∗
(0.0260) (0.0250) (0.0387) (0.0439) (0.0471)

black -0.696∗∗ -0.696∗∗∗ -0.696∗∗ -0.696∗ -0.696∗
(0.272) (0.251) (0.301) (0.330) (0.317)

collgrad 3.170∗∗∗ 3.170∗∗∗ 3.170∗∗∗ 3.170∗∗∗ 3.170∗∗∗
(0.274) (0.314) (0.443) (0.643) (0.491)

south -1.365∗∗∗ -1.365∗∗∗ -1.365∗∗∗ -1.365∗∗∗ -1.365∗∗∗
(0.243) (0.239) (0.267) (0.370) (0.318)

N 2141 2141 2141 2141 2141
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Some empirical examples

. ivreg2 wage hours ttl_exp black collgrad south, cluster(industry)

OLS estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on industry

Number of clusters (industry) = 12 Number of obs = 2228
F( 5, 11) = 58.79
Prob > F = 0.0000

Total (centered) SS = 74036.56905 Centered R2 = 0.1537
Total (uncentered) SS = 209279.49 Uncentered R2 = 0.7006
Residual SS = 62656.361 Root MSE = 5.303

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours .0553955 .0145375 3.81 0.000 .0269025 .0838885
ttl_exp .2704925 .0363919 7.43 0.000 .1991657 .3418193

black -.7172461 .2771599 -2.59 0.010 -1.26047 -.1740226
collgrad 3.112953 .3704258 8.40 0.000 2.386932 3.838974

south -1.370694 .2451673 -5.59 0.000 -1.851213 -.8901752
_cons 2.35104 .6115602 3.84 0.000 1.152404 3.549676

Included instruments: hours ttl_exp black collgrad south

. chatest, cluster(industry)

Test of:
heteroskedasticity (nR2, homokurt assumed)= 30.483 Chi-sq(20) p=0.0624
heteroskedasticity (no homokurt assumed)= 62.893 Chi-sq(20) p=0.0000
heteroskedasticity & clustering= 20465.921 Chi-sq(20) p=0.0000
heteroskedasticity & clustering (no centering)= 12.000 Chi-sq(20) p=0.9161
het+clustering vs het-only (centering)= 5958.146 Chi-sq(20) p=0.0000
het+clustering vs het-only (no centering)= 12.000 Chi-sq(20) p=0.9161
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Some empirical examples

. ivreg2 wage hours ttl_exp black collgrad south, cluster(occupation)

OLS estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on occupation

Number of clusters (occupation) = 13 Number of obs = 2233
F( 5, 12) = 10.83
Prob > F = 0.0004

Total (centered) SS = 74139.62742 Centered R2 = 0.1549
Total (uncentered) SS = 209492.595 Uncentered R2 = 0.7009
Residual SS = 62658.35322 Root MSE = 5.297

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours .0554197 .0201462 2.75 0.006 .0159339 .0949056
ttl_exp .2696493 .0417182 6.46 0.000 .1878831 .3514154

black -.7175845 .2874904 -2.50 0.013 -1.281055 -.1541137
collgrad 3.129628 .574179 5.45 0.000 2.004258 4.254999

south -1.39033 .3313849 -4.20 0.000 -2.039832 -.740827
_cons 2.360572 .6004096 3.93 0.000 1.183791 3.537353

Included instruments: hours ttl_exp black collgrad south

. chatest, cluster(occupation)

Test of:
heteroskedasticity (nR2, homokurt assumed)= 30.513 Chi-sq(20) p=0.0620
heteroskedasticity (no homokurt assumed)= 63.035 Chi-sq(20) p=0.0000
heteroskedasticity & clustering= 261161.030 Chi-sq(20) p=0.0000
heteroskedasticity & clustering (no centering)= 13.000 Chi-sq(20) p=0.8774
het+clustering vs het-only (centering)= 260239.118 Chi-sq(20) p=0.0000
het+clustering vs het-only (no centering)= 12.000 Chi-sq(20) p=0.9161
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Some empirical examples

. qui reg wage ttl_exp black collgrad south

. predict double wage_e, resid

. qui reg hours ttl_exp black collgrad south

. predict double hours_e, resid
(4 missing values generated)

. ivreg2 wage_e hours_e, cluster(industry) nocons

OLS estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on industry

Number of clusters (industry) = 12 Number of obs = 2228
F( 1, 11) = 13.34
Prob > F = 0.0038

Total (centered) SS = 63362.8718 Centered R2 = 0.0111
Total (uncentered) SS = 63363.24095 Uncentered R2 = 0.0111
Residual SS = 62657.02256 Root MSE = 5.303

Robust
wage_e Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours_e .0553973 .0145242 3.81 0.000 .0269304 .0838642

Included instruments: hours_e

. chatest, cluster(industry)

Test of:
heteroskedasticity (nR2, homokurt assumed)= 0.005 Chi-sq( 1) p=0.9430
heteroskedasticity (no homokurt assumed)= 0.013 Chi-sq( 1) p=0.9087
heteroskedasticity & clustering= 1.132 Chi-sq( 1) p=0.2873
heteroskedasticity & clustering (no centering)= 0.903 Chi-sq( 1) p=0.3419
het+clustering vs het-only (centering)= 1.430 Chi-sq( 1) p=0.2318
het+clustering vs het-only (no centering)= 1.050 Chi-sq( 1) p=0.3055
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Some empirical examples

. ivreg2 wage_e hours_e, cluster(occupation) nocons

OLS estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on occupation

Number of clusters (occupation) = 13 Number of obs = 2233
F( 1, 12) = 6.95
Prob > F = 0.0217

Total (centered) SS = 63366.41498 Centered R2 = 0.0112
Total (uncentered) SS = 63366.59346 Uncentered R2 = 0.0112
Residual SS = 62659.06348 Root MSE = 5.297

Robust
wage_e Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours_e .0554236 .0201922 2.74 0.006 .0158476 .0949995

Included instruments: hours_e

. chatest, cluster(occupation)

Test of:
heteroskedasticity (nR2, homokurt assumed)= 0.004 Chi-sq( 1) p=0.9491
heteroskedasticity (no homokurt assumed)= 0.010 Chi-sq( 1) p=0.9185
heteroskedasticity & clustering= 3.173 Chi-sq( 1) p=0.0749
heteroskedasticity & clustering (no centering)= 2.448 Chi-sq( 1) p=0.1177
het+clustering vs het-only (centering)= 3.779 Chi-sq( 1) p=0.0519
het+clustering vs het-only (no centering)= 2.869 Chi-sq( 1) p=0.0903

Baum, Nichols, Schaffer (BC / UI / HWU) Cluster-Robust Covariance Matrices GSUG’11, July 2011 51 / 57



Some empirical examples

Some empirical examples
Compare VCE estimates from a panel dataset computed under
assumptions:

i .i .d .
cluster-robust by company (10 units)
two-way cluster-robust (10 companies and 20 time periods)
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Some empirical examples

Table: Investment equation using grunfeld

(1) (2) (3)
iid clus_comp clus_2way

mvalue 0.110∗∗∗ 0.110∗∗∗ 0.110∗∗∗
(0.0119) (0.0152) (0.0117)

kstock 0.310∗∗∗ 0.310∗∗∗ 0.310∗∗∗
(0.0174) (0.0528) (0.0435)

N 200 200 200
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Some empirical examples

. ivreg2 invest mvalue kstock

OLS estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 200
F( 2, 197) = 426.58
Prob > F = 0.0000

Total (centered) SS = 9359943.917 Centered R2 = 0.8124
Total (uncentered) SS = 13620706.07 Uncentered R2 = 0.8711
Residual SS = 1755850.432 Root MSE = 93.7

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .1155622 .0057918 19.95 0.000 .1042105 .1269138
kstock .2306785 .025284 9.12 0.000 .1811227 .2802342
_cons -42.71437 9.440069 -4.52 0.000 -61.21656 -24.21217

Included instruments: mvalue kstock

. chatest, cluster(company)

Test of:
heteroskedasticity (nR2, homokurt assumed)= 91.790 Chi-sq( 5) p=0.0000
heteroskedasticity (no homokurt assumed)= 33.377 Chi-sq( 5) p=0.0000
heteroskedasticity & clustering= 406.674 Chi-sq( 5) p=0.0000
heteroskedasticity & clustering (no centering)= 4.459 Chi-sq( 5) p=0.4854
het+clustering vs het-only (centering)= 39.595 Chi-sq( 5) p=0.0000
het+clustering vs het-only (no centering)= 8.214 Chi-sq( 5) p=0.1448
clustering vs homosked (no centering)= 8.855 Chi-sq( 5) p=0.1150
het+clustering vs clust-only= 10.684 Chi-sq( 5) p=0.0580
het+clustering vs clust-only (no centering)= 9.646 Chi-sq( 5) p=0.0859
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Some empirical examples

. ivreg2 invest mvalue kstock

OLS estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 200
F( 2, 197) = 426.58
Prob > F = 0.0000

Total (centered) SS = 9359943.917 Centered R2 = 0.8124
Total (uncentered) SS = 13620706.07 Uncentered R2 = 0.8711
Residual SS = 1755850.432 Root MSE = 93.7

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .1155622 .0057918 19.95 0.000 .1042105 .1269138
kstock .2306785 .025284 9.12 0.000 .1811227 .2802342
_cons -42.71437 9.440069 -4.52 0.000 -61.21656 -24.21217

Included instruments: mvalue kstock

. chatest, cluster(year)

Test of:
heteroskedasticity (nR2, homokurt assumed)= 91.790 Chi-sq( 5) p=0.0000
heteroskedasticity (no homokurt assumed)= 33.377 Chi-sq( 5) p=0.0000
heteroskedasticity & clustering= 11.075 Chi-sq( 5) p=0.0499
heteroskedasticity & clustering (no centering)= 19.674 Chi-sq( 5) p=0.0014
het+clustering vs het-only (centering)= 211.206 Chi-sq( 5) p=0.0000
het+clustering vs het-only (no centering)= 12.588 Chi-sq( 5) p=0.0276
clustering vs homosked (no centering)= 2673.899 Chi-sq( 5) p=0.0000
het+clustering vs clust-only= 19.294 Chi-sq( 5) p=0.0017
het+clustering vs clust-only (no centering)= 14.639 Chi-sq( 5) p=0.0120
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Some empirical examples

. xtivreg2 invest mvalue kstock, fe

FIXED EFFECTS ESTIMATION

Number of groups = 10 Obs per group: min = 20
avg = 20.0
max = 20

OLS estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 200
F( 2, 188) = 309.01
Prob > F = 0.0000

Total (centered) SS = 2244352.228 Centered R2 = 0.7668
Total (uncentered) SS = 2244352.228 Uncentered R2 = 0.7668
Residual SS = 523478.1139 Root MSE = 52.49

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .1101238 .0117941 9.34 0.000 .0870077 .1332399
kstock .3100653 .0172629 17.96 0.000 .2762306 .3439

Included instruments: mvalue kstock

. xtchatest, cluster(company)

Test of:
heteroskedasticity (nR2, homokurt assumed)= 96.573 Chi-sq( 3) p=0.0000
heteroskedasticity (no homokurt assumed)= 4.306 Chi-sq( 3) p=0.2303
heteroskedasticity & clustering= 8.303 Chi-sq( 3) p=0.0402
heteroskedasticity & clustering (no centering)= 3.672 Chi-sq( 3) p=0.2991
het+clustering vs het-only (centering)= 4.495 Chi-sq( 3) p=0.2128
het+clustering vs het-only (no centering)= 3.305 Chi-sq( 3) p=0.3470
clustering vs homosked (no centering)= 3.371 Chi-sq( 3) p=0.3379
het+clustering vs clust-only= 3.315 Chi-sq( 3) p=0.3456
het+clustering vs clust-only (no centering)= 1.932 Chi-sq( 3) p=0.5867
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Some empirical examples

Some empirical examples
Compare VCE estimates from a panel dataset computed under
assumptions:

i .i .d .
HAC with 4 lags
two-way cluster-robust HAC, 4 lags (correlated common shocks)
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Some empirical examples

Table: Investment equation using grunfeld

(1) (2) (3)
iid hac4 hac4_2way

mvalue 0.110∗∗∗ 0.110∗∗∗ 0.110∗∗∗
(0.0119) (0.0238) (0.00794)

kstock 0.310∗∗∗ 0.310∗∗∗ 0.310∗∗∗
(0.0174) (0.0517) (0.0344)

N 200 200 200
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Some empirical examples

Table: Investment equation using grunfeld

(1) (2) (3)
iid hac4 hac4_2way

mvalue 0.110∗∗∗ 0.110∗∗∗ 0.110∗∗∗
(0.0119) (0.0238) (0.00794)

kstock 0.310∗∗∗ 0.310∗∗∗ 0.310∗∗∗
(0.0174) (0.0517) (0.0344)

N 200 200 200
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Work in progress

Work in progress
We are currently working on the chatest and xtchatest routines in
order to provide White-style tests for clustering vs. i .i .d ., and extending
Kézdi’s logic to two-way clustering.

The Stock–Watson heteroskedastic-robust VCE for the fixed effects
estimator is already implemented in xtivreg2 and will become a
documented option.

We are also considering whether tests of this nature (which include
White’s (Econometrica, 1980) general test) may be adapted to
consider only specific coefficients of interest. That is, are particular
coefficients’ standard errors and confidence intervals seriously
affected by the assumed form of their VCE?
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