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Introduction

@ | east-squares regression is a major workhorse in applied research.
@ It is mathematically convenient and has great statistical properties.

@ As is well known, the LS estimator is
» BUE (best unbiased estimator) under normally distributed errors
» BLUE (best linear unbiased estimator) under non-normal error
distributions
@ Furthermore, it is very robust in a technical sense (i.e. it is easily
computable under almost any circumstance).
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Introduction

@ However, under non-normal errors better (i.e. more efficient)
(non-linear) estimators exist.

» For example, efficiency of the LS estimator can be poor if the error
distribution has fat tails (such as, e.g., the t-distribution with few
degrees of freedom).

@ In addition, the properties of the LS estimator only hold under the
assumption that the data comply to the suggested data generating
process.

» This may be violated, for example, if the data are “contaminated” by
a secondary process (e.g. coding errors).
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Why is Low Efficiency a Problem?

@ An inefficient (yet unbiased) estimator gives the right answer on
average over many samples.

@ Most of the times, however, we only have one specific sample.

@ An inefficient estimator has a large variation from sample to sample.
This means that the estimator tends to be too sensitive to the
particularities of the given sample.

@ As a consequence, results from an inefficient estimator can be
grossly misleading in a specific sample.
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Why is Low Efficiency a Problem?

@ Consider data from model

Y=01+06X+e with B1=08=0

and e~ t(2)
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Why is Low Efficiency a Problem?

Robust Regression in Stata

Y=BitpiXte with Bi=fr=0 and e~i(2)

I—Why is Low Efficiency a Problem? I

. two (function y = normalden(x), range(-4 4) lw(*2) 1lp(dash)) ///

>
>
>

(function y = tden(2,x) , range(-4 4) lw(x2)) ///
, ytitle(Density) xtitle("") ysize(3) ///
legend(order(2 "t(2)" 1 "normal") col(1) ring(0) pos(11))



Why is Low Efficiency a Problem?

Sample 1 Sample 2
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Why is Low Efficiency a Problem?

Robust Regression in Stata

Sompe 1 Sample2

I—Why is Low Efficiency a Problem?

. drop _all

. set obs 31
obs was 0, now 31

. generate x = (_n-1)/3

. forvalues i = 1/2 {
2. local seed: word “i” of 669 776

3. set seed “seed”

4. generate y = 0 + 0 * x + rt(2)

5. quietly robreg m y x

6. predict m

7. quietly robreg mm y x

8. predict mm

9. two (scatter y x, msymbol(Oh) mcolor(*.8)) ///
> (1fit y x, lwidth(x2)) ///
> (line m mm x, lwidth(*2 *2) lpattern(shortdash dash)) ///
> , nodraw name(g i~, replace) ytitle("Y") xtitle("X") ///
> title(Sample “i") scale(x1.1) ///
> legend(order(2 "LS" 3 "M" 4 "MM") rows(1))

10. drop y m mm

11. %}

. graph combine gl g2



Why is Contamination a Problem?

@ Assume that the data are generated by two processes.
» A main process we are interested in.
» A secondary process that “contaminates” the data.

@ The LS estimator will then give an answer that is an “average” of
both processes.

@ Such results can be meaningless because they represent neither the
main process nor the secondary process (i.e. the LS results are
biased estimates for both processes).

@ It might be sensible to have an estimator that only picks up the main
processes. The secondary process can then be identified as deviation
from the first (by looking at the residuals).
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Hertzsprung-Russell Diagram of Star Cluster CYG OB1
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Robust Regression in Stata

Hertzsprung-Russell Diagram of Star Cluster CYG OB1

I—Hertzsprung—RusseII Diagram of Star Cluster CYG OB1

. use starsCYG, clear

. quietly robreg m log_light log_Te

. predict m

. quietly robreg mm log_light log_Te

. predict mm

V V.V V V V V.

two (scatter log_light log_Te, msymbol(Oh) mcolor(*.8)) ///
(1fit log_light log_Te, lwidth(x2)) ///
(line m log_Te, sort lwidth(*2) lpattern(shortdash)) ///
(line mm log_Te if log_Te>3.5, sort lwidth(*2) lpattern(dash)) ///
, xscale(reverse) xlabel(3.4(0.2)4.7, format(%9.1£)) ///
xtitle("Log temperature") ylabel(3.5(0.5)6.5, format(%9.1f)) ///
ytitle("Log light intensity") ///
legen(order(2 "LS" 3 "M" 4 "MM") rows(1) ring(0) pos(12))



Efficiency of Robust Regression

e Efficiency under non-normal errors
» A robust estimator should be efficient if the the errors do not follow a
normal distribution.
@ Relative efficiency
» In general, robust estimators should be relatively efficient for a wide
range of error distributions (including the normal distribution).
» For a given error distribution, the “relative efficiency” of a robust
estimator can be determined as follows:

RE— variance of the maximum-likelihood estimator

variance of the robust estimator

» Interpretation: Fraction of sample with which the ML estimator is still
as efficient as the robust estimator.

@ Gaussian efficiency
» Efficiency of a robust estimator under normal errors (compared to the

LS estimator, which is equal to the ML estimator in this case).
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Breakdown Point of Robust Regression

@ Robust estimators should be resistant to a certain degree of data
contamination.

@ Consider a mixture distribution
Fe=(1—¢€)Fs+¢€G

where fy is the main distribution we are interested in and G is a
secondary distribution that contaminates the data.

@ The breakdown Eoint €* of an estimator GA(FE) is the largest value
for €, for which 6(F;) as a function of G is bounded.

» This is the maximum fraction of contamination that is allowed before
6 can take on any value depending on G.

@ The LS estimator has a breakdown point of zero (as do many of the

fist generation robust regression estimators).
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First Generation Robust Regression Estimators

@ A number of robust regression estimators have been developed as
generalizations of robust estimators of location.

@ In the regression context, however, these estimators have a low
breakdown point if the design matrix X is not fixed.

@ The best known first-generation estimator is the so called
M-estimator by Huber (1973).

@ An extension are so called GM- or bounded influence estimators
that, however, do not really solve the low breakdown point problem.
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First Generation Robust Regression Estimators

@ The M-estimator is defined as

n N
A Y, - X8
M — inY o

B = arg min < 5 >

B i=1
where p is a suitable “objective function”.

@ Assuming o to be known, the M-estimate is found by solving

! Yi - XT8 B
R ER

where 1 is the first derivative of p.
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First Generation Robust Regression Estimators

@ Different choices for p lead to different variants of M-estimators.
@ For example, setting p(z) = %22

we get the LS estimator. This
illustrates that LS is a special case of the M-estimator.

@ p and ¥ of the LS estimator look as follows:
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First Generation Robust Regression Estimators.

Robust Regression in Stata

I—First Generation Robust Regression Estimators \/ /

. two function y = .5%x"2, range(-3 3) xlabel(-3(1)3) ///

> ytitle("{&rho}(z)") xtitle(z) nodraw name(rho, replace)
. two function y = x, range(-3 3) xlabel(-3(1)3) yline(0, 1lp(dash)) ///
> ytitle("{&psi}(z)") xtitle(z) nodraw name(psi, replace)

. graph combine rho psi, ysize(2.5) scale(*2)



First Generation Robust Regression Estimators

@ To get an M-estimator that is more robust to outliers than LS we
have to define p so that it grows slower than the p of LS.

@ In particular, it seems reasonable to chose p such that 1 is bounded
(4 is roughly equivalent to the influence of a data point).

@ A possible choice is to set p(z) = |z|. This leads to the median
regression (a.k.a. Li-estimator, LAV, LAD).
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First Generation

Robust Regression in Stata

I—First Generation Robust Regression Estimators

. two function y = abs(x), range(-3 3) xlabel(-3(1)3) ///

> ytitle("{&rho}(z)") xtitle(z) nodraw name(rho, replace)
. two function y = sign(x), range(-3 3) xlabel(-3(1)3) yline(O, 1lp(dash)) ///
> ytitle("{&psi}(z)") xtitle(z) nodraw name(psi, replace)

. graph combine rho psi, ysize(2.5) scale(*2)




First Generation Robust Regression Estimators

@ Unfortunately, the LAV-estimator has low gaussian efficiency
(63.7%).

@ This lead Huber (1964) to define an objective function that
combines the good efficiency of LS and the robustness of LAV.

@ Huber's p and 9 are given as:

- 17 < k k  ifz>k
H 24 izl = H :
p'(z) = and Y"(z) =<z if |z| <k
(2) {k|z|—%k2 if |z| > k (@) i if|z|<_k

@ Parameter k determines the gaussian efficiency of the estimator. For
example, for k = 1.35 gaussian efficiency is 95%.

» approaches LS if Kk —» oo
» approaches LAV if k = 0
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First Generation Robust Regression Estimators
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Robust Regression in Stata

First Generation Robust Regression Estimators

I—First Generation Robust Regression Estimators \/ Zf

. local k 1.345

\4

two function y = cond(abs(x)<="k~ , .5*x"2 , “k’*abs(x) - 0.5%k""2), ///
range (-3 3) xlabel(-3(1)3) ///
ytitle("{&rho}(z)") xtitle(z) nodraw name(rho, replace)
two function y = cond(abs(x)<="k~ , x, sign(x)*'k"), ///
range (-3 3) xlabel(-3(1)3) yline(0, 1lp(dash)) ///
ytitle("{&psi}(z)") xtitle(z) nodraw name(psi, replace)

. graph combine rho psi, ysize(2.5) scale(*2)



First Generation Robust Regression Estimators

@ The Huber M-estimator belongs to the class of monotone
M-estimators (the advantage of which is that there are no local
minima in the optimization problem).

@ Even better results in terms of efficiency and robustness can be
achieved by so called “redescending” M-estimators that completely
ignore large outliers.

@ A popular example is the bisquare or biweight objective function
suggested by Beaton and Tukey (1974):

(1= (- @0?)°) iflzl<k
L if |z| > k
7 (1= (2/Kk)?)? if|z] < k
0 if || > k
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First Generation Robust Regression Estimators
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@ Again, k determines gaussian efficiency (e.g. 95% for k = 4.69).

@ Optimization has local minima. Therefore, the bisquare M is often
used with starting values from Huber M (as in Stata's rreg).
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First Generation Robust Regression Estimators.

Robust Regression in Stata

I—First Generation Robust Regression Estimators

. local k 2.5

. two fun y = cond(abs(x)<="k", "k "2/6%(1-(1- (x/°k")"2)"3), k" ~2/6), ///
> range(-3 3) xlabel(-3(1)3) ///

> ytitle("{&rho}(z)") xtitle(z) nodraw name(rho, replace)

. two function y = cond(abs(x)<="k~, x*(1- (x/°k")"2)°2, 0), ///

> range (-3 3) xlabel(-3(1)3) yline(0, 1lp(dash)) ///

\4

ytitle("{&psi}(z)") xtitle(z) nodraw name(psi, replace)
. graph combine rho psi, ysize(2.5) scale(*2)



First Generation Robust Regression Estimators

@ Computation of M-estimators

» M-estimators can be computed using an IRWLS algorithm (iteratively
reweighted least squares).

» The procedure iterates between computing weights from given
parameters and computing parameters from given weights until
convergence.

» The error variance is computed from the residuals using some robust
estimator of scale such as the (normalized) median absolute deviation.

@ Breakdown point of M-estimators

» M-estimators such as LAV, Huber, or bisquare are robust to
Y-outliers (as long as a robust estimate for o is used).

» However, if X-outliers with high leverage are possible, then the
breakdown point drops to zero and not much is gained compared to
LS.

Ben Jann (University of Bern) Robust Regression in Stata Berlin, 01.06.2012 20 / 34



Second Generation Robust Regression Estimators

@ A number of robust regression estimators have been proposed to
tackle the problem of a low breakdown point in case of X outliers.

@ Early examples are LMS (least median of squares) and LTS (least
trimmed squares) (Rousseeuw and Leroy 1987).

@ LMS minimizes the median of the squared residuals

BMS = arg min MED(r(B)3. . ... r(B)2)
B

and has a breakdown point of approximately 50%.

» It finds the “narrowest” band through the data that contains at least
50% of the data.
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Second Generation Robust Regression Estimators

@ The LTS estimator follows a similar idea, but also takes into
account how the data are distributed within the 50% band.

@ It minimizes the variance of the 50% smallest residuals:

h
B-TS = argmin Z r(BA)(%-) with h=[n/2]+1
[ ——

A

where r(3) ;) are the ordered residuals.

@ LMS and LTS are attractive because of their high breakdown point
and their nice interpretation.

@ However, gaussian efficiency is terrible (0% and 7%, respectively).

@ Furthermore, estimation is tedious (jumpy objective function; lots of
local minima).
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Second Generation Robust Regression Estimators

@ A better alternative is the so called S-estimator.

@ Similar to LS, the S-estimator minimizes the variance of the
residuals. However, it uses a robust measure for the variance.

@ It is defined as

B> = arg min 6(r(6))
B

where G(r) is an M-estimator of scale, found as the solution of

1 d Y, — x5
>oo (M2 <o
n—p G

i=1

with § as a suitable constant to ensure consistency.
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Second Generation Robust Regression Estimators

@ For p the bisquare function is commonly employed.

@ Depending on the value of the tuning constant k of the bisquare
function, the S-estimator can reach a breakdown point of 50%
(k = 1.55) without sacrificing as much efficiency as LMS or LTS
(gaussian efficiency is 28.7%).

@ Similar to LMS/LTS, estimation of S is tedious because there are
local minima. However the objective function is relatively smooth so
that computational shortcuts can be used.
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Second Generation Robust Regression Estimators

@ The gaussian efficiency of the S-estimator is still unsatisfactory.

@ The problem is that in case of gaussian errors too much information
is thrown away.

@ High efficiency while preserving a high breakdown point is possible by
combining an S- and an M-estimator.
@ This is the so called MM-estimator. It works as follows:

@ Retrieve an initial estimate for 8 and an estimate for ¢ using the
S-estimator with a 50% breakdown point.

@ Apply a redescending M-estimator (bisquare) using BS as starting
values (while keeping & fixed).
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Second Generation Robust Regression Estimators

@ The higher the efficiency of the M-estimator in the second step, the
higher the maximum bias due to data contamination. An efficiency
of 85% is suggested as a good compromise (k = 3.44).

@ However, it can also be sensible to try different values to see how
the estimates change depending on k.
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Second Generation Robust Regression Estimators
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Robust Regression in Stata

Second Generation Robust Regression Estimators

I—Second Generation Robust Regression Estimators

i iy sosum (a2}

. use intersalt/intersalt, clear

. qui robreg s msbp mus

. predict s

. qui robreg mm msbp mus

. predict mm85

. qui robreg mm msbp mus, eff (70)

. predict mm70

vV V.V V V V.

two (scatter msbp mus if mus>60, msymbol(Oh) mcolor(*.8)) ///
(scatter msbp mus if mus<60, msymbol(Oh) mlabel(centre)) ///
(line s mus, sort lwidth(*2)) ///
(line mm70 mus, sort lwidth(*2) lpattern(shortdash)) ///
(line mm85 mus, sort lwidth(*2) lpattern(dash)) ///
, ytitle(" : var lab msbp™") ///
legen(order(3 "S" 4 "MM-70" 5 "MM-85") cols(1) ring(0) pos(4))



Stata Implementation

o Official Stata has the rreg command.

> It is essentially an M-estimator (Huber follwed by bisquare), but also
includes an initial step that removes high-leverage outliers (based on
Cook’s D). Nonetheless, it has a low breakdown point.

@ High breakdown estimators are provided by the robreg user
command.

Supports MM, M, S, LMS, and LTS estimation.
Provides robust standard errors for MM, M, and S estimation.
Implements a fast algorithm for the S-estimator.

Provides options to set efficiency and breakdown point.
Available from SSC.

v

v

v

v

v
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Stata Implementation

o6 Viewer - help robreg (&)
@ I$ c @ @ help robreg Q- )
nep rores
Dialog v I Also See v ] Jump To ~
help robreg O
Title

robreg — Robust regression

Syntax

MM-estimator

robreg mm depvar varlist [if] [in] [, mm_options ]
M-estimator

robreg m depvar [varlist] [if] [in] [, m_options ]
S-estimator

robreg s depvar varlist [if] [in] [, s_options ]
LMS/LQS/LTS-estimator

robreg lms depvar varlist [if] [in] [, lgs_options ]
Ben Jann (Uni

Bern) Robust Regression in Stata



Example: Online Actions of Mobile Phones

. robreg mm price rating startpr shipcost duration nbids minincr
Step 1: fitting S-estimate

enumerating 50 candidates (percent completed)
0 20 40 60 80 100

refining 2 best candidates ... done

Step 2: fitting redescending M-estimate

(Data from Diekmann et al. 2009)

iterating RWLS estimate ............ ... ... .. . i done
MM-Regression (85% efficiency) Number of obs = 99
Subsamples = 50
Breakdown point = .5
M-estimate: k =  3.443686
S-estimate: k = 1.547645
Scale estimate = 32.408444
Robust R2 (w) = .62236093
Robust R2 (rho) = .22709915

Robust

price Coef . Std. Err. z P>|z| [95% Conf. Intervall
rating 8862042 274379 3.23 0.001 .3484312 1.423977
startpr .0598183 .0618122 0.97 0.333 -.0613313 .1809679
shipcost -2.903518 1.039303 -2.79 0.005 -4.940515 -.8665216
duration -1.86956  1.071629 -1.74 0.081 -3.969914 .2307951
nbids .6874916 7237388 0.95 0.342 -.7310104 2.105994
minincr 2.225189 .5995025 3.71  0.000 1.050185 3.400192
_cons 519.5566 23.51388 22.10 0.000 473.4702 565.6429
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Example: Online Actions of Mobile Phones

1s rreg m lav mm85

rating 0.671%* 0.830%*x 0.767*** 0.861%*x 0.886%*
(0.211) (0.190) (0.195) (0.233) (0.274)
startpr 0.0552 0.0830% 0.0715 0.0720 0.0598
(0.0462) (0.0416) (0.0538) (0.0511) (0.0618)

shipcost -2.549% —-2.939%* —2.924%x -3.154%x —2.904*x
(1.030) (0.927) (1.044) (1.140) (1.039)
duration -0.200 -1.078 -0.723 -1.112 -1.870
(1.264) (1.138) (1.217) (1.398) (1.072)
nbids 1.278 1.236% 1.190 0.644 0.687
(0.677) (0.610) (0.867) (0.750) (0.724)

minincr 3.313%*% 2.445%%* 2.954%x% 2. 747 *x* 2.225%%%
(0.772) (0.695) (1.060) (0.854) (0.600)

_cons 505 . 8%*x 505 . 4*** 505 . 7**x 513. 7*** 519. 6%**
(29.97) (26.98) (26.64) (33.16) (23.51)
N 99 99 99 99 99

Standard errors in parentheses
* p<0.05, ** p<0.01, *¥* p<0.001

Ben Jann (University of Bern)

Robust Regression in Stata

Berlin, 01.06.2012
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Example: Online Actions of Mobile Phones

Robust Regression in Stata

I—E><amp|e: Online Actions of Mobile Phones
. quietly reg price rating startpr shipcost duration nbids minincr
. eststo 1s
. quietly rreg price rating startpr shipcost duration nbids minincr
. eststo rreg
. quietly robreg m price rating startpr shipcost duration nbids minincr
. eststom
. quietly qreg price rating startpr shipcost duration nbids minincr
. eststo lav
. quietly robreg mm price rating startpr shipcost duration nbids minincr
. eststo mm85
. esttab 1ls rreg m lav mm85, compress se mti nonum
1s rreg m lav mm85
rating 0.671%x 0.830%x* 0.767*x* 0.861%x* 0.886%x*
(0.211) (0.190) (0.195) (0.233) (0.274)
startpr 0.0552 0.0830% 0.0715 0.0720 0.0598
(0.0462) (0.0416) (0.0538) (0.0511) (0.0618)
shipcost -2.549% —-2.939%x —2.924%x -3.154%x —2.904**

(1 020) (0O 9927) (1 044) (1 140) (1 0290)



Example: Online Actions of Mobile Phones

LS MM

300
1

Partial Residual
Partial Residual

T T

T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
minincr minincr
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I—E><amp|e: Online Actions of Mobile Phones

. quietly reg price rating startpr shipcost duration nbids minincr

. predict ls_cpr
(option xb assumed; fitted values)
(6 missing values generated)

. replace ls_cpr = price - ls_cpr + _b[minincr]*minincr
(188 real changes made, 89 to missing)

. generate 1s_fit = _b[minincr]*minincr

. quietly robreg mm price rating

. predict mm_cpr
(6 missing values generated)

startpr shipcost duration nbids minincr

. replace mm_cpr = price - mm_cpr + _b[minincr]*minincr
(188 real changes made, 89 to missing)

. generate mm_fit = _b[minincr]*minincr

VV VYV

VvV VYV

two (scatter ls_cpr minincr if
(scatter ls_cpr minincr if
(line 1s_fit minincr, sort
, title(LS) ytitle(Partial
name (1s, replace) nodraw

two (scatter mm_cpr minincr if
(scatter mm_cpr minincr if
(line mm_fit minincr, sort
, title(MM) ytitle(Partial
name (mm, replace) nodraw

. graph combine 1s mm

minincr<40, ms(Oh) mc(*.8) jitter(1)) ///
minincr>40) ///

lwidth(*2)) ///

Residual) legend(off) ///

minincr<40, ms(Oh) mc(*.8) jitter(1)) ///
minincr>40) ///

lwidth(%2)) ///

Residual) legend(off) ///

Example: Online Actions of Mobile Phones




Conclusions

@ High breakdown-point robust regression is now available in Stata.
@ Should we use it?
» Some people recommend using robust regression instead of classic
methods.
» However, | see it more as a diagnostic tool, yet less tedious then
classic regression diagnostics.
» A good advice is to use classic methods for most of the work, but
then check the models using robust regression.
> If there are differences, then go into details.

@ Outlook
Robust GLM

Robust fixed effects and instrumental variables regression
Robust multivariate methods

v

v

v
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