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Overview
Two approaches to endogeneity in nonlinear models

@ Nonlinear instrumental variables, and control functions

o Blundell et al. (2013) Chesher and Rosen (2013), Newey (2013),
Wooldridge (2010), and Cameron and Trivedi (2005)
e Only impose conditional moment restrictions

@ Maximum likelihood

e Wooldridge (2010), Cameron and Trivedi (2005), Skrondal and

Rabe-Hesketh (2004), Rabe-Hesketh et al. (2004), Heckman (1978),
and Heckman (1979)

e Impose restrictions on the entire conditional distributions; less robust



Overview
Specific Stata solutions

@ Stata has many commands to estimate the parameters of specific
models

° ivregress,ivpoisson,ivprobit,and ivtobit
o heckman, heckprobit, and heckoprobit

@ Two Stata commands that offer more general solutions are gsem and
gmm
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A GSEM solution for endogeneity

o Generalized structural equations models (GSEM) encompass many
nonlinear triangular systems with unobserved components

o A GSEM is a triangular system of nonlinear or linear equations that
share unobserved random components
e The gsem command can estimate the model parameters

@ gsem is new in Stata 13
e The unobserved components can model random effects

@ Including nested effects, hierarchical effects, and random-coefficients
e The unobserved components can also model endogeneity

@ Include the same unobserved component in two or more equations

e Set up and estimation by maximum likelihood

o Random-effects estimators and correlated-random-effects estimators

o See Rabe-Hesketh and Skrondal (2012), Skrondal and Rabe-Hesketh
(2004), Rabe-Hesketh et al. (2004), and Rabe-Hesketh et al. (2005)
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Overview
A GMM solution for endogeneity or missing data

@ Stata's gmm command can be used to stack the moment conditions
from multistep estimators

e Many control-function estimators for the parameters of models with
endogeneity are described as multistep estimators

e Many inverse-probability-weighted estimators, regression adjustment
estimators, and combinations thereof, for the population-averaged
effects from samples with missing data are described as multistep
estimators

o Converting multistep estimators into one-step estimators produces a
consistent estimator for the variance-covariance of the estimator
(VCE); see Newey (1984) and Wooldridge (2010) among others

e Setup and estimation by GMM: Only the specified moment restrictions

apply
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GSEM examples
GSEM structure

@ GSEM handles endogeneity by including common, unobserved
components into the equations for different variables

n 0\ [1 o
()~ (@) 2)
E[}/1|X7y2777] = F(Xﬁ+)/204+775)
Yo =xB+wy 1 +e

For example

where
e F() is smooth, nonlinear function
@ X are exogenous covariates
e 7 is the common, unobserved component that gives rise to the
endogeneity
w are “instruments”
€ is an error term
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GSEM examples
Bivariate probit with endogenous variable

@ Two binary dependent variables, school and work for young people
(20-30)
e Each is a function of age and parental socio-economic score (ses)
e age is exogenous
e ses is endogenous

@ ses is affected by an unobserved component that also affects each of
the binary variables.

o We believe that parental education ped affects ses but neither school
nor work
ses; = ag + ayped; + aani + €1

work; = <(5o + Pises; + [oagej + [3ni + €2) > 0)

school; = ((70 + y15€s; + y2agei + y3n; + €3) > 0)

Ul 0 1 0 00
‘al . nN 0 0 02 00
€2 0’10 0 1 0

0 0 0 01

€3



GSEM examples

. gsem (work <- ses age L, probit) ///

> (school <- ses age L, probit) /17

> (ses <- ped L), /17

> var (L@1) nolog

Generalized structural equation model Number of obs = 5000

Log likelihood = -14078.848
(1) [var(L)]_cons =1

Coef.  Std. Err. z P>|z| [95% Conf. Intervall
work <-
ses -.2405712 .0968634 -2.48 0.013 -.4304199 -.0507224
age .1923723 .0148124 12.99 0.000 .1633406 .221404
L .9237883 .1901529 4.86 0.000 .5510954 1.296481
_cons -4.297587 .3235578 -13.28 0.000 -4.931748 -3.663425
school <-
ses .3839591 .084104 4.57 0.000 .2191182 .5488
age -.1968823 .0156442 -12.58 0.000 -.2275444 -.1662201
L .9276381 .2028112 4.57 0.000 .5301355 1.325141
_cons 3.934125 .5295485 7.43 0.000 2.896229 4.972021
ses <-
ped .2083431 .0145523 14.32 0.000 .1798212 .2368651
L .923848 .0911936 10.13 0.000 .7451118 1.102584
_cons .8938526 .1422065 6.29 0.000 .615133 1.172572
var (L) 1 (constrained)
var (e.ses) 1.088828 .1668318 .8063745 1.470217




GSEM examples
Fixed effects versus correlated random effects

@ In the econometric parlance of panel data, fixed effects are generally
defined to be individual-specific, unobserved random components that
depend on observed covariates in an unspecified way

o Fixed effects are removed from the estimator to avoid the incidental
parameters problem, so analysis is conditional on the unobserved fixed
effects

@ There is still some discussion as to whether fixed effects are random
or fixed, but the modern approach views them as random
(Wooldridge, 2010, page 286)

@ Correlated random effects are a parametric approach to the problem
of fixed effects
The dependence between individual-specific effects and the covariates
is modeled out, leaving common unobserved components (Cameron
and Trivedi, 2005, pages 719 and 786) (Wooldridge, 2010, page 286)
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GSEM examples
Fixed effects versus correlated random effects

@ At the cost of more parametric assumptions, correlated-random-effect
(CRE) models identify average partial effects and many more
functional forms for nonlinear dependent variables
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GSEM examples
Fixed-effects logit

@ Main "job"” is either work or school for young people aged 20-30
e Variable work;; is coded 0 for school, 1 for work
@ We have 5 observations on each individual
o Logit probabilities that work;; = 1 are functions of age;;, and parental
socio-economic score ses;:, and an unobserved individual-level
component
e agej; is exogenous
e ses;; is endogenous, it is related to the unobserved individual-level
component 7;
ejr ~ Logistic(0, 7% /3)
worki = (fo + sesit}1 + agejef2 + ni + €it) > 0

o Except for regularity conditions, and 7; L €; no assumption is made
about the distribution of 7;
e The distribution of 1; may depend on ses;; in an unspecified fashion
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GSEM examples
Conditional maximum-likelihood estimation

@ The standard econometric approach is to maximize the log-likelihood

function conditional on the sum Ethl Yit
o Chamberlain (1980), Chamberlain (1984), Wooldridge (2010) and
Cameron and Trivedi (2005)

@ This conditional log-likelihood function does not depend on the
unobseved 7;, it is transformed out

@ The estimator obtained by maximizing this conditional log-likelihood
function is consistent for the coefficients on the time-varing covariates
and it is asymptotically normal
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GSEM examples

. xtlogit w ses age, fe

note: multiple positive outcomes within groups encountered.

note: 185 groups (925 obs) dropped because of all positive or
all negative outcomes.

Iteration O: log likelihood = -1513.9791

Iteration 1: log likelihood = -1444.5811

Iteration 2: log likelihood = -1444.4195

Iteration 3: log likelihood = -1444.4195

Conditional fixed-effects logistic regression  Number of obs = 4075
Group variable: id Number of groups = 815
Obs per group: min = 5

avg = 5.0

max = 5

LR chi2(2) = 295.99

Log likelihood = -1444.4195 Prob > chi2 = 0.0000
work Coef.  Std. Err. z P>|z| [95% Conf. Intervall

ses -.5825966 .0392365 -14.85  0.000 -.6594987  -.5056946

age .083444 .011576 7.21  0.000 .0607555 .1061325
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A GSEM CRE logit

o A GSEM CRE logit specifies a distribution for 1; and how it enters
the model for the related covariates

e This estimator is better termed, a correlated-random-effects (CRE)
estimator

e Inference is not conditional on unobserved fixed effects and average
partial effects, after averaging out CRE, are identified

@ For example,

worki: = (Po + sesitf1 + ageitS2 + ni + €jt) > 0
sesit = o + ayped; + niaz + &t
ni ~ N(0,1)
ejr ~ Logistic(0,72/3)
Eir ~ N(0,02)
(ni, €it, &) mutually independent
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GSEM examples

. gsem (work <- ses age L[id]@1l, logit) ///
> (ses <- ped L[id]), vsquish nolog
Generalized structural equation model Number of obs = 5000
Log likelihood = -11172.491
(1) [work]L[id] = 1

Coef. Std. Err. z P>|z| [95% Conf. Intervall
work <-
ses -.5902971 .0385655 -15.31 0.000 -.665884 -.5147101
age .0875979 .0104571 8.38 0.000 .0671024 .1080934
L[id] 1 (constrained)
_cons -2.047273 .2705777 -7.57 0.000 -2.577595 -1.51695
ses <-
ped .0813543 .0118188 6.88 0.000 .0581898 .1045188
L[id] 1.48718 .1062063 14.00 0.000 1.27902 1.695341
_cons 1.151305 .1245313 9.25 0.000 .9072278 1.395381
var (L[id]) 1.043044 . 1547474 .7798608 1.395044
var(e.ses) .9936687 .0221993 .9510978 1.038145




GSEM examples
A CRE logit with an endogenous variable

@ Now suppose that ses;; is endogenous and we have an instrument
e ses;; is affected by the unobserved, individual-level component 7; and
another unobserved component &;; that also affects work;;
o We believe that parental education ped;; affects ses; but not work;;
e Some would not define 7; to FE, but rather RE that are related to the
observed covariates
work;: = (Bo + sesitB1 + ageirB2 + ni + &itB3 + €1it) > 0
sesit = ag + pedirar + nicz + &jr + €2t
€1t ~ Logistic(0, 72 /3)
e2ie ~ N(0,0?)
ni ~ Normal(0,1)
& ~ Normal(0,1)
(€1it, €2it, i, &) mutually independent
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GSEM examples

. gsem (work <- ses age L[id]@1 X, logit) ///

> (ses <- ped L[id] X@1), var(X@l)vsquish ///

> from(var(e.ses):_cons = 1) nolog

Generalized structural equation model Number of obs = 5000
Log likelihood = -12851.37

(1) [work]L[id] =1
(2) [ses]X =1
(3) [var(X)]_cons = 1

Coef. Std. Err. z P>|z| [95% Conf. Intervall
work <-
ses -.593026 .0496495 -11.94 0.000 -.6903373 -.4957148
age .1019323 .0149949 6.80 0.000 .0725429 .1313217
L[id] 1 (constrained)
X 2.150414 .2074175 10.37 0.000 1.743883 2.556945
_cons 9.282667 .9335425 9.94 0.000 7.452957 11.11238
ses <-
ped 2.020729 .0168226 120.12 0.000 1.987757 2.053701
L[id] 1.515159 .1373711 11.03 0.000 1.245916 1.784401
X 1  (constrained)
_cons .741761 .1704414 4.35 0.000 .4077019 1.07582
var(L[id]) .9920447 .1891004 .6827755 1.4414
var (X) 1 (constrained)
var(e.ses) 1.066483 .0459968 .9800357 1.160555
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GSEM examples
Panel probit with endogenous variable and CRE

@ Binary dependent variables school;; for young people (20-30, at first
interview)
e schooli; is a function of age;; and time-varying parental socio-economic
score sesj;
e agej; is exogenous
e ses;; is endogenous

@ ses;; is affected by an unobserved component individual-level effect n;

and by a time-varying unobserved component &, both of which also
affect schooli

@ We believe that time-varying parental education ped;: affects ses; but
not school;.

@ We have 5 observations on each young person
sesjp = ag + aiped; + &jr + 0 + €1t
school;; = ((Bo + Bisesiy + Baageir + 53&it + ni + €2,it) > 0)

ni ~ Normal(0, o)) €1,it ~ Normal(0, 0ses)
&it ~ Normal(0,1) €2t ~ Normal(0,1)



GSEM examples

. gsem (school <- ses age L Mi[id]@l, probit) /17

> (ses <- ped L@1i Mi[id]e1), /17

> var(L@1) from(var(e.ses):_cons=1) nolog

Generalized structural equation model Number of obs = 5000

Log likelihood = -10377.715
(1) [schoollMi[id] = 1
(2) [ses]Mi[id] =1
(3) [seslL =1
(4) [var(L)]_cons = 1

Coef . Std. Err. z P>|z| [95% Conf. Intervall
school <-
ses .6098294 .0447354 13.63 0.000 .5221496 .6975093
age -.4142175 .0201581 -20.55 0.000 -.4537266 -.3747085
M1[id] 1 (constrained)
L 1.123539 .1016453 11.05 0.000 .9243183 1.322761
_cons 10.69246 .5345878 20.00 0.000 9.644685 11.74023
ses <-
ped .5016687 .0150045 33.43 0.000 .4722603 .531077
M1[id] 1 (constrained)
L 1 (constrained)
_cons .9645122 .1500038 6.43 0.000 .6705102 1.258514
var (M1[id]) 1.042761 .0646625 .9234241 1.177521
var (L) 1 (constrained)
var (e.ses) .9568585 .0433915 .8754826 1.045798




GSEM examples
Multinomial logit with endogenous variable

@ Main “job" is either work, school, or home for young people aged
20-30
e job; is coded, 0 for home, 1 for work, and 2 for school
@ Multinomial-logit probabilities are functions of age;, and parental
socio-economic score ses;, and an unobserved individual-level
component 7);
e age; is exogenous
e ses; is endogenous,

o ses; is affected by 7; that also affects the multinomial-logit probabilities
@ We believe that parental education ped; affects ses; but not the
multinomial-logit probabilities

Prljob — j] = exp(Boj + sesif1; + ageiBaj + 1iBaj) jef1,2)

1+ 321 exp(Boj + sesif1j + ageiBaj + 1ifa))
ses; = ap + aped; + ;i + €;

n; ~ Normal(0,1) €; ~ Normal(0, 0es)



GSEM examples

. gsem (job <- ses age L, mlogit) (ses <- ped L@1), var(Le1) nolog
Generalized structural equation model Number of obs = 3000
Log likelihood = -8130.9865

(1) [seslL =1

(2) [var(L)]_cons = 1

Coef.  Std. Err. z P>|z| [95% Conf. Intervall
0.job (base outcome)
1.job <=
ses .1680505 .079434 2.12 0.034 .0123627 .3237383
age .1977622 .0176799 11.19 0.000 .1631103 .2324141
L .4178895 .1825025 2.29 0.022 .0601912 . 7755879
_cons -5.667666 .5556052 -10.20 0.000 -6.756632 -4.578699
2.job <-
ses .5734593 .0834707 6.87 0.000 .4098598 .7370588
age -.2094759 .0201765 -10.38 0.000 -.2490211 -.1699306
L -.6267227 .1836712 -3.41 0.001 -.9867115 -.2667338
_cons 1.21761 .6033821 2.02 0.044 .035003 2.400217
ses <-
ped .6313673 .0197324 32.00 0.000 .5926925 .670042
L 1 (constrained)
_cons .6768382 .1919967 3.53 0.000 .3005317 1.053145
var (L) 1 (constrained)
var (e.ses) 1.007182 .0518205 .9105691 1.114046




GSEM examples
Multinomial logit with CRE and an endogenous variable

o Main “job" is either work, school, or home for young people
e job; is coded, O for home, 1 for work, and 2 for school
@ Multinomial-logit probabilities are functions of age;;, and parental
socio-economic score ses;j;, an unobserved individual-level component
7n;, and an unobserved component that varies over individuals and
time &
e agej; is exogenous, ses;; is endogenous
o ses; is affected by n; and by &, both of which also affect the
multinomial-logit probabilities
@ We believe that parental education ped;: affects ses; but not the
multinomial-logit probabilities

xbijtj = Boj + sesjt1j + ageitB2; + ni + it Baj
e bj; )
);p(x i) je{1,2}
143 g exp(xbit)
ses; = ag + ayped; + 1 + Eir + €t
ni ~ Normal(0,0,) & ~ Normal(0,1) <€ ~ Normal(0, oses)

Pf[jOb,‘t :J] =



GSEM examples

. gsem (job <- ses age L P1[id]@l, mlogit) (ses <- ped Lei Pi[id]e1), 11/
var(L@1) vsquish nolog
Generallzed structural equation model Number of obs = 5000

Log likelihood = -13691.986
(1) [1.job]P1[id] =1
(2) [2.joblP1[id]

( 3) [ses]P1[id] =1
(4) [seslL =
(5) [var(L)]_cons =1
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
0.job (base outcome)
1.job <-
ses .082676 .0381896 2.16 0.030 .0078257 .1575262
age .2072062 .0150389 13.78 0.000 .1777304 .2366819
P1[id] 1 (constrained)
L .6057244 .1070445 5.66 0.000 .395921 .8155277
_cons -5.398094 .4560614 -11.84 0.000 -6.291958 -4.50423
2.job <-
ses .4291914 .0422678 10.15 0.000 .346348 .5120348
age -.1651801 .0164842 -10.02 0.000 -.1974885 -.1328717
P1[id] 1 (constrained)
L -.2399792 .11156573 -2.15 0.031 -.4586274 -.021331
_cons 1.206197 .4645158 2.60 0.009 .2957623 2.116631
ses <-
ped .8193806 .0206827 39.62 0.000 . 7788433 .8599179
P1[id] 1 (constrained)
L 1 (constrained)
_cons . 7655727 .2146381 3.57 0.000 3448897 1.186256
var (P1[id]) 1.012727 .0616391 .8988445 1.141039
var (L) 1 (constrained)
var (e.ses) .9701532 .0435647 .8884176 1.059409




GSEM examples
A CRE probit with sample-selection

@ Binary variable for school or work sowork;; is missing if the young
person is at home

@ We believe that parental education ped;; and parental SES score ses;;
affect the choice between school or work

@ We believe that that ses;; and an attachment-to-home score ath;;
affect whether the young person stays home, making sowork;; missing.

@ We allow for Heckman-type endogenous selection and CRE

{(ﬁo + pisesit + Bopedis + B3€ir + ni + €1ie > 0), if homej; =0

sowork;; = ]
otherwise

home;: = (Yo + Y1Sesic + Yaathit + &t + it + €2ir > 0)
sesiy = ap + 1i + €3t pedit = ap + 1 + €ait
athiy = ap + i + €sjt
ni ~ Normal(0,1) e1;z ~ Normal(0,1) ezjr ~ Normal(0,1)
e3it ~ Normal(0,03)  es4ir ~ Normal(0,03) esi; ~ Normal(0, o2)

EEuS: ~ Normal(0, 1)



GSEM examples

. gsem (sowork <- ses ped L M[id]@1l, probit) ///

> (home  <- ses ath L@l M[id]@1, probit) /17

> (ses <- M[id]e1) 17/

> (ped <- M[id]e1) 11/

> (ath <- M[id]e1) /77

> , var(L@1) nolog

Generalized structural equation model Number of obs = 7500

Log likelihood = -38532.664

(1) [sowork]M[id] = 1
( 2) [home]lM[id] = 1
( 3) [homellL = 1
( 4) [ses]M[id] =1
( 5) [ped]M[id] = 1
( 6) [ath]M[id] = 1
(7) [var(L)]_cons = 1
Coef. Std. Err. z P>|z| [95% Conf. Intervall
sowork <-
ses .9927245 .0810946 12.24 0.000 .8337821 1.151667
ped .9831526 .0816976 12.03 0.000 .8230283 1.143277
M[id] 1 (constrained)
L 1.06312 .1247585 8.52 0.000 .8185974 1.307642
_cons -2.024637 .1560467 -12.97 0.000 -2.330483 -1.718791
home <-
ses -.989918 .0236261 -41.90 0.000 -1.036224 -.9436117
ath .9893967 .0292436 33.83 0.000 .9320802 1.046713
M[id] 1 (constrained)
L 1 (constrained)
_cons -1.034227 .0484887 -21.33 0.000 -1.129263 -.9391909
ses <-
M[id] 1 (constrained)
_cons .9617187 .0288255 33.36 0.000 .9052217 1.018216




GSEM examples
More GSEM examples

@ All the documentation in online.

e http://www.stata.com/support/documentation/

@ For an example of a cross-sectional Heckman model, see
http://www.stata.com/bookstore/
structural-equation-modeling-reference-manual/
and click on example43g

@ For an example of a cross-sectional endogenous treatment effects, see
http://www.stata.com/bookstore/
structural-equation-modeling-reference-manual/
and click on exampled44g
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GMM examples
Two-step estimators as GMM estimators

@ Many two-step estimators have the form

© Estimate nuisance parameters v by an M estimator
@ Estimate parameters of interest 3 by an M estimator or a method of
moments estimator that depends on the original data and v

@ In general, the distribution of B depends on the first stage estimation
o The correction is well known, e.g. Wooldridge (2010)

@ Another way solving the two-step estimation problem is to stack the
moment conditions from the two estimation problems and solve them
jointly
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GMM examples
Definition of GMM estimator

@ Our research question implies g population moment conditions
e mis g x 1 vector of functions whose expected values are zero in the
population

e w; is the data on person i
@ B is k x 1 vector of parameters, k < g

@ The sample moments that correspond to the population moments are
— N
m(0) = (1/N)> 2, m(w;, )

@ When k < g, the GMM choses the parameters that are as close as
possible to solving the over-identified system of moment conditions

Ocmn = arg ming  m(6)' Wm(6)
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GMM examples
Some properties of the GMM estimator

Ocmm = arg ming  m(0)'Wm(0)

@ When k = g, the MM estimator solves m(8) exactly so
m(6)Wm(6) =0
@ W only affects the efficiency of the GMM estimator

e Setting W = | yields consistent, but inefficient estimates
o Setting W = Cov[m(6)]~* yields an efficient GMM estimator
o We can take multiple steps to get an efficient GMM estimator

@ Let W =1 and get
Ocvm = arg min, m(6)'m(6)

@ Use Bcumn to get W, which is an estimate of Cov[m(9)] !

@ Get
Ocvmz = arg min, m(0) Wm(6)

© Repeat steps 2 and 3 using Oz in place of 0t
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Using the gmm command
The gmm command

@ The command gmm estimates parameters by GMM

@ gmm is similar to nl, you specify the sample moment conditions as
substitutable expressions

@ Substitutable expressions enclose the model parameters in braces {}
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Using the gmm command
The syntax of gmm |

@ For many models, the population moment conditions have the form

Efze(B)] = 0
where z is a g x 1 vector of instrumental variables and e(3) is a scalar
function of the data and the parameters 3

@ The corresponding syntax of gmm is
gmm (eb_expression) [if ] [in] [Weight] ,

instruments (instrument_varlist) | options |

where some options are
onestep use one-step estimator (default is two-step estimator)
winitial(wmtype) initial weight-matrix W
wmatrix(witype)  weight-matrix W computation after first step
vce(veetype) vcetype may be robust, cluster, bootstrap, hac
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Using the gmm command

Modeling crime data |

@ We have data

. use cscrime, clear

. describe
Contains data from cscrime.dta

obs: 10,000

vars: 5 24 May 2008 17:01

size: 400,000 (_dta has notes)

storage display value

variable name type format label variable label
policepc double %10.0g police officers per thousand
arrestp double %10.0g arrests/crimes
convictp double %10.0g convictions/arrests
legalwage double %10.0g legal wage index 0-20 scale
crime double %10.0g property-crime index 0-50 scale
Sorted by:
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Using the gmm command
Modeling crime data I

@ We specify that

crime; = By 4+ policepc;1 + legalwage; 32 + €;

@ We want to model

E[crime|policepc, legalwage] = [y + policepcfi + legalwage(
o If E[e|policepc,legalwage] = 0, the population moment conditions

£ [( policepc ) e] _ <0)
legalwage 0

hold
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Using the gmm command

OLS by GMM |

. gmm (crime - policepc*{bl} - legalwage*{b2} - {b3}), ///
> instruments(policepc legalwage) nolog

Final GMM criterion Q(b) = 6.61e-32

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 10000
GMM weight matrix: Robust
Robust
Coef. Std. Err. z P>|z| [95% Conf. Intervall
/bl -.4203287 .0053645 -78.35 0.000 -.4308431  -.4098144
/b2 -7.365905 .2411545  -30.54  0.000 -7.8385569 -6.893251
/b3 27.75419 .0311028 892.34  0.000 27.69323 27.81515

Instruments for equation 1: policepc legalwage _cons
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Using the gmm command

OLS by GMM II

. regress crime policepc legalwage, robust

Linear regression Number of obs = 10000
F( 2, 9997) = 4422.19
Prob > F = 0.0000
R-squared = 0.6092
Root MSE = 1.8032

Robust
crime Coef.  Std. Err. t P>t [95% Conf. Intervall
policepc -.4203287 .0053653 -78.34 0.000 -.4308459  -.4098116
legalwage -7.365905 .2411907  -30.54  0.000 -7.838688 -6.893123
_cons 27.75419 .0311075  892.20  0.000 27.69321 27.81517




Using the gmm command

OLS by GMM IlI

. generate cons = 1

. gmm (crime - {xb:police legalwage consl}), /17
> instruments(police legalwage ) nolog onestep
Final GMM criterion Q(b) = 1.84e-31

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 10000
Robust
Coef. Std. Err. z P>|z| [95% Conf. Intervall
/xb_policepc -.4203287 .0053645 -78.35 0.000 -.4308431  -.4098144
/xb_legalw-~e -7.365905 .2411545  -30.54  0.000 -7.8385569 -6.893251
/xb_cons 27.75419 .0311028 892.34  0.000 27.69323 27.81515

Instruments for equation 1: policepc legalwage _cons
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Using the gmm command
IV and 2SLS

@ For some variables, the assumption E[e|x] = 0 is too strong and we
need to allow for E[e|x] # 0

o If we have g variables z for which E[e|z] = 0 and the correlation
between z and x is sufficiently strong, we can estimate 3 from the
population moment conditions

Elz(y —xB)] =0
@ z are known as instrumental variables

@ If the number of variables in z and x is the same (g = k), solving the
sample moment conditions yield the MM estimator known as the
instrumental variables (IV) estimator

o If there are more variables in z than in x (¢ > k) and we let
-1
W = <Zf\/:1 zf-z,-) in our GMM estimator, we obtain the two-stage
least-squares (2SLS) estimator
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Using the gmm command
25LS on crime data |

@ The assumption that E[e|policepc] = 0 is false, if communities
increase policepc in response to an increase in crime (an increase in
€)

@ The variables arrestp and convictp are valid instruments, if they

measure some components of communities’ toughness-on crime that
are unrelated to € but are related to policepc

@ We will continue to maintain that E[e|legalwage| =0
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Using the gmm command

2SLS by GMM |

. gmm (crime - {xb:police legalwage conms}), /11
> instruments(arrestp convictp legalwage ) nolog onestep
Final GMM criterion Q(b) = .001454
GMM estimation
Number of parameters = 3
Number of moments = 4
Initial weight matrix: Unadjusted Number of obs = 10000
Robust
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
/xb_policepc -1.002431 .0455469 -22.01  0.000 -1.091701  -.9131606
/xb_legalw-~e -1.281091 .5890977 -2.17 0.030 -2.435702  -.1264811
/xb_cons 30.0494 .1830541 164.16  0.000 29.69062 30.40818

Instruments for equation 1: arrestp convictp legalwage _cons




Using the gmm command

2SLS by GMM I

ivregress 2sls crime legalwage (policepc = arrestp convictp) , robust

Instrumental variables (2SLS) regression Number of obs = 10000
Wald chi2(2) = 1891.83
Prob > chi2 = 0.0000
R-squared = .
Root MSE = 3.216

Robust
crime Coef.  Std. Err. z P>|z| [95% Conf. Intervall
policepc -1.002431 .0455469 -22.01  0.000 -1.091701  -.9131606
legalwage -1.281091 .5890977 -2.17  0.030 -2.435702 -.1264811
_cons 30.0494 .1830541 164.16  0.000 29.69062 30.40818

Instrumented: policepc
Instruments: legalwage arrestp convictp




Using the gmm command

CF estimator for Poisson model endogenous variables

Cross-sectional CF estimator for Poisson model endogenous variables
See Wooldridge (2010), and ivpoisson documentation

yi = exp(Bo + xiP1 + €;)

Xi = ag + zioq +&;

€ =¢&ip+ni

(n; is independent of & and E[exp(n;)] = 1)
Implied model

Elyilz, x,&i] = exp(Bo + xiB1 + &ip)

So we could estimate 3; if we knew &;
@ CF estimator
@ Estimates ag and a3 by OLS,
@ Computes residuals €;
© Plug € in for &
@ Now estimate /31 by multiplicative moment condition as E[exp(7;)] =1



Using the gmm command
GMM with evaluator programs

@ Up to this point, all the problems have fit into the residual-instrument

syntax
@ We want to use gmm to estimator more difficult models

@ We need to use the program-evaluator syntax
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Using the gmm command
gmm program evaluator syntax

gmm evaluator_program_name, nequations(#)
parameters(parameter_name._list) [options]
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Using the gmm command

program define ivp_m

version 13

syntax varlist if, at(name)

forvalues i=1/5{

local m‘i’ : word ‘i’ of ‘varlist’

}

quietly {
tempvar ri1 r2
generate double ‘r2’ = x - ‘at’[1,4]*z - ‘at’[1,5]
generate double ‘r1’ = y/exp(‘at’[1,1]*x + ‘at’[1,2] +‘at’[1,3]*‘r2’) - 1

replace ‘ml’ = ‘r2’
replace ‘m2’ = ‘r2’*z
replace ‘m3’ = ‘ri’
replace ‘m4’ = ‘ril’*x
replace ‘mb’ = ‘ri1’*‘r2’
}
end
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Using the gmm command

gmm ivp_m , nequations(5) parameters(y:x y:_cons rho:_cons x:z x:_cons) winit
> ial(identity) onestep nolog
Final GMM criterion Q(b) = 4.05e-15
GMM estimation

Number of parameters = 5
Number of moments =
Initial weight matrix: Identity Number of obs = 5000
Robust
Coef. Std. Err. z P>|z| [95% Conf. Intervall
y
X 1.037235 .062547 16.58  0.000 .914645 1.159825
_cons .0112318 .0272029 0.41  0.680 -.0420849 .0645485
rho
_cons .0947202 .0657478 1.44 0.150 -.0341431 2235835
x
z .3890606 .0137986 28.20 0.000 .3620159 .4161053
_cons .1003455 .0144203 6.96  0.000 .0720821 .1286088

Instruments for equation 1
Instruments for equation 2
Instruments for equation 3: _cons
Instruments for equation 4
Instruments for equation 5




Using the gmm command

. ivpoisson cfunction y (x = z)

Step 1

Iteration O GMM criterion Q(b) = .01255627
Iteration 1: GMM criterion Q(b) = .00003538
Iteration 2 GMM criterion Q(b) = 4.202e-10
Iteration 3: GMM criterion Q(b) = 6.188e-20

Exponential mean model with endogenous regressors
5

Number of parameters = Number of obs = 5000
Number of moments = 5
Initial weight matrix: Unadjusted
GMM weight matrix: Robust
Robust
y Coef.  Std. Err. z P>|z| [95% Conf. Intervall
y
x 1.037235 .062547 16.58  0.000 9146451 1.159825
_cons .0112319  .0272029 0.41  0.680 -.0420848 .0645486
X
z .3890606  .0137986 28.20  0.000 .3620159 .4161053
_cons .1003455 .0144203 6.96 0.000 .0720821 .1286088
/c_x .0947201  .0657478 1.44 0.150 -.0341432 2235834
Instrumented: x

Instruments: z




Using the gmm command
Fixed-effects Poisson estimator

e Wooldridge (1999, 2010); Blundell, Griffith, and Windmeijer (2002)
discuss estimating the fixed-effects Poisson model for panel data by
GMM.

@ In the Poisson panel-data model we are modeling
Elyit|xit, ni] = exp(xitB + 1)
@ Hausman, Hall, and Griliches (1984) derived a conditional
log-likelihood function when the outcome is assumed to come from a

Poisson distribution with mean exp(x;:3 + ;) and 7; is an observed
component that is correlated with the x;;
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Using the gmm command

e Wooldridge (1999) showed that you could estimate the parameters of
this model by solving the sample moment equations

Z,- Zt Xit <Yit - Mit%) =0
@ These moment conditions do not fit into the interactive syntax
because the term f; depends on the parameters

@ Need to use moment-evaluator program syntax
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Using the gmm command

program xtfe
version 13
syntax varlist if, at(name)
quietly {
tempvar mu mubar ybar
generate double ‘mu’ = exp(kids*‘at’[1,1] ///

+ cvaluex‘at’[1,2] /17

+ tickets*‘at’[1,3]) ‘if’
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(accidents) ‘if’, by(id)
replace ‘varlist’ = accidents ///

- ‘mu’*‘ybar’/‘mubar’ ‘if’

end
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Using the gmm command

FE Poisson by gmm

. use xtaccidents, clear

. by id: egen max_a = max (accidents )
. drop if max_a ==

(3750 observations deleted)

. gmm xtfe , equations(accidents) parameters(kids cvalue tickets) /17
> instruments(kids cvalue tickets, noconstant) ///
> vce(cluster id) onestep nolog

Final GMM criterion Q(b) = 1.50e-16
GMM estimation

Number of parameters = 3

Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 1250
(Std. Err. adjusted for 250 clusters in id)

Robust

Coef. Std. Err. z P>|z| [95% Conf. Intervall
/kids -.4506245 .0969133 -4.65 0.000 -.6405711  -.2606779
/cvalue -.5079946 .0615506 -8.25  0.000 -.6286315  -.3873577
/tickets .151354 .0873677 1.73 0.083 -.0198835 .3225914

Instruments for equation 1: kids cvalue tickets




Using the gmm command

FE Poisson by xtpoisson, fe

. Xtpoisson accidents kids cvalue tickets, fe

nolog vce(robust)

Conditional fixed-effects Poisson regression Number of obs = 1250
Group variable: id Number of groups = 250
Obs per group: min = 5
avg = 5.0
max = 5
Wald chi2(3) = 84.89
Log pseudolikelihood = -351.11739 Prob > chi2 = 0.0000
(Std. Err. adjusted for clustering on id)

Robust
accidents Coef.  Std. Err. z P>|z| [95% Conf. Intervall
kids -.4506245 .0969133 -4.65 0.000 -.6405712  -.2606779
cvalue -.5079949 .0615506 -8.256  0.000 -.6286319  -.3873579
tickets .151354 .0873677 1.73 0.083 -.0198835 .3225914
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