

Fitting Complex Mixed Logit Models with Particular Focus on Labor Supply Estimation

Max Löffler

IZA and University of Cologne

Potsdam — June 7, 2013

Introduction

Motivation

- Logit models estimate discrete choice situations (e.g., yes/no)
- Discrete choice models are frequently used in many fields of economic research (and other disciplines as well)
 - Consumer demand literature, transport economics, . . .
 - ▶ Labor supply estimation (Aaberge et al., 1995, van Soest, 1995, Hoynes, 1996)

Motivation

- Logit models estimate discrete choice situations (e.g., yes/no)
- Discrete choice models are frequently used in many fields of economic research (and other disciplines as well)
 - Consumer demand literature, transport economics, . . .
 - ▶ Labor supply estimation (Aaberge et al., 1995, van Soest, 1995, Hoynes, 1996)
- Simple logit models are very easy to fit, but estimation of more complex logit models can become quite cumbersome
- In labor supply context: Models often chosen because of computational convenience instead of theoretical considerations
 - New command lslogit to estimate complex mixed logit models in a rather simple way, focus on labor supply estimation

Agenda

- Introduction
- 2 Logit Models
 - (Some) Theory
 - Estimation
 - More Complex Models
- Command lslogit
- 4 Conclusion

Conditional logit

- Individual n faces J_n alternatives and chooses alternative i (observed)
- ullet Utility of individual n when choosing i: $U_{ni} = v(x_{ni}|oldsymbol{eta}) + \epsilon_{ni}$
- Random error terms ϵ_{ni} are independent and identically distributed according to extreme value type I distribution: $\epsilon_{ni} \sim \text{GEV}(0, 1, 0)$

Conditional logit

- Individual n faces J_n alternatives and chooses alternative i (observed)
- Utility of individual n when choosing i: $U_{ni} = v(x_{ni}|\pmb{\beta}) + \epsilon_{ni}$
- Random error terms ϵ_{ni} are independent and identically distributed according to extreme value type I distribution: $\epsilon_{ni} \sim GEV(0, 1, 0)$
- Likelihood function can be solved analytically (McFadden, 1974)

$$L = \prod_{n=1}^{N} P(U_{ni} > U_{nj}, \forall j \neq i) = \prod_{n=1}^{N} \frac{\exp\left(v(x_{ni}|\beta)\right)}{\sum_{j=1}^{J_n} \exp\left(v(x_{nj}|\beta)\right)}$$
(1)

• Known as (McFadden's) conditional logit, multinomial logit, ...

4 / 15

IIA assumption

- Conditional logit setup easy to estimate but exhibits Independence from Irrelevant Alternatives (IIA) assumption (Luce, 1959)
 - ▶ Implies: ratio of choice probabilities, i.e., preference between two alternatives is independent of the presence of a third alternative
 - Working fulltime compared to unemployment:

$$\frac{P(h_n = 40)}{P(h_n = 0)} = \frac{\exp\left(v(x_{n,h=40}|\beta)\right)}{\exp\left(v(x_{n,h=0}|\beta)\right)}$$
(2)

- ▶ Independent from existence and characteristics of other alternatives
- Sometimes justified but unrealistic and restrictive in many cases

Mixed logit I

- Mixed logit models allow to introduce unobserved heterogeneity in preferences and/or alternatives
 - \triangleright Assume distribution for β (e.g., normal, log-normal or uniform, ...)
 - Integrate over conditional probabilities
- Likelihood given by

$$L = \prod_{n=1}^{N} P(U_{ni} > U_{nj}, \forall j \neq i) = \prod_{n=1}^{N} \int_{-\infty}^{+\infty} \frac{\exp\left(v(x_{ni}|\beta)\right)}{\sum_{j=1}^{J_n} \exp\left(v(x_{nj}|\beta)\right)} f(\beta) d\beta$$
(3)

Overcomes IIA assumption

6 / 15

Mixed logit II

- Likelihood function cannot be solved analytically anymore
- Approximate by maximum simulated likelihood methods (Train, 2009)
 - ▶ Draw R times from distribution of β , average choice probabilities

$$\ln(SL) = \sum_{n=1}^{N} \ln\left(\frac{1}{R} \sum_{r=1}^{R} \frac{\exp\left(v(x_{ni}|\boldsymbol{\beta}^{r})\right)}{\sum_{j=1}^{J_{n}} \exp\left(v(x_{nj}|\boldsymbol{\beta}^{r})\right)}\right) \tag{4}$$

 Any discrete choice model can be approximated by mixed logit (McFadden and Train, 2000)

Logit models in Stata

- Flexible framework to estimate maximum likelihood models in Stata (ml), extensive documentation (Gould et al., 2010, Haan and Uhlendorff, 2006)
- Conditional logit can be estimated via built-in command clogit
- User-written command mixlogit to fit mixed logit models (Hole, 2007)

8 / 15

Logit models in Stata

- Flexible framework to estimate maximum likelihood models in Stata (ml), extensive documentation (Gould et al., 2010, Haan and Uhlendorff, 2006)
- Conditional logit can be estimated via built-in command clogit
- User-written command mixlogit to fit mixed logit models (Hole, 2007)
- Awesome tool, but two drawbacks
 - ① So called derivative1 evaluator, gradient $\partial \ln L/\partial \beta$ derived analytically, Hessian matrix $\partial^2 \ln L/\partial \beta^2$ numerically approximated
 - ② Assumes linear utility specification: $v(x_{nj}|\beta) = x_{nj}\beta'$

Gradient and Hessian Matrix of equation (4)

$$\frac{\partial \ln(SL)}{\partial \beta_{k}} = \sum_{n=1}^{N} \underbrace{\sum_{r=1}^{R} \rho_{ni}^{r}}_{=1/L_{sum,n}} \underbrace{\sum_{r=1}^{R} \rho_{ni}^{r} \sum_{j=1}^{J_{n}} \left(d_{nj} - \rho_{nj}^{r} \right) \frac{\partial v_{nj}^{r}}{\partial \beta_{k}}}_{=G_{sum,n}} = \sum_{n=1}^{N} \frac{G_{sum,n}}{L_{sum,n}}$$
(5)

$$\frac{\partial^{2} \ln(SL)}{\partial \beta_{k} \partial \beta'_{m}} = \sum_{n=1}^{N} \left(\frac{1}{L_{sum,n}} \frac{\partial G_{sum,n}}{\partial \beta'_{m}} - \frac{\partial L_{sum,n}}{\partial \beta'_{m}} \frac{G_{sum,n}}{L_{sum,n}^{2}} \right)$$
(6)

$$\frac{\partial G_{sum,n}}{\partial \beta_{m}'} = \sum_{r=1}^{R} \left(p_{ni}^{r} \left\{ \frac{\partial v_{ni}'}{\partial \beta_{m}'} - \sum_{j=1}^{J_{n}} p_{nj}^{r} \frac{\partial v_{nj}'}{\partial \beta_{m}'} \right\} \sum_{j=1}^{J_{n}} (d_{nj} - p_{nj}^{r}) \frac{\partial v_{nj}'}{\partial \beta_{k}} \right. \\
\left. - p_{ni}^{r} \sum_{j=1}^{J_{n}} p_{nj}^{r} \left\{ \frac{\partial v_{nj}'}{\partial \beta_{m}'} - \sum_{s=1}^{J_{n}} p_{ns}^{r} \frac{\partial v_{ns}'}{\partial \beta_{m}'} \right\} \frac{\partial v_{nj}'}{\partial \beta_{k}} \right.$$

$$+p_{ni}^{r}\sum_{j=1}^{J_{n}}(d_{nj}-p_{nj}^{r})\frac{\partial^{2}v_{nj}^{r}}{\partial\beta_{k}\partial\beta_{m}^{r}}$$
(7)

$$\frac{\partial L_{sum,n}}{\partial \beta_m'} = \sum_{r=1}^R p_{ni}^r \left(\frac{\partial v_{ni}^r}{\partial \beta_m'} - \sum_{j=1}^{J_n} p_{nj}^r \frac{\partial v_{nj}^r}{\partial \beta_m'} \right) \tag{8}$$

Yet another logit?

- Linear utility specification not necessarily a problem, x_{nj} may include interaction terms, squares and terms of higher order
- But more complex models cause problems, e.g., labor supply context
 - ► Error components in variables like measurement errors in wages
 - Simultaneous estimation of labor supply and wages
 - Box-Cox models where power parameters have to be estimated

Estimating labor supply

Most generally, discrete choice labor supply models can be written as

$$L = \prod_{n=1}^{N} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\exp\left(v(x_{ni}|\hat{w}_{ni}, \boldsymbol{\beta})\right)}{\sum_{j=1}^{J_n} \exp\left(v(x_{nj}|\hat{w}_{nj}, \boldsymbol{\beta})\right)} f(\hat{w}_n, \boldsymbol{\beta}) d\hat{w}_n d\boldsymbol{\beta}$$
$$\cdot \left(\frac{1}{\sigma} \phi \left\{\frac{\ln w_{ni} - x_{ni} \boldsymbol{\beta}'_w}{\sigma}\right\}\right)^{1(h_{ni} > 0)}$$
(9)

where, e.g.,

$$v(x_{nj}|\hat{w}_{nj},\beta) = x_{C,nj}\beta_1'C_{nj}^{(\beta_2)} + \beta_3C_{nj}^{(\beta_2)}L_{nj}^{(\beta_5)} + x_{L,nj}\beta_4'L_{nj}^{(\beta_5)} + x_{I,nj}\beta_6'$$
(10)

$$C_{nj}^{(\beta_2)} = \begin{cases} \frac{(C_{nj}/\bar{C})^{\beta_2} - 1}{\beta_2} & \text{if } \beta_2 \neq 0\\ \ln(C_{nj}/\bar{C}) & \text{if } \beta_2 = 0 \end{cases} \qquad L_{nj}^{(\beta_5)} = \begin{cases} \frac{(L_{nj}/\bar{L})^{\beta_5} - 1}{\beta_5} & \text{if } \beta_5 \neq 0\\ \ln(L_{nj}/\bar{L}) & \text{if } \beta_5 = 0 \end{cases}$$
(11)

$$c_{nj} = \hat{w}_{nj}h_j + I_n + T_{nj} - \tau(\hat{w}_{nj}h_j, I_n)$$
(12)

Command lslogit

New estimation routine

- Estimates complex mixed logit models where households have preferences with regard to two or three goods
- Built-in utility functions (quadratic, log-quadratic/translog, Box-Cox)
- Allows to specify observed and unobserved heterogeneity in preferences and across alternatives

New estimation routine

- Estimates complex mixed logit models where households have preferences with regard to two or three goods
- Built-in utility functions (quadratic, log-quadratic/translog, Box-Cox)
- Allows to specify observed and unobserved heterogeneity in preferences and across alternatives
- Main focus on labor supply estimation, therefore additional options
 - Simultaneous estimation of preferences and wage equation
 - ▶ Integrates wage prediction error out during estimation process
 - Calculates marginal utility of consumption (and allows constraints)
 - ...and naming conventions

How to use it

- Technically: derivative2-evaluator, written in Mata
- Includes prediction command and calculator of covariance matrix

Use on Stata command line

- . predict newvar[list] [if] [in] [, options]
- . lslogit, cov [options]

• By now: Beta version available on request

Command 1slogit

Output

. lslogit choice, group(id) c(dpi) l(freiz) boxcox cx(lage*_m) lx1(lage*_m)

Mixed Logit Labor Supply Model Number of obs 5761 LR chi2(2) 171.99 Prob > chi2 0.0000 Log likelihood = -1368.2779 Pseudo R2 0.1456

(Std. Err. adjusted for clustering on hhnrakt)

	choice	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Cx	lage_m lage2_m _cons	63.48062 -8.688809 -112.7283	10.78075 1.483041 19.40653	5.89 -5.86 -5.81	0.000 0.000 0.000	42.35074 -11.59552 -150.7644	84.6105 -5.782102 -74.69218
CxL1	_cons	.0862592	.0578086	1.49	0.136	0270435	.1995619
L1x	lage_m lage2_m _cons	1.314325 1787296 -2.32873	1.334258 .1835297 2.38518	0.99 -0.97 -0.98	0.325 0.330 0.329	-1.300773 5384413 -7.003596	3.929424 .1809821 2.346136
	/1_C /1_L1	.593499 -2.624566	.0875811 .5228987	6.78 -5.02	0.000	.4218433 -3.649429	.7651548 -1.599704
	[dudes]	.0341955					

Model: - Box-Cox utility function

Thank you for your attention!

Comments or questions? — loeffler@iza.org

Appendix

References I

- Aaberge, R., Dagsvik, J. K. and Strøm, S. (1995). Labor supply responses and welfare effects of tax reforms, *The Scandinavian Journal of Economics* **97**(4): 635–659.
- Gould, W., Pitblado, J. and Poi, B. (2010). Maxiumum Likelihood Estimation with Stata, fourth edn, Stata Press.
- Haan, P. and Uhlendorff, A. (2006). Estimation of multinomial logit models with unobserved heterogeneity using maximum simulated likelihood, *Stata Journal* **6**(2): 229–245.
- Hole, A. R. (2007). Fitting mixed logit models by using maximum simulated likelihood, *Stata Journal* **7**(3): 388–401.
- Hoynes, H. W. (1996). Welfare Transfers in Two-Parent Families: Labor Supply and Welfare Participation Under AFDC-UP, *Econometrica* **64**(2): 295–332.
- Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis, Wiley, New York.
- McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior, in P. Zarembka (ed.), Frontiers in Econometrics, Academic Press, New York.
- McFadden, D. and Train, K. E. (2000). Mixed mnl models for discrete response, *Journal of Applied Econometrics* 15(5): 447–470.
- Train, K. E. (2009). Discrete Choice Methods with Simulation, second edn, Cambridge University Press.
- van Soest, A. (1995). Structural models of family labor supply a discrete choice approach, Journal of Human Resources 30(1): 63–88.