Some Stata commands for endogeneity in nonlinear panel-data models

David M. Drukker

Director of Econometrics Stata

2014 German Stata Users Group meeting June 13, 2014

Two approaches to endogeneity in nonlinear models

- Nonlinear instrumental variables, and control functions
 - Blundell et al. (2013) Chesher and Rosen (2013), Newey (2013), Wooldridge (2010), and Cameron and Trivedi (2005)
 - Only impose conditional moment restrictions
- Maximum likelihood
 - Wooldridge (2010), Cameron and Trivedi (2005), Skrondal and Rabe-Hesketh (2004), Rabe-Hesketh et al. (2004), Heckman (1978), and Heckman (1979)
 - Impose restrictions on the entire conditional distributions; less robust

Specific Stata solutions

- Stata has many commands to estimate the parameters of specific models
 - ivregress, ivpoisson, ivprobit, and ivtobit
 - heckman, heckprobit, and heckoprobit
- Two Stata commands that offer more general solutions are gsem and gmm

A GSEM solution for endogeneity

- Generalized structural equations models (GSEM) encompass many nonlinear triangular systems with unobserved components
 - A GSEM is a triangular system of nonlinear or linear equations that share unobserved random components
 - The gsem command can estimate the model parameters
 - gsem is new in Stata 13
 - The unobserved components can model random effects
 - Including nested effects, hierarchical effects, and random-coefficients
 - The unobserved components can also model endogeneity
 - Include the same unobserved component in two or more equations
 - Set up and estimation by maximum likelihood
 - Random-effects estimators and correlated-random-effects estimators
 - See Rabe-Hesketh and Skrondal (2012), Skrondal and Rabe-Hesketh (2004), Rabe-Hesketh et al. (2004), and Rabe-Hesketh et al. (2005)

A GMM solution for endogeneity or missing data

- Stata's gmm command can be used to stack the moment conditions from multistep estimators
 - Many control-function estimators for the parameters of models with endogeneity are described as multistep estimators
 - Many inverse-probability-weighted estimators, regression adjustment estimators, and combinations thereof, for the population-averaged effects from samples with missing data are described as multistep estimators
 - Converting multistep estimators into one-step estimators produces a consistent estimator for the variance-covariance of the estimator (VCE); see Newey (1984) and Wooldridge (2010) among others
 - Setup and estimation by GMM: Only the specified moment restrictions apply

GSEM structure

 GSEM handles endogeneity by including common, unobserved components into the equations for different variables

For example

$$\begin{pmatrix} \eta \\ \epsilon \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sigma^2 \end{bmatrix} \end{pmatrix}$$
$$\mathbf{E}[y_1|\mathbf{x}, y_2, \eta] = F(\mathbf{x}\boldsymbol{\beta} + y_2\alpha + \eta\delta)$$
$$y_2 = \mathbf{x}\boldsymbol{\beta} + \mathbf{w}\boldsymbol{\gamma} + \eta + \epsilon$$

where

- F() is smooth, nonlinear function
- x are exogenous covariates
- \bullet $\,\eta$ is the common, unobserved component that gives rise to the endogeneity
- w are "instruments"
- ullet is an error term

Bivariate probit with endogenous variable

- Two binary dependent variables, school and work for young people (20-30)
- Each is a function of age and parental socio-economic score (ses)
 - age is exogenous
 - ses is endogenous
 - ses is affected by an unobserved component that also affects each of the binary variables.
 - We believe that parental education ped affects ses but neither school nor work

$$ses_i = \alpha_0 + \alpha_1 ped_i + \alpha_2 \eta_i + \epsilon_1$$

$$work_i = \left((\beta_0 + \beta_1 ses_i + \beta_2 age_i + \beta_3 \eta_i + \epsilon_2) > 0 \right)$$

$$\mathit{school}_i = \left(\left(\gamma_0 + \gamma_1 \mathit{ses}_i + \gamma_2 \mathit{age}_i + \gamma_3 \eta_i + \epsilon_3 \right) > 0 \right)$$

$$egin{pmatrix} \eta_i \\ \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{pmatrix} \sim \mathcal{N} \left(egin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, egin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \sigma_1^2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)$$

```
. gsem (work <- ses age L, probit)
                                            ///
       (school <- ses age L, probit)
                                            ///
       (ses <- ped L),
                                            ///
>
       var(L@1) nolog
Generalized structural equation model
                                                    Number of obs
                                                                              5000
Log likelihood = -14078.848
 (1) [var(L)] cons = 1
                     Coef.
                             Std. Err.
                                             z
                                                  P>|z|
                                                             [95% Conf. Interval]
work <-
                -.2405712
                             .0968634
                                          -2.48
                                                  0.013
                                                            -.4304199
                                                                        -.0507224
         ses
         age
                  .1923723
                             .0148124
                                          12.99
                                                  0.000
                                                             .1633406
                                                                           .221404
                  .9237883
                             .1901529
                                           4.86
                                                  0.000
                                                             .5510954
                                                                          1.296481
       cons
                -4.297587
                             .3235578
                                         -13.28
                                                  0.000
                                                            -4.931748
                                                                        -3.663425
school <-
                  .3839591
                                                  0.000
                                                                             .5488
         ses
                              .084104
                                           4.57
                                                             .2191182
                -.1968823
                             .0156442
                                         -12.58
                                                  0.000
                                                            -.2275444
                                                                         -.1662201
         age
                  .9276381
                             .2028112
                                           4.57
                                                  0.000
                                                             .5301355
                                                                          1.325141
                 3.934125
                             .5295485
                                           7.43
                                                  0.000
                                                             2.896229
                                                                          4.972021
       _cons
ses <-
                  .2083431
                             .0145523
                                          14.32
                                                  0.000
                                                             .1798212
                                                                          .2368651
         ped
                   .923848
                                                  0.000
                                                             .7451118
                             .0911936
                                          10.13
                                                                          1.102584
                  .8938526
                             .1422065
                                           6.29
                                                  0.000
                                                              .615133
                                                                          1.172572
       _cons
       var(L)
                            (constrained)
   var(e.ses)
                 1.088828
                             .1668318
                                                             .8063745
                                                                          1.470217
```

Fixed effects versus correlated random effects

- In the econometric parlance of panel data, fixed effects are generally defined to be individual-specific, unobserved random components that depend on observed covariates in an unspecified way
- Fixed effects are removed from the estimator to avoid the incidental parameters problem, so analysis is conditional on the unobserved fixed effects
- There is still some discussion as to whether fixed effects are random or fixed, but the modern approach views them as random (Wooldridge, 2010, page 286)
- Correlated random effects are a parametric approach to the problem of fixed effects
 - The dependence between individual-specific effects and the covariates is modeled out, leaving common unobserved components (Cameron and Trivedi, 2005, pages 719 and 786) (Wooldridge, 2010, page 286)

Fixed effects versus correlated random effects

 At the cost of more parametric assumptions, correlated-random-effect (CRE) models identify average partial effects and many more functional forms for nonlinear dependent variables

Fixed-effects logit

- Main "job" is either work or school for young people aged 20–30
 - Variable work_{it} is coded 0 for school, 1 for work
- We have 5 observations on each individual
- Logit probabilities that $work_{it} = 1$ are functions of age_{it} , and parental socio-economic score ses_{it} , and an unobserved individual-level component
 - age_{it} is exogenous
 - ses_{it} is endogenous, it is related to the unobserved individual-level component η_i

$$\epsilon_{it} \sim \mathsf{Logistic}(0, \pi^2/3)$$

 $\mathsf{work}_{it} = (\beta_0 + \mathsf{ses}_{it}\beta_1 + \mathsf{age}_{it}\beta_2 + \eta_i + \epsilon_{it}) > 0$

- Except for regularity conditions, and $\eta_i \perp \epsilon_{it}$ no assumption is made about the distribution of η_i
- ullet The distribution of η_i may depend on ses_{it} in an unspecified fashion

Conditional maximum-likelihood estimation

- The standard econometric approach is to maximize the log-likelihood function conditional on the sum $\sum_{t=1}^{T} y_{it}$
 - Chamberlain (1980), Chamberlain (1984), Wooldridge (2010) and Cameron and Trivedi (2005)
- This conditional log-likelihood function does not depend on the unobseved η_i , it is transformed out
- The estimator obtained by maximizing this conditional log-likelihood function is consistent for the coefficients on the time-varing covariates and it is asymptotically normal

```
. xtlogit w ses age, fe
note: multiple positive outcomes within groups encountered.
note: 185 groups (925 obs) dropped because of all positive or
      all negative outcomes.
Iteration 0:
               log likelihood = -1513.9791
Iteration 1:
               log likelihood = -1444.5811
Iteration 2: log likelihood = -1444.4195
Iteration 3:
               log\ likelihood = -1444.4195
Conditional fixed-effects logistic regression
                                                Number of obs
                                                                           4075
Group variable: id
                                                Number of groups
                                                                            815
                                                Obs per group: min =
                                                                            5.0
                                                                avg =
                                                                max =
                                                                              5
                                                LR chi2(2)
                                                                         295.99
Log likelihood = -1444.4195
                                                Prob > chi2
                                                                         0.0000
                    Coef.
                            Std. Err.
                                                P>|z|
                                                           [95% Conf. Interval]
        work
                                           z
         ses
                -.5825966
                            .0392365
                                       -14.85
                                                0.000
                                                         -.6594987
                                                                      -.5056946
                  .083444
                             .011576
                                         7.21
                                                0.000
                                                           .0607555
                                                                       .1061325
         age
```

A GSEM CRE logit

- A GSEM CRE logit specifies a distribution for η_i and how it enters the model for the related covariates
 - This estimator is better termed, a correlated-random-effects (CRE) estimator
 - Inference is not conditional on unobserved fixed effects and average partial effects, after averaging out CRE, are identified
- For example,

$$\begin{aligned} \textit{work}_{it} &= (\beta_0 + \textit{ses}_{it}\beta_1 + \textit{age}_{it}\beta_2 + \eta_i + \epsilon_{it}) > 0 \\ \textit{ses}_{it} &= \alpha_0 + \alpha_1 \textit{ped}_i + \eta_i \alpha_2 + \xi_{it} \\ \eta_i &\sim \mathcal{N}(0,1) \\ \epsilon_{it} &\sim \text{Logistic}(0,\pi^2/3) \\ \xi_{it} &\sim \mathcal{N}(0,\sigma^2) \\ &\qquad (\eta_i,\epsilon_{it},\xi_{it}) \text{ mutually independent} \end{aligned}$$

```
. gsem (work <- ses age L[id]@1, logit) ///
> (ses <- ped L[id]), vsquish nolog
Generalized structural equation model Number of obs = 5000
Log likelihood = -11172.491
(1) [work][id] = 1
```

(I) [WOLK]I	L[1a] = 1					
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
work <-						
ses	5902971	.0385655	-15.31	0.000	665884	5147101
age	.0875979	.0104571	8.38	0.000	.0671024	.1080934
L[id]	1	(constraine	ed)			
_cons	-2.047273	.2705777	-7.57	0.000	-2.577595	-1.51695
ses <-						
ped	.0813543	.0118188	6.88	0.000	.0581898	.1045188
L[id]	1.48718	.1062063	14.00	0.000	1.27902	1.695341
_cons	1.151305	.1245313	9.25	0.000	.9072278	1.395381
<pre>var(L[id])</pre>	1.043044	.1547474			.7798608	1.395044
var(e.ses)	.9936687	.0221993			.9510978	1.038145

A CRE logit with an endogenous variable

- Now suppose that ses_{it} is endogenous and we have an instrument
 - ses_{it} is affected by the unobserved, individual-level component η_i and another unobserved component ξ_{it} that also affects $work_{it}$
 - We believe that parental education ped_{it} affects ses_{it} but not work_{it}
 - Some would not define η_i to FE, but rather RE that are related to the observed covariates

$$\begin{split} \textit{work}_{it} &= \left(\beta_0 + \textit{ses}_{it}\beta_1 + \textit{age}_{it}\beta_2 + \eta_i + \xi_{it}\beta_3 + \epsilon_{1it}\right) > 0 \\ \textit{ses}_{it} &= \alpha_0 + \textit{ped}_{it}\alpha_1 + \eta_i\alpha_2 + \xi_{it} + \epsilon_{2it} \\ \epsilon_{1it} &\sim \mathsf{Logistic}(0, \pi^2/3) \\ \epsilon_{2it} &\sim \mathcal{N}(0, \sigma^2) \\ \eta_i &\sim \textit{Normal}(0, 1) \\ \xi_i &\sim \textit{Normal}(0, 1) \\ &\left(\epsilon_{1it}, \epsilon_{2it}, \eta_i, \xi_i\right) \text{ mutually independent} \end{split}$$

	Coef.	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
work <-						
ses age	593026 .1019323	.0496495 .0149949	-11.94 6.80	0.000	6903373 .0725429	4957148 .1313217
L[id] X _cons	2.150414 9.282667	(constraine .2074175 .9335425	10.37 9.94	0.000	1.743883 7.452957	2.556945 11.11238
ses <-						
ped	2.020729	.0168226	120.12	0.000	1.987757	2.053701
L[id] X	1.515159	.1373711 (constraine	11.03	0.000	1.245916	1.784401
_cons	.741761	.1704414	4.35	0.000	.4077019	1.07582
var(L[id]) var(X)	.9920447 1	.1891004 (constraine	ed)		.6827755	1.4414
var(e.ses)	1.066483	.0459968			.9800357	1.160555

Panel probit with endogenous variable and CRE

- Binary dependent variables $school_{it}$ for young people (20-30, at first interview)
 - school_{it} is a function of age_{it} and time-varying parental socio-economic score ses_{it}
 - age_{it} is exogenous
 - ses_{it} is endogenous
 - ses_{it} is affected by an unobserved component individual-level effect η_i and by a time-varying unobserved component ξ_{it} , both of which also affect $school_{it}$
 - We believe that time-varying parental education ped_{it} affects ses_{it} but not school_{it}.
- We have 5 observations on each young person

$$\begin{split} \textit{ses}_{\textit{it}} &= \alpha_0 + \alpha_1 \textit{ped}_{\textit{it}} + \xi_{\textit{it}} + \eta_{\textit{i}} + \epsilon_{1,\textit{it}} \\ \textit{school}_{\textit{it}} &= \left(\left(\beta_0 + \beta_1 \textit{ses}_{\textit{it}} + \beta_2 \textit{age}_{\textit{it}} + \beta_3 \xi_{\textit{it}} + \eta_{\textit{i}} + \epsilon_{2,\textit{it}} \right) > 0 \right) \\ \eta_{\textit{i}} &\sim \textit{Normal}(0, \sigma_{\eta}) \qquad \epsilon_{1,\textit{it}} \sim \textit{Normal}(0, \sigma_{\textit{ses}}) \\ \xi_{\textit{it}} &\sim \textit{Normal}(0, 1) \qquad \epsilon_{2,\textit{it}} \sim \textit{Normal}(0, 1) \end{split}$$

```
///
. gsem (school <- ses age L M1[id]@1, probit)
      (ses <- ped L@1 M1[id]@1),
                                                          111
      var(L@1) from(var(e.ses):_cons=1) nolog
Generalized structural equation model
                                                  Number of obs
                                                                          5000
Log likelihood = -10377.715
(1) [school]M1[id] = 1
 (2) [ses]M1[id] = 1
 (3) [ses]L = 1
 (4) [var(L)]_cons = 1
                           Std. Err.
                                                          [95% Conf. Interval]
                   Coef.
                                           Z.
                                                P>|z|
school <-
                 .6098294
                            .0447354
                                        13.63
                                                0.000
                                                          .5221496
                                                                      .6975093
         ses
         age
                -.4142175
                            .0201581
                                       -20.55
                                                0.000
                                                         - 4537266
                                                                     -.3747085
     M1[id]
                           (constrained)
          L
                 1.123539
                            .1016453
                                        11.05
                                                0.000
                                                          .9243183
                                                                      1.322761
       cons
                 10.69246
                            .5345878
                                        20.00
                                                0.000
                                                          9.644685
                                                                      11.74023
ses <-
        ped
                 .5016687
                            .0150045
                                        33.43
                                                0.000
                                                          .4722603
                                                                       .531077
     M1[id]
                       1 (constrained)
          L
                           (constrained)
      cons
                 .9645122
                            .1500038
                                        6.43
                                               0.000
                                                          .6705102
                                                                      1.258514
 var(M1[id])
                 1.042761
                           .0646625
                                                          .9234241
                                                                      1.177521
      var(L)
                           (constrained)
   var(e.ses)
                 9568585
                            0433915
                                                          .8754826
                                                                      1.045798
```

Multinomial logit with endogenous variable

- Main "job" is either work, school, or home for young people aged 20–30
 - job; is coded, 0 for home, 1 for work, and 2 for school
- Multinomial-logit probabilities are functions of age_i , and parental socio-economic score ses_i , and an unobserved individual-level component η_i
 - age_i is exogenous
 - ses; is endogenous,
 - ullet ses; is affected by η_i that also affects the multinomial-logit probabilities

 We believe that parental education ped_i affects ses_i but not the multinomial-logit probabilities

$$\begin{aligned} Pr[job = j] &= \frac{exp(\beta_{0j} + ses_i\beta_{1j} + age_i\beta_{2j} + \eta_i\beta_{4j})}{1 + \sum_{j=1}^{2} exp(\beta_{0j} + ses_i\beta_{1j} + age_i\beta_{2j} + \eta_i\beta_{4j})} \quad j \in \{1, 2\} \\ ses_i &= \alpha_0 + \alpha_1 ped_i + \eta_i + \epsilon_i \\ \eta_i &\sim \textit{Normal}(0, 1) \qquad \epsilon_i \sim \textit{Normal}(0, \sigma_{ses}) \end{aligned}$$

. gsem (job <- ses age L, mlogit) (ses <- ped L01), var(L01) nolog Generalized structural equation model Number of obs = Log likelihood = -8130.9865 (1) [ses]L = 1 (2) [var(L)]_cons = 1

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
0.job	(base outc	ome)				
1.job <-						
ses	.1680505	.079434	2.12	0.034	.0123627	.3237383
age	.1977622	.0176799	11.19	0.000	.1631103	.2324141
L	.4178895	.1825025	2.29	0.022	.0601912	.7755879
_cons	-5.667666	.5556052	-10.20	0.000	-6.756632	-4.578699
2.job <-						
ses	.5734593	.0834707	6.87	0.000	.4098598	.7370588
age	2094759	.0201765	-10.38	0.000	2490211	1699306
L	6267227	.1836712	-3.41	0.001	9867115	2667338
_cons	1.21761	.6033821	2.02	0.044	.035003	2.400217
ses <-						
ped	.6313673	.0197324	32.00	0.000	.5926925	.670042
L	1	(constraine	ed)			
_cons	.6768382	.1919967	3.53	0.000	.3005317	1.053145
var(L)	1	(constraine	ed)			
var(e.ses)	1.007182	.0518205			.9105691	1.114046

3000

Multinomial logit with CRE and an endogenous variable

- Main "job" is either work, school, or home for young people
 - jobit is coded, 0 for home, 1 for work, and 2 for school
- Multinomial-logit probabilities are functions of age_{it} , and parental socio-economic score ses_{it} , an unobserved individual-level component η_i , and an unobserved component that varies over individuals and time ξ_{it}
 - ageit is exogenous, sesit is endogenous
 - ses_{it} is affected by η_i and by ξ_{it} , both of which also affect the multinomial-logit probabilities
 - We believe that parental education pedit affects sesit but not the multinomial-logit probabilities

$$xb_{itj} = \beta_{0j} + ses_{it}\beta_{1j} + age_{it}\beta_{2j} + \eta_i + \xi_{it}\beta_{4j}$$

$$Pr[job_{it} = j] = \frac{exp(xb_{ijt})}{1 + \sum_{i=1}^{2} exp(xb_{itj})} \quad j \in \{1, 2\}$$

$$ses_i = \alpha_0 + \alpha_1 ped_i + \eta_i + \xi_{it} + \epsilon_{it}$$

$$\eta_i \sim \mathsf{Normal}(0,\sigma_\eta)$$
 $\xi_{it} \sim \mathsf{Normal}(0,1)$ $\epsilon_{it} \sim \mathsf{Normal}(0,\sigma_{\mathsf{ses}})$

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
0.job	(base outo	ome)				
1.job <-						
ses	.082676	.0381896	2.16	0.030	.0078257	. 1575262
age	.2072062	.0150389	13.78	0.000	.1777304	.2366819
P1[id]	1	(constrain	ed)			
L	.6057244	.1070445	5.66	0.000	.395921	.8155277
_cons	-5.398094	.4560614	-11.84	0.000	-6.291958	-4.50423
2.job <-						
ses	.4291914	.0422678	10.15	0.000	.346348	.5120348
age	1651801	.0164842	-10.02	0.000	1974885	1328717
P1[id]	1	(constraine	ed)			
L	2399792	.1115573	-2.15	0.031	4586274	021331
_cons	1.206197	.4645158	2.60	0.009	. 2957623	2.116631
ses <-						
ped	.8193806	.0206827	39.62	0.000	.7788433	.8599179
P1[id]	1	(constraine	ed)			
Ĺ	1	(constrain				
_cons	.7655727	.2146381	3.57	0.000	.3448897	1.186256
var(P1[id]) var(L)	1.012727	.0616391 (constrain	ed)		.8988445	1.141039
var(e.ses)	.9701532	.0435647			.8884176	1.059409

A CRE probit with sample-selection

- Binary variable for school or work sowork_{it} is missing if the young person is at home
- We believe that parental education ped_{it} and parental SES score ses_{it} affect the choice between school or work
- We believe that that ses_{it} and an attachment-to-home score ath_{it} affect whether the young person stays home, making soworkit missing.
- We allow for Heckman-type endogenous selection and CRE

$$sowork_{it} = \begin{cases} (\beta_0 + \beta_1 ses_{it} + \beta_2 ped_{it} + \beta_3 \xi_{it} + \eta_i + \epsilon_{1it} > 0), & \text{if } home_{it} = 0 \\ . & \text{otherwise} \end{cases}$$

$$home_{it} = (\gamma_0 + \gamma_1 ses_{it} + \gamma_2 ath_{it} + \xi_{it} + \eta_{it} + \epsilon_{2it} > 0)$$

$$ses_{it} = \alpha_0 + \eta_i + \epsilon_{3it} \qquad ped_{it} = \alpha_0 + \eta_i + \epsilon_{4it}$$

$$ath_{it} = \alpha_0 + \eta_i + \epsilon_{5it}$$

$$\eta_i \sim \textit{Normal}(0,1)$$
 $\epsilon_{1it} \sim \textit{Normal}(0,1)$ $\epsilon_{2it} \sim \textit{Normal}(0,1)$ $\epsilon_{3it} \sim \textit{Normal}(0,\sigma_3^2)$ $\epsilon_{4it} \sim \textit{Normal}(0,\sigma_3^2)$ $\epsilon_{5it} \sim \textit{Normal}(0,\sigma_5^2)$

24 / 51
$$\xi_{it} \sim Normal(0,1)$$

GSEM examples

1 (constrained)

1 (constrained)

1 (constrained)

.0484887

-21.33

```
. gsem (sowork <- ses ped L M[id]@1, probit)
                                                        ///
      (home <- ses ath L@1 M[id]@1, probit)
                                                        111
>
      (ses <- M[id]@1)
                                                        111
      (ped <- M[id]@1)
                                                        111
>
      (ath <- M[id]@1)
                                                        111
>
         , var(L@1) nolog
Generalized structural equation model
                                              Number of obs
                                                                       7500
Log likelihood = -38532.664
 (1) [sowork] M[id] = 1
 (2) [home]M[id] = 1
 (3) [home]L = 1
 (4) [ses]M[id] = 1
 (5) [ped]M[id] = 1
 (6) [ath]M[id] = 1
 (7) [var(L)]_cons = 1
                   Coef.
                          Std. Err.
                                              P>|z|
                                                       [95% Conf. Interval]
                                         7
sowork <-
                .9927245 .0810946
                                      12.24
                                              0.000
                                                       .8337821
                                                                   1.151667
        Ses
        ped
                .9831526
                           .0816976
                                      12.03
                                             0.000
                                                       8230283
                                                                   1.143277
      M[id]
                      1 (constrained)
          L
                 1.06312
                           .1247585
                                       8.52
                                              0.000
                                                       .8185974
                                                                   1.307642
      cons
               -2.024637
                           1560467
                                     -12.97
                                              0.000
                                                      -2.330483
                                                                  -1.718791
home <-
                -.989918 .0236261
                                     -41.90
                                             0.000
                                                      -1.036224
                                                                  -.9436117
        ses
        ath
                9893967
                           .0292436
                                      33.83
                                             0.000
                                                       .9320802
                                                                   1.046713
```

0.000

-1.129263

-.9391909

M[id]

cons

M[id]

ses <-

T.

-1.034227

More GSEM examples

- All the documentation in online.
 - http://www.stata.com/support/documentation/
- For an example of a cross-sectional Heckman model, see http://www.stata.com/bookstore/ structural-equation-modeling-reference-manual/ and click on example43g
- For an example of a cross-sectional endogenous treatment effects, see http://www.stata.com/bookstore/ structural-equation-modeling-reference-manual/ and click on example44g

Two-step estimators as GMM estimators

- Many two-step estimators have the form
 - **1** Estimate nuisance parameters γ by an M estimator
 - ② Estimate parameters of interest β by an M estimator or a method of moments estimator that depends on the original data and $\hat{\gamma}$
- ullet In general, the distribution of \widehat{eta} depends on the first stage estimation
 - The correction is well known, e.g. Wooldridge (2010)
- Another way solving the two-step estimation problem is to stack the moment conditions from the two estimation problems and solve them jointly

Definition of GMM estimator

Our research question implies q population moment conditions

$$E[\mathbf{m}(\mathbf{w}_i, \boldsymbol{\theta})] = \mathbf{0}$$

- \mathbf{m} is $q \times 1$ vector of functions whose expected values are zero in the population
- \mathbf{w}_i is the data on person i
- θ is $k \times 1$ vector of parameters, k < q
- The sample moments that correspond to the population moments are

$$\overline{\mathbf{m}}(\boldsymbol{\theta}) = (1/N) \sum_{i=1}^{N} \mathbf{m}(\mathbf{w}_i, \boldsymbol{\theta})$$

• When k < q, the GMM choses the parameters that are as close as possible to solving the over-identified system of moment conditions

$$\widehat{m{ heta}}_{\mathit{GMM}} \equiv \mathop{\mathsf{arg}} \; \mathop{\mathsf{min}}_{m{ heta}} \;\; \overline{\mathbf{m}}(m{ heta})' \mathbf{W} \overline{\mathbf{m}}(m{ heta})$$

Some properties of the GMM estimator

$$\widehat{m{ heta}}_{\mathit{GMM}} \equiv \mathsf{arg} \; \mathsf{min}_{m{ heta}} \quad \overline{m{m}}(m{ heta})' m{W} \overline{m{m}}(m{ heta})$$

- When k = q, the MM estimator solves $\overline{\mathbf{m}}(\theta)$ exactly so $\overline{\mathbf{m}}(\theta)'\mathbf{W}\overline{\mathbf{m}}(\theta) = \mathbf{0}$
- W only affects the efficiency of the GMM estimator
 - Setting W = I yields consistent, but inefficient estimates
 - Setting $\mathbf{W} = \text{Cov}[\overline{\mathbf{m}}(\theta)]^{-1}$ yields an efficient GMM estimator
 - We can take multiple steps to get an efficient GMM estimator
 - \bigcirc Let W = I and get

$$\widehat{m{ heta}}_{\mathit{GMM}1} \equiv \mathsf{arg} \ \mathsf{min}_{m{ heta}} \ \ \overline{m{m}}(m{ heta})' \overline{m{m}}(m{ heta})$$

- 2 Use $\widehat{\theta}_{GMM1}$ to get $\widehat{\mathbf{W}}$, which is an estimate of $Cov[\overline{\mathbf{m}}(\theta)]^{-1}$
- Get

$$\widehat{\boldsymbol{\theta}}_{\mathit{GMM2}} \equiv \mathsf{arg} \; \mathsf{min}_{\boldsymbol{\theta}} \quad \overline{\mathbf{m}}(\boldsymbol{\theta})' \widehat{\mathbf{W}} \overline{\mathbf{m}}(\boldsymbol{\theta})$$

4 Repeat steps 2 and 3 using $\widehat{\theta}_{GMM2}$ in place of $\widehat{\theta}_{GMM1}$

The gmm command

- The command gmm estimates parameters by GMM
- gmm is similar to nl, you specify the sample moment conditions as substitutable expressions
- \bullet Substitutable expressions enclose the model parameters in braces $\{\}$

The syntax of gmm I

For many models, the population moment conditions have the form

$$E[ze(\beta)] = 0$$

where **z** is a $q \times 1$ vector of instrumental variables and $e(\beta)$ is a scalar function of the data and the parameters β

• The corresponding syntax of gmm is

```
gmm (eb_expression) [if][in][weight],
instruments(instrument_varlist) [options]
```

where some options are

onestep use one-step estimator (default is two-step estimator)

winitial (wmtype) initial weight-matrix **W**

<u>wmat</u>rix(*witype*) weight-matrix **W** computation after first step vce(vcetype) vcetype may be robust, cluster, bootstrap, hac

Modeling crime data I

• We have data

. use cscrime, clear

. describe

Contains data from cscrime.dta

obs: 10,000 vars: 5 size: 400,000

24 May 2008 17:01 (_dta has notes)

variable name	storage type	display format	value label	variable label
policepc arrestp convictp legalwage crime	double double double	%10.0g %10.0g %10.0g %10.0g %10.0g		police officers per thousand arrests/crimes convictions/arrests legal wage index 0-20 scale property-crime index 0-50 scale

Sorted by:

Modeling crime data II

We specify that

$$crime_i = \beta_0 + policepc_i\beta_1 + legalwage_i\beta_2 + \epsilon_i$$

We want to model

$$E[\text{crime}|\text{policepc}, \text{legalwage}] = \beta_0 + \text{policepc}\beta_1 + \text{legalwage}\beta_2$$

ullet If $E[\epsilon| ext{policepc}, ext{legalwage}]=0$, the population moment conditions

$$E\left[\begin{pmatrix} \text{policepc} \\ \text{legalwage} \end{pmatrix} \epsilon\right] = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

hold

OLS by GMM I

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/b1	4203287		-78.35	0.000	4308431	4098144
/b2 /b3	-7.365905 27.75419	.2411545 .0311028	-30.54 892.34	0.000	-7.838559 27.69323	-6.893251 27.81515

Instruments for equation 1: policepc legalwage _cons

OLS by GMM II

. regress crime policepc legalwage, robust Linear regression

Number of obs = 10000 F(2, 9997) = 4422.19 Prob > F = 0.0000 R-squared = 0.6092 Root MSE = 1.8032

crime	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
policepc	4203287	.0053653	-78.34	0.000	4308459	4098116
legalwage	-7.365905	.2411907	-30.54	0.000	-7.838688	-6.893123
_cons	27.75419	.0311075	892.20	0.000	27.69321	27.81517

OLS by GMM III

/xb_policepc

/xb_legalw~e

/xb cons

P>|z|

0.000

0.000

0.000

z

-78.35

-30.54

892.34

Std. Err.

.0053645

.2411545

.0311028

Instruments for equation 1: policepc legalwage _cons

Coef.

-.4203287

-7.365905

27.75419

[95% Conf. Interval]

-.4098144

-6.893251

27.81515

-.4308431

-7.838559

27.69323

IV and 2SLS

- For some variables, the assumption $E[\epsilon|x]=0$ is too strong and we need to allow for $E[\epsilon|x]\neq 0$
- If we have q variables \mathbf{z} for which $E[\epsilon|\mathbf{z}] = \mathbf{0}$ and the correlation between \mathbf{z} and \mathbf{x} is sufficiently strong, we can estimate $\boldsymbol{\beta}$ from the population moment conditions

$$E[\mathbf{z}(y-\mathbf{x}\boldsymbol{\beta})]=\mathbf{0}$$

- z are known as instrumental variables
- If the number of variables in z and x is the same (q = k), solving the sample moment conditions yield the MM estimator known as the instrumental variables (IV) estimator
- If there are more variables in \mathbf{z} than in \mathbf{x} (q > k) and we let $\mathbf{W} = \left(\sum_{i=1}^N \mathbf{z}_i' \mathbf{z}_i\right)^{-1}$ in our GMM estimator, we obtain the two-stage least-squares (2SLS) estimator

2SLS on crime data I

- The assumption that $E[\epsilon| policepc] = 0$ is false, if communities increase policepc in response to an increase in crime (an increase in ϵ_i)
- ullet The variables arrestp and convictp are valid instruments, if they measure some components of communities' toughness-on crime that are unrelated to ϵ but are related to policepc
- We will continue to maintain that $E[\epsilon| legalwage] = 0$

2SLS by GMM I

```
. gmm (crime - {xb:police legalwage cons}), ///
> instruments(arrestp convictp legalwage ) nolog onestep
Final GMM criterion Q(b) = .001454
GMM estimation
Number of parameters = 3
Number of moments = 4
Initial weight matrix: Unadjusted Number of obs = 10000
```

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/xb_policepc	-1.002431	.0455469	-22.01	0.000	-1.091701	9131606
/xb_legalw~e	-1.281091	.5890977	-2.17	0.030	-2.435702	1264811
/xb_cons	30.0494	.1830541	164.16	0.000	29.69062	30.40818

Instruments for equation 1: arrestp convictp legalwage _cons

2SLS by GMM II

```
. ivregress 2sls crime legalwage (policepc = arrestp convictp) , robust
```

Instrumental variables (2SLS) regression

Number of obs = 10000 Wald chi2(2) = 1891.83 Prob > chi2 = 0.0000 R-squared = . Root MSE = 3.216

crime	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
policepc	-1.002431	.0455469	-22.01	0.000	-1.091701	9131606
legalwage	-1.281091	.5890977	-2.17	0.030	-2.435702	1264811
_cons	30.0494	.1830541	164.16	0.000	29.69062	30.40818

Instrumented: policepc

Instruments: legalwage arrestp convictp

CF estimator for Poisson model endogenous variables

- Cross-sectional CF estimator for Poisson model endogenous variables
- See Wooldridge (2010), and ivpoisson documentation

$$y_i = \exp(\beta_0 + x_i \beta_1 + \epsilon_i)$$

$$x_i = \alpha_0 + z_i \alpha_1 + \xi_i$$

$$\epsilon_i = \xi_i \rho + \eta_i$$

- $(\eta_i \text{ is independent of } \xi \text{ and } E[\exp(\eta_i)] = 1)$
- Implied model

$$E[y_i|z,x,\xi_i] = \exp(\beta_0 + x_i\beta_1 + \xi_i\rho)$$

So we could estimate β_1 if we knew ξ_i

- CF estimator
 - **1** Estimates α_0 and α_1 by OLS,
 - 2 Computes residuals $\hat{\epsilon}_i$
 - **3** Plug $\hat{\epsilon}_i$ in for ξ
 - Now estimate β_1 by multiplicative moment condition as $E[\exp(\eta_i)] = 1$

GMM with evaluator programs

- Up to this point, all the problems have fit into the residual-instrument syntax
- We want to use gmm to estimator more difficult models
- We need to use the program-evaluator syntax

gmm program evaluator syntax

```
gmm evaluator_program_name, nequations(#)
   parameters(parameter_name_list) [options]
```

```
program define ivp_m
  version 13
   syntax varlist if, at(name)
  forvalues i=1/5{
   local m'i' : word 'i' of 'varlist'
  quietly {
      tempvar r1 r2
      generate double 'r2' = x - 'at' [1,4] *z - 'at' [1,5]
      generate double 'r1' = y/exp('at'[1,1]*x + 'at'[1,2] +'at'[1,3]*'r2') - 1
      replace 'm1' = 'r2'
      replace 'm2' = 'r2'*z
      replace 'm3' = 'r1'
      replace 'm4' = 'r1'*x
      replace 'm5' = 'r1'*'r2'
end
```

```
. gmm ivp_m , nequations(5) parameters(y:x y:_cons rho:_cons x:z x:_cons) winit > ial(identity) onestep nolog Final GMM criterion Q(b) = 4.05e-15 GMM estimation Number of parameters = 5 Number of moments = 5 Initial weight matrix: Identity Number of obs = 5000
```

		Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
У	x	1.037235	. 062547	16.58	0.000	.914645	1.159825
	_cons	.0112318	.0272029	0.41	0.680	0420849	.0645485
rho							
	_cons	.0947202	.0657478	1.44	0.150	0341431	. 2235835
x							
	_cons	.3890606 .1003455	.0137986 .0144203	28.20 6.96	0.000	.3620159 .0720821	. 4161053 . 1286088

```
Instruments for equation 1: _cons
Instruments for equation 2: _cons
Instruments for equation 3: _cons
Instruments for equation 4: _cons
Instruments for equation 5: _cons
```

```
. ivpoisson cfunction y (x = z)
```

Step 1

Iteration 0: GMM criterion Q(b) = .01255627 Iteration 1: GMM criterion Q(b) = .00003538 Iteration 2: GMM criterion Q(b) = 4.202e-10 Iteration 3: GMM criterion Q(b) = 6.188e-20

Exponential mean model with endogenous regressors

Number of parameters = 5 Number of moments = 5

Initial weight matrix: Unadjusted

GMM weight matrix: Robust

	у	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
у							
•	x	1.037235	.062547	16.58	0.000	.9146451	1.159825
	_cons	.0112319	.0272029	0.41	0.680	0420848	.0645486
x							
	z	.3890606	.0137986	28.20	0.000	.3620159	.4161053
	_cons	.1003455	.0144203	6.96	0.000	.0720821	.1286088
	/c_x	.0947201	.0657478	1.44	0.150	0341432	. 2235834

Instrumented: x Instruments: z

Number of obs = 5000

Fixed-effects Poisson estimator

- Wooldridge (1999, 2010); Blundell, Griffith, and Windmeijer (2002) discuss estimating the fixed-effects Poisson model for panel data by GMM.
- In the Poisson panel-data model we are modeling

$$E[y_{it}|\mathbf{x}_{it},\eta_i] = \exp(\mathbf{x}_{it}\boldsymbol{\beta} + \eta_i)$$

• Hausman, Hall, and Griliches (1984) derived a conditional log-likelihood function when the outcome is assumed to come from a Poisson distribution with mean $\exp(\mathbf{x}_{it}\boldsymbol{\beta} + \eta_i)$ and η_i is an observed component that is correlated with the \mathbf{x}_{it}

 Wooldridge (1999) showed that you could estimate the parameters of this model by solving the sample moment equations

$$\sum_{i} \sum_{t} \mathbf{x}_{it} \left(y_{it} - \mu_{it} \frac{\overline{y}_{i}}{\overline{\mu}_{i}} \right) = \mathbf{0}$$

- These moment conditions do not fit into the interactive syntax because the term $\overline{\mu}_i$ depends on the parameters
- Need to use moment-evaluator program syntax

```
program xtfe
    version 13
    syntax varlist if, at(name)
    quietly {
       tempvar mu mubar ybar
        generate double 'mu' = exp(kids*'at'[1,1] ///
            + cvalue * 'at' [1,2]
                                                    ///
            + tickets*'at'[1.3]) 'if'
        egen double 'mubar' = mean('mu') 'if', by(id)
        egen double 'ybar' = mean(accidents) 'if', by(id)
       replace 'varlist' = accidents
                                                    ///
                               - 'mu'*'ybar'/'mubar' 'if'
end
```

FE Poisson by gmm

```
. use xtaccidents. clear
. by id: egen max_a = max(accidents)
. drop if max_a ==0
(3750 observations deleted)
. gmm xtfe , equations(accidents) parameters(kids cvalue tickets)
                                                                    111
         instruments(kids cvalue tickets, noconstant)
                                                                    111
         vce(cluster id) onestep nolog
Final GMM criterion Q(b) = 1.50e-16
GMM estimation
Number of parameters =
Number of moments
Initial weight matrix: Unadjusted
                                                     Number of obs =
                                                                         1250
                                  (Std. Err. adjusted for 250 clusters in id)
                            Robust
                   Coef.
                           Std. Err.
                                          z
                                               P>|z|
                                                         [95% Conf. Interval]
      /kids
               -.4506245
                           .0969133
                                       -4.65
                                               0.000
                                                        -.6405711
                                                                    -.2606779
     /cvalue
               - .5079946
                           .0615506
                                       -8.25
                                               0.000
                                                        -.6286315
                                                                    -.3873577
    /tickets
                 . 151354
                           .0873677 1.73 0.083
                                                        -.0198835
                                                                     .3225914
```

Instruments for equation 1: kids cvalue tickets

FE Poisson by xtpoisson, fe

```
. xtpoisson accidents kids cvalue tickets, fe nolog vce(robust)
Conditional fixed-effects Poisson regression
                                                Number of obs
                                                                           1250
Group variable: id
                                                Number of groups
                                                                           250
                                                Obs per group: min =
                                                                avg =
                                                                            5.0
                                                                max =
                                                Wald chi2(3)
                                                                          84.89
Log pseudolikelihood = -351.11739
                                                Prob > chi2
                                                                         0.0000
                                     (Std. Err. adjusted for clustering on id)
```

accidents	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
kids	4506245	.0969133	-4.65	0.000	6405712	2606779
cvalue	5079949	.0615506	-8.25	0.000	6286319	3873579
tickets	.151354	.0873677	1.73	0.083	0198835	.3225914

- Blundell, Richard, Rachel Griffith, and Frank Windmeijer. 2002. "Individual effects and dynamics in count data models," *Journal of Econometrics*, 108, 113–131.
- Blundell, Richard, Dennis Kristensen, and Rosa L Matzkin. 2013. "Control Functions and Simultaneous Equations Methods," American Economic Review, 103(3), 563–569.
- Cameron, A. Colin and Pravin K. Trivedi. 2005. *Microeconometrics: Methods and applications*, Cambridge: Cambridge University Press.
- Chamberlain, Gary. 1980. "Analysis of Covariance with Qualitative Data," *Review of Economic Studies*, 47, 225–238.
- ——. 1984. "Panel Data," in Zvi Grilliches and Micheal D. Intrilligaor (eds.), *Handbook of Econometrics*, vol. II, Amsterdam: Elsevier, pp. 1247–1318.
- Chesher, Andrew and Adam M. Rosen. 2013. "What do instrumental variable models deliver with discrete dependent variables?" *American Economic Review*, 103(3), 557–562.

- Hausman, Jerry A., Bronwyn H. Hall, and Zvi Griliches. 1984. "Econometric models for count data with an application to the patents–R & D relationship," *Econometrica*, 52(4), 909–938.
- Heckman, James J. 1978. "Dummy exogenous variables in a simulation equation system," *Econometrica*, 46(2), 403–426.
- ———. 1979. "Sample selection bias as a specification error," *Econometrica*, 153–161.
- Newey, Whitney K. 1984. "A method of moments interpretation of sequential estimators," *Economics Letters*, 14(2), 201–206.
- ———. 2013. "Nonparametric instrumental variables estimation," *American Economic Review*, 103(3), 550–556.
- Rabe-Hesketh, Sophia and Anders Skrondal. 2012. Multilevel and Longitudinal Modeling Using Stata, Volume II: Categorical Responses, Counts, and Survival, College Station, Tx: Stata Press, 3d ed.
- Rabe-Hesketh, Sophia, Anders Skrondal, and Andrew Pickles. 2004. "Generalized multilevel structural equation modeling," *Psychometrika*, 69(2), 167–190.

- ———. 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," *Journal of Econometrics*, 128(2), 301–323.
- Skrondal, Anders and Sophia Rabe-Hesketh. 2004. *Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models*, Boca Raton, Florida: Chapman and Hall/CRC.
- Wooldridge, Jeffrey M. 1999. "Distribution-free estimation of some nonlinear panel-data models," *Journal of Econometrics*, 90, 77–90.
 - ———. 2010. Econometric Analysis of Cross Section and Panel Data, Cambridge, Massachusetts: MIT Press, second ed.