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Introduction

Dynamic models:
• Past outcome (yit−1) ⇒ current outcome (yit)

• Stigmatization of unemployment (Arulampalam et al., 2000)
• Stepping-stone effect of low-paid employment (Stewart, 2007)

• Time-invariant error term (Heckman 1981a)
• Initial condition problem (Heckman 1981b)
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Introduction

Several Stata commands exist:
• redprob or redpace (Stewart 2006a,b)
• Based on (adaptive) Gaussian-Hermite quadratures or on

Maximum Simulated Likelihood (MSL)
• Restricted to balanced panels
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Introduction

Simulated Multivariate Random Effects Probit Model:

1. Unbalanced panels
2. Estimator can easily be adjusted, e.g. to allow for

autocorrelated errors
3. High accuracy
4. Lower computational time
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Random Effects Model
The latent variable y∗it is specified for t ≥ 2, . . . ,T by:

y∗it = γy∗it−1 + x ′itβ + αi + uit . (1)

The observed binary outcome variable is defined as:

yit =

{
1 if y∗it > 0,
0 else.

(2)

The composite error term is νit = αi + uit with uit ∼ N(0, 1) and
αi ∼ N(0, σ2

α). The composite error term takes the following
equi-correlation structure over time (with t 6= s):

corr(νit , νis) = σ2
α. (3)
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Random Effects Model
Following the approach of Heckman (1981b) for the initial
condition problem:

y∗i1 = z ′i1π + εi , (4)

Correlation of the error term:

εi = θαi + ui1. (5)

The correlation of the composite error term between the initial
period and the subsequent ones is:

corr(εi , νit) = θσ2
α, (6)
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Random Effects Model

The variance-covariance matrix takes following form:

Ω =


θ2σ2

α + 1
θσ2

α σ2
α + 1

θσ2
α σ2

α σ2
α + 1

...
...

... . . .
θσ2

α σ2
α σ2

α . . . σ2
α + 1

 . (7)
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Random Effects Model

The likelihood-contribution of each individual is:

ΦiT = (ki1z ′i1π, ki2x ′i2β, . . . , kiT x ′iTβ,
ki1ki2Ω2,1, ki1ki3Ω3,1, . . . , kiT−1kiT ΩT ,T−1).

(8)

There are T sign variables kit , with:

kit =

{
1 if yit = 1,
−1 else.

(9)
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Random Effects Model

The log likelihood to be maximized is the sum of the individual log
likelihood contributions:

lnL = ln
N∑

i=1
ΦiT (µ; Ω), (10)

Note: µ = (ki1z ′i1π, . . . , kiT x ′iTβ),Ω = (ki1ki2Ω2,1, . . . , kiT−1kiT ΩT ,T−1).
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Random Effects Model
• Multivariate normal probability functions of order T required

• In Stata, only the bivariate normal distribution function exists
• Simulated multivariate normal probabilities are derived by the

command mvnp
• Using Halton draws, which are generated with mdraws
• The total number of generated Halton draws is R and with

each draw r ∈ {1, . . . ,R} multivariate normal probabilities are
simulated and the average of these simulations is derived.

Hence, the logarithm of the simulated likelihood is:

lnSL = ln 1
R

R∑
r=1

N∑
i=1

Φr
iT (µ; Ω). (11)
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Illustration

Creating an artificial data set:

• 1000 individuals, 5 time periods
• Time-invariant error term (alpha), explanatory (x1,x2,x3)

and instrumental variables (Instrument), idiosyncratic shock
(u i) and a variable called Random

• Time-invariant error term has a normalization of ∼ N(0, 2), all
other variables are standard normal distributed, i.e. ∼ N(0, 1)

• The variable Random is a temporary identifier which helps to
construct an unbalanced panel
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Illustration

set obs 1000
gen id= n
expand 5
bys id: gen tper= n

matrix m = (0,0,0,0,0,0,0)
matrix sd = (sqrt(2),1,1,1,1,1,1)
drawnorm alpha Instrument x1 x2 x3 u i Random,
n(5000) means(m) sds(sd) seed(987654321)
replace Random=normal(Random)
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Illustration

sort id tper
by id: replace alpha=alpha[1]
by id: replace Random=Random[1]
drop if tper==5 & Random>.85
drop if tper>=4 & Random<.10
bys id (tper): gen nwave= N
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Illustration
The latent variable y∗ is constructed in the following manner:

y∗i1 = 0.7 + 0.35x1 + 0.66x2 + 0.25x3 + 1.5xInstrument + θαi + ui1,

where xInstrument is an instrumental variable which will only have an
effect on the outcome of the initial period and not on the
subsequent ones. For the initial period it is assumed that θ takes
on the value 1. For the subsequent periods t = 2, . . . , 5 the
following relationship is defined:

y∗it = 0.3 + 0.46yt−1 + 0.25x1 + 0.75x2 + 0.55x3 + αi + uit .

The observable variable yit becomes 1 if y∗it > 0 and 0 else.
Furthermore, the variable ylag is generated which takes the value
of the outcome variable of the previous period.
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Illustration
sort id (tper)
local theta=1
by id: gen ystar=.35*x1 + .66*x2 + .25*x3 +
1.5*Instrument + .7 + ‘theta’*alpha + u i if n==1
by id: gen y=cond(ystar>0,1,0) if n==1

sort id (tper)
forvalues i=2/5{
by id: replace ystar =.25*x1 + .75*x2 + .55*x3 +
.46*y[ n-1] + .35 + alpha + u i if n==‘i’
by id: replace y=cond(ystar>0,1,0) if n==‘i’
}
sort id (tper)
by id: gen ylag=cond( n>1,y[ n-1],.)
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Illustration

matrix p=(2,3,5,7,11)
mdraws, neq(5) draws(100) prefix(z) primes(p)
burn(15)
Created 100 Halton draws per equation for 5
dimensions. Number of initial draws dropped per
dimension = 15 . Primes used: 2 3 5 7 11

global dr = r(n draws)
global T max=5
global T min=3
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Stata Syntax
cap prog drop mpheckman d0
program define mpheckman d0
args todo b lnf
tempname sigma theta
tempvar beta pi lnsigma lntheta T fi fi6 fi5 fi4 fi3 FF
mleval ‘beta’ = ‘b’, eq(1)
mleval ‘pi’ = ‘b’, eq(2)
mleval ‘lnsigma’ = ‘b’, eq(3) scalar
mleval ‘lntheta’ = ‘b’, eq(4) scalar

scalar ‘sigma’=(exp(‘lnsigma’))ˆ2
scalar ‘theta’=exp(‘lntheta’)

qui:{
by idcode: gen double ‘T’ = ( n == N)
sort idcode (year)
tempvar k1 zb1
by idcode: gen double ‘k1’ = (2*$ML y1[1]) - 1
by idcode: gen double ‘zb1’ = ‘pi’[1]
forvalues r = 2/$T max {
tempvar k‘r’ xb‘r’
by idcode: gen double ‘k‘r’’ = (2*$ML y1[‘r’]) - 1
by idcode: gen double ‘xb‘r’’ = ‘beta’[‘r’]
}
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Stata Syntax

forvalues s=$T min/$T max{
tempname V‘s’ C‘s’
}
mat ‘V$T max’=I($T max)*(‘sigma’+1)
mat ‘V$T max’[1,1]=(‘theta’ˆ2)*‘sigma’+1

forvalues row=2/$T max{
mat ‘V$T max’[‘row’,1] = (‘theta’*‘sigma’)
mat ‘V$T max’[1,‘row’] = ‘V$T max’[‘row’,1]
local s = ‘row’-1
forvalues col=2/‘s’{
mat ‘V$T max’[‘row’,‘col’] = ‘sigma’
mat ‘V$T max’[‘col’,‘row’] = ‘V$T max’[‘row’,‘col’]
}
}

forvalues r = $T min/$T max{
mat ‘V‘r’’ = ‘V$T max’[1..‘r’,1..‘r’]
mat ‘C‘r’’ = cholesky(‘V‘r’’)
}
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Stata Syntax

egen double ‘fi5’ = mvnp(‘zb1’ ‘xb2’ ‘xb3’ ‘xb4’ ‘xb5’) if nwave==5, /*
*/ chol(‘C5’) dr($dr) prefix(z) signs(‘k1’ ‘k2’ ‘k3’ ‘k4’ ‘k5’) adoonly
egen double ‘fi4’ = mvnp(‘zb1’ ‘xb2’ ‘xb3’ ‘xb4’) if nwave==4, /*
*/ chol(‘C4’) dr($dr) prefix(z) signs(‘k1’ ‘k2’ ‘k3’ ‘k4’) adoonly
egen double ‘fi3’ = mvnp(‘zb1’ ‘xb2’ ‘xb3’) if nwave==3, /*
*/ chol(‘C3’) dr($dr) prefix(z) signs(‘k1’ ‘k2’ ‘k3’) adoonly

gen double ‘fi’=cond(nwave==5,‘fi5’,cond(nwave==4,‘fi4’,‘fi3’))
gen double ‘FF’ = cond(!‘T’,0,ln(‘fi’))
}
mlsum ‘lnf’ = ‘FF’ if ‘T’
if (‘todo’==0 | ‘lnf’>=.) exit

end
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Stata Syntax
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Initial values

qui: probit y ylag x1 x2 x3 if tper> 1
matrix b0=e(b)
qui: probit y x1 x2 x3 Instrument if tper==1
matrix b1=e(b)
matrix b12 = (-.5,-.5)
matrix b0 = (b0 , b1 , b12)
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Stata output

ml model d0 mpheckman d0 (y: y = ylag x1 x2 x3) (Init Period: y = x1
x2 x3 Instrument) /lnsigma /lntheta, title(Multivariate RE Probit, $dr
Halton draws) missing

ml init b0, copy

ml max
(output omitted )
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Stata output
Multivariate RE Probit, 100 Halton draws Number of obs = 4689

Wald chi2(4) = 460.84
Log likelihood = -2099.9876 Prob > chi2 = 0.0000

Coef. Std. Err. z P> |z| [95% Conf. Interval]
y
ylag .4598806 .0813738 5.65 0.000 .300391 .6193703
x1 .3074512 .0357443 8.60 0.000 .2373936 .3775087
x2 .7470318 .0427175 17.49 0.000 .663307 .8307565
x3 .5663907 .0390205 14.52 0.000 .489912 .6428694
cons .3250167 .0821635 3.96 0.000 .1639792 .4860542

Init Period
x1 .3800084 .0733688 5.18 0.000 .2362083 .5238086
x2 .7001715 .0858233 8.16 0.000 .5319609 .868382
x3 .3487215 .0737431 4.73 0.000 .2041876 .4932553
Instrument 1.518743 .1419662 10.70 0.000 1.240495 1.796992
cons .705813 .0944883 7.47 0.000 .5206193 .8910066

lnsigma
cons .3597355 .0681636 5.28 0.000 .2261373 .4933338

lntheta
cons -.0438069 .1375578 -0.32 0.750 -.3134153 .2258016
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Stata output

Transforming of lnsigma and lntheta to derive σ2
α and θ:

diparm lnsigma, function((exp(@))ˆ2) deriv(2*(exp(@))*(exp(@)))
label("‘Sigma2") prob

diparm lntheta, function(exp(@)) deriv(exp(@)) label("Theta") prob

Sigmaˆ2 2.053347 .2799271 7.34 0.000 1.571884 2.682281
Theta .9571388 .131662 7.27 0.000 .7309463 1.253327
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Robustness check I

Robustness check:
• Applying different sets of primes; picked randomly in the

range between 2, . . . , 97
• 10 estimations run

⇒ Results only differ slightly!
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Robustness check II

Robustness check:
• Results compared with those of the command redpace
• Identical data set created, but balanced this time
• Estimations are run on the basis of 20, 50 and 100 draws

(Halton draws and pseudo-random numbers)
• Indicator for efficiency: log-likelihood and computational time
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Robustness check II

Results:

1. When 100 draws applied all estimators derive similar
coefficients and log-likelihood

2. Computational time lower in the multivariate random effects
probit model (between ∼28% and ∼38%)

3. When 20 Halton draws are applied, multivariate random
effects probit model is more accurate
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Extending to Autocorrelated Errors

Assumption by now is that the idiosyncratic shock is
autocorrelated so that it follows a AR(1)-process:

uit = δuit−1 + εit .

The generalized variance-covariance matrix takes on following form:

Ω =


θ2σ2

α + 1
θσ2
α + δ θ2σ2

α + 1
θσ2
α + δ2 σ2

α + δ θ2σ2
α + 1

θσ2
α + δ3 σ2

α + δ2 σ2
α + δ θ2σ2

α + 1
...

...
...

...
. . .

θσ2
α + δT−1 σ2

α + δT−2 σ2
α + δT−3 σ2

α + δT−4 . . . θ2σ2
α + 1
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Extending to Autocorrelated Errors

Adjustments:

• Introducing the parameter ρ, which refers to the
autocorrelated error term

• Parameter ρ will be integrated into the Stata syntax as the
inverse hyperbolic tangent of ρ

• The variance-covariance matrix must be adjusted according to
the adjusted Ω
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Extending to Autocorrelated Errors

Findings:

• The findings go along with those of the redpace command,
especially when 500 pseudo-random numbers are applied

• The log likelihood of the multivariate random effects probit
model with autocorrelated errors only changes slightly when
using 100 instead of 50 Halton quasi-random numbers

• Accuracy can already be found for a low level of Halton draws
and computational time can be saved when a multivariate
random effects probit model is applied
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Thank you
for your

attention!!!
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