

Leebounds: Lee's (2009) treatment effects bounds for non-random sample selection for Stata

Harald Tauchmann (RWI & CINCH)

Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI) & CINCH Health Economics Research Centre

1. June 2012

2012 German Stata Users Group Meeting, WZB, Berlin

en.de

www.rwiressen.de

www.rwi-essen.de

www.rwiressen.de

www.rwin

Introduction

- Random assignment of treatment: ideal setting for estimating treatment effects
 - ightarrow Randomized trials
- Non-random sample attrition (selection) still undermines validity of econometric estimates
 - ightarrow Selection bias
- Typical examples:
 - Dropout from program
 - Denied information on outcome
 - Death during clinical trial
- Possibly severe attrition bias
- Direction of bias a priory unknown

Selection Correction Estimators

- Modeling the mechanism of sample selection/attrition
- Classical Heckman (1976, 1979) parametric selection correction estimator
 - Stata command heckman
 - Assumes joint normality
 - Exclusion restrictions beneficial
 - Identification through non-linearity in principle possible
 - ightarrow Parametric approach relying on strong assumptions
- Semi-parametric approaches (e.g. Ichimura and Lee, 1991; Ahn and Powell, 1993)
 - Assumption of joint normality not required
 - Exclusion restrictions essential
 - $\rightarrow~$ Valid exclusion restrictions may not be available

Treatment Effect Bounds

- Rather than correcting point estimate of treatment effect
- Determining interval for effect size
- Correspond to extreme assumptions about the impact of selection on estimated effect

1. Horowitz and Manski (2000) bounds

- No assumptions about the the selection mechanism required
- Outcome variable needs to be bounded
- Missing information is imputed an basis of minimal and maximal possible values of the outcome variable
- $\rightarrow\,$ Frequently yields very wide (i.e. hardly informative) bounds
- ightarrow Useful benchmark for binary outcome variables

Treatment Effect Bounds II

2. Lee (2009) bounds

Assumptions:

- (i) Besides random assignment of treatment
- (ii) *Monotonicity* assumption about selection mechanism
 - Assignment to treatment can only affect attrition in one direction
 - I.e. (in terms of sign) no heterogeneous effect of treatment on selection
 - Average treatment effect for never-attriters

Intuition:

- Sample trimmed such that the share of observed individuals is equal for both groups
- Trimming either from above or from below
- Corresponds to extreme assumptions about missing information that are consistent with
 - (i) The observed data and
 - (ii) A one-sided selection model

CINC

Estimating Lee (2009) bounds

Let denote Y the outcome, T a binary treatment indicator, W a binary selection indicator, and *i* individuals. Calculate:

1.
$$q_T \equiv \frac{\sum_i 1(T_i=1,W_i=1)}{\sum_i 1(T_i=1)}$$
 and $q_C \equiv \frac{\sum_i 1(T_i=0,W_i=1)}{\sum_i 1(T_i=0)}$,

i.e. the shares of individuals with observed Y

2.
$$q \equiv (q_T - q_C)/q_T$$
, if $q_T > q_C$ (If $q_T < q_C$, exchange C for T)

3. $y_q^T = G_Y^{-1}(q|T = 1, W = 1)$ and $y_{1-q}^T = G_Y^{-1}(1-q|T = 1, W = 1)$,

i.e. qth and the (1 - q)th quantile of observed outcome in the treatment group

4. Upper bound $\hat{\theta}^{upper}$ and lower bound $\hat{\theta}^{lower}$ as

$$\hat{\theta}^{upper} = \frac{\sum_{i} 1 \left(T_{i} = 1, W_{i} = 1, Y_{i} \ge y_{q}^{T} \right) Y_{i}}{\sum_{i} 1 \left(T_{i} = 1, W_{i} = 1, Y_{i} \ge y_{q}^{T} \right)} - \frac{\sum_{i} 1 \left(T_{i} = 0, W_{i} = 1 \right) Y_{i}}{\sum_{i} 1 \left(T_{i} = 0, W_{i} = 1 \right)}$$

$$\hat{\theta}^{lower} = \frac{\sum_{i} 1 \left(T_{i} = 1, W_{i} = 1, Y_{i} \le y_{1-q}^{T} \right) Y_{i}}{\sum_{i} 1 \left(T_{i} = 1, W_{i} = 1, Y_{i} \le y_{1-q}^{T} \right)} - \frac{\sum_{i} 1 \left(T_{i} = 0, W_{i} = 1 \right) Y_{i}}{\sum_{i} 1 \left(T_{i} = 0, W_{i} = 1 \right)}$$

$$CINCH$$

Tightening Bounds

- Lee (2009) bounds rest on comparing unconditional means of (trimmed) subsamples
- ightarrow No covariates considered
- Using covariates yields tighter bounds:
 - 1. Choose (discrete) variable(s) that have explanatory power for attrition
 - 2. Split sample into cells defined by these variables
 - 3. Compute bounds for each cell
 - 4. Take weighted average
 - $\rightarrow\,$ Lee (2009) shows that such bounds are tighter than unconditional ones
- Researcher can generate such variables by deliberately varying the effort on preventing attrition (DiNardo et al., 2006)

Standard Errors and Confidence Intervals

- Lee (2009) derives analytic standard errors for bounds
- Allows for straightforward calculation of a 'naive' confidence interval
- Covers the *interval* [$\theta^{lower}, \theta^{upper}$] with probability 1α
- Imbens and Manski (2004) derive confidence interval for the treatment effect itself
- Tighter than confidence interval for the interval

leebounds: Syntax

📥 🔁 🚍 🕵 help leebounds	Ą	
lp leebounds ×		. ×
	Dialog	• Also See • Jump To •
p orderalpha		<u>^</u>
<u>le</u>		
leebounds — Lee (2009) trea	atment effect bounds	
tax		
leebounds depvar treatva	ar [if] [in] [weight], [options]	
Outcome and treatment	Description	
Model <i>depvar</i> <i>treatvar</i>	dependent variable binary treatment indicator	
options	Description	
Main <u>select(varname)</u> tight(varlist) <u>cie</u> ffect	selection indicator covariats for tightened bounds compute confidence interval for treatment effect	
SE/Bootstrap vce(<u>ana</u> lytic <u>boot</u> strap)	compute analytic or bootstrapped standard errors; vce(analytic) is	the default.
Reporting <u>lev</u> el(#)	set confidence level; default is level(95)	
with negative weight are s	s, and iweights are allowed, aweights are not allowed; see weight. Obse kipped for any weight type. I svy are not allowed; see prefix.	rvations

leebounds: Saved Results

🖬 📥 🔁 🚍 help lei	-td-	0	
nepie	ebounds	R.	_
help leebounds ×			▼ ×
		Dialog * Also See * J	ump To 🔻
aved results			-
leebounds saves the	e following in e():		
Scalars			
e(N)	number of observations		
e(Nsel)	number of selected observations		
e(trim)	(overall) trimming proportion		
e(cells)	number of cells (only saved for tight())		
e(cilower)	lower bound of treatment effect-confidence interval (only saved for cieffed	T)	
e(ciupper)	upper bound of treatment effect-confidence interval (only saved for cieffe		
e(level)	confidence level		
e(N_reps)	number of bootstrap repetitions (only saved for vce(bootstrap))		
Macros			
e(cmd)	leebounds		
e(cmdline)	command as typed		
e(title)	Lee (2009) treatment effect bounds		
e(vce)	either analytic or bootstrap		
e(vcetype)	Bootstrap for vce(bootstrap)		
e(depvar)	depvar		
e(treatment)	treatvar		
e(select)	varname (only saved for select())		
e(covariates)	varlist (only saved for tight())		
e(trimmed)	either treatment or control		
e(wtype)	either pweight, fweight , or iweight (only saved if weights are specified)		
e(wexp)	= exp (only saved if weights are specified)		
e(properties)	b v		
Matrices			
e(b)	<pre>1x2 vector of estimated treatment effect bounds (colnames are of the form a treatvar:upper)</pre>		
e(V)	<pre>2x2 variance-covariance matrix for estimated treatment effect bounds (covar for vce(analytic))</pre>	iance set to zero	£
Functions			
e(sample)	marks estimation sample		

Harald Tauchmann (RWI & CINCH)

Experimental Design

Research question: Do financial incentives aid obese in reducing bodyweight?

- Ongoing randomized trial (Augurzky et al., 2012)
- 698 obese (BMI ≥ 30) individuals recruited during rehab hospital stay
- Individual weight-loss target (typically 6–8% of body weight)
- Participants prompted to realize weight-loss target within four months
- Randomly assigned to on of three experimental groups:
 - i. No financial incentive (control group)
 - ii. $150 \in$ reward for realizing weight-loss target
 - iii. 300€ reward for realizing weight-loss target
- After four months: weight-in at assigned pharmacy

Attrition Problem

Experimental groups:

	group size	compliers	attrition	
control group	233	155	33.5%	
150€ group	236	172	27.1%	
300€ group	229	193	15.7%	
	698	520	25.5%	

- Attrition rate negatively correlated with size of reward
- Plausible since (successful) members of incentive group have stronger incentive not to dropout
- Selection on success (in particular for incentive groups) likely
- Overestimation of incentive effect likely downward bias still possible

Simple Bivariate OLS (comparison of means)

- Outcome variable: weightloss (percent of body weight)
- ► Focus on comparing *group 300* € with *control group*

I regress wer	gnecoss groups					
Source	SS	df	f MS 1 686.575435 6 29.6335486			Number of obs = 348
Model Residual	686.575435 10253.2078 3					
Total	10939.7832	347	31.520	67528		Root MSE = 5.4437
weightloss	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
group300 _cons	2.826111 2.34758	.5871 .4372		4.81 5.37	0.000 0.000	1.671311 3.980911 1.487585 3.207575

. regress weightloss group300

- Highly significant inventive effect
- Roughly three percentage points

Heckman (two-step) Selection Correction Estimator

- Exclusion restriction: *nearby_pharmacy* (assigned pharmacy within same ZIP-code area as place of residence)
- Captures cost of attending weight-in, no direct link to weight loss
- No further controlls
- Two-step estimation

Heckman (two-step) Selection Correction Estimator II

	heckman	weightloss	group300,	select(group300	<pre>nearby_pharmacy)</pre>	twostep
--	---------	------------	-----------	-----------------	-----------------------------	---------

Heckman selection model two-step estimates (regression model with sample selection)					f obs obs ed obs 2(1) hi2	= = = =	462 114 348 1.37 0.2415
weightloss	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
weightloss							
group300	3.126055	2.669154	1.17	0.242	-2.105	5391	8.357501
_cons	1.716602	5.493513	0.31	0.755	-9.050	9485	12.48369
select							
group300	.5777289	.1312605	4.40	0.000	.3204	4631	.8349947
nearby_phar_y	.1358984	.1344283	1.01	0.312	1275	5763	.399373
_cons	.3406349	.1201113	2.84	0.005	.1052	2211	.5760487
mills							
lambda	1.158006	10.04912	0.12	0.908	-18.5	5379	20.85392
rho sigma	0.21123 5.4821209						

- Similar point estimate as for OLS
- ► Large S.E.s \rightarrow insignificant incentive effect
- Low explanatory power of *nearby_pharmacy* (if regional characteristics are not controlled for)

Lee Bounds

. leebounds weightloss group300 Lee (2009) treatment effect bounds								
Number of obs Number of sele Trimming porpe	ected obs.	= = =	462 348 0.2107					
weightloss	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]		
group300 lower upper	.983459 4.783921	.6431066 .6677338	1.53 7.16	0.126 0.000	2770069 3.475187	2.243925 6.092655		

- Bounds cover OLS and Heckman point estimate
- Fairly wide interval
- Lower bound does not significantly differ from zero

Lee Bounds with Effect Confidence Interval

	_				_
Effect 95% conf. interval	:	[-0.0744	5.8822]		
Trimming porportion	=	0.2107			
Number of selected obs.	=	348			
Number of obs.	=	462			
Lee (2009) treatment effect bound	İs				
. leebounds weightloss group300,	cie				

weightloss	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
group300 lower upper	.983459 4.783921	.6431066 .6677338	1.53 7.16	0.126 0.000	2770069 3.475187	2.243925 6.092655

Effect confidence interval covers zero

Tightened Lee Bounds

- Variable nearby_pharmacy used for tightening bounds
- Following the suggestion of DiNardo et al. (2006)

. leebounds weightloss group300, cie tight(nearby_pharmacy)								
Tightened Lee (2009) treatm	ent effect	bounds						
Number of obs.	=	462						
Number of selected obs.	=	348						
Number of cells	=	2						
Overall trimming porportion	ı =	0.2107						
Effect 95% conf. interval	:	[-0.0595	5.8448]					
weightloss Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]			
group300								
lower 1.000043	.6441664	1.55	0.121	2625003	2.262585			
upper 4.727485	.6792707	6.96	0.000	3.396139	6.058831			

- Bounds just marginally tighter
- Effect confidence interval still covers zero

Tightened Lee Bounds II

Further covariates for tightening bounds:

- i. age50 (indicator for age \leq 50)
- ii. woman (indicator for sex)

. leebounds we	eightloss grou	р300,	cie t	ight(nea	rby_pharma	cy age50 woman)	
Tightened Lee	(2009) treatm	ent e	ffect	bounds			
Number of obs.			=	462			
Number of sele	ected obs.		=	348			
Number of cell	s		=	8			
Overall trimmi	ng porportion		=	0.2107			
Effect 95% cor	nf. interval		: [0.0608	5.3804]		
weightloss	Coef.	Std.	Err.	z	P> z	[95% Conf. Inte	erval
aroup300							

- lower 1.282951 .7429877 1.73 0.084 -.1732782 2.73918 upper 4.065244 .7995777 5.08 0.000 2.498101 5.632388
- Bounds substantially tighter
- Effect confidence interval does not covers zero
- Confirms existence of incentive effect
- Size of (potential) attrition bias remains somewhat unclear

References

- Ahn, H. and Powell, J. L. (1993). Semiparametric estimation of censored selection models with a nonparametric selection mechanism, *Journal of Econometrics* 58: 3–29.
- Augurzky, B., Bauer, T. K., Reichert, A. R., Schmidt, C. M. and Tauchmann, H. (2012). Does money burn fat? Evidence from a randomized experiment, *mimeo*.
- DiNardo, J., McCrary, J. and Sanbonmatsu, L. (2006). Constructive Proposals for Dealing with Attrition: An Empirical Example, University of Michigan Working Paper.
- Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models, *Annals of Economics and Social Measurement* 5: 475–492.
- Heckman, J. J. (1979). Sample selection bias as a specification error, Econometrica 47: 153-161.
- Horowitz, J. L. and Manski, C. F. (2000). Nonparametric analysis of randomized experiments with missing covariate and outcome data, *Journal of the American Statistical Association* 95: 77–84.
- Ichimura, H. and Lee, L. (1991). Semiparametric least squares estimation of multiple index models: Single equation estimation, Vol. 5 of International Symposia in Economic Theory and Econometrics, Cambridge University Press, pp. 3–32.
- Imbens, G. and Manski, C. F. (2004). Confidence intervals for partially identified parameters, *Econometrica* **72**: 1845–1857.
- Lee, D. S. (2009). Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects, Review of Economic Studies 76: 1071–1102.

CINCH