Modeling Interactions in Count Data Regression Principles and Implementation in Stata

Heinz Leitgöb

Johannes Kepler University of Linz, Austria

German Stata Uers Group Meeting

Table of contents

- 1 Theoretical & analytical principles
- Interaction effects in nonlinear models
- Introduction to count data models
- Interaction effects in count data models
- 5 Example with artificial data

- "By interactions we mean an interplay among predictors that produces an effect on the outcome Y that is *different from the sum of the effects of the individual predictors.*" (Cohen et al. 2003, 255)
- "Two explanatory variables are said to interact in determining a response variable when *the partial effect of one depends on the value of the other.*" (Fox 2008, 131)

 \rightarrow From an analytical point of view, an interaction effect can be defined as the marginal effect of a marginal effect

• Linear model with interaction term x_1x_2 :

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_M x_1 x_2 + \sum_{j=3}^k \beta_j x_j$$
(1)

• Interaction effects (if x_j is dichotomous, then $x_j = d_j$):

$$\frac{\partial^2 E(y|\mathbf{x})}{\partial x_1 \partial x_2} = \frac{\partial \Delta E(y|\mathbf{x})}{\partial x_1 \Delta d_2} = \frac{\Delta^2 E(y|\mathbf{x})}{\Delta d_1 \Delta d_2} = \beta_M \tag{2}$$

 \rightarrow In the linear model, the interaction effect is in any case equal to the product term coefficient β_M Significance testing: Wald-test for β_M Current state of research

- ... in Logit & Probit models (Ai & Norton 2003; Berry et al. 2010; Bowen 2012; Greene 2010; Karaca-Mandic et al. 2012; Norton et al. 2004; Seymour 2011)
- ... within the GLM framework (Tsai & Gill 2013)
- To date, no explicit contributions covering the identification of interaction effects in count data models are available

- In contrast to the linear model (see Eq. (2)), the interaction effect does not equal β_M
- A significant interaction effect is possible even when β_M = 0 (model inherent interaction effect)
 → Statistical significance cannot be tested by applying a Wald-test for

β_M

- The interaction effect is dependent on covariates and thus subject to variation across individuals
- The interaction effect may have different signs for different individuals \rightarrow The sign of β_M does not necessarily indicate the direction of the interaction effect
- The *total interaction effect* is composed additively of a *model inherent interaction effect* and a *product term induced interaction effect*

Introduction to count data models

Inverted link function:

$$E(y|\mathbf{x}) = \exp\left(\mathbf{x}\boldsymbol{\beta}\right) = \mu \tag{3}$$

• Poisson model (stochastic component)

$$f(y|\mu) = Pr(Y = y) = \frac{\exp(-\mu)\mu^{y}}{y!}; y = 0, 1, 2, ...; \mu > 0$$
 (4)

• Negative binomial model (stochastic component)

$$f(y|\mu,\alpha) = Pr(Y = y) = \frac{\Gamma(y + \alpha^{-1})}{\Gamma(y + 1)\Gamma(\alpha^{-1})} \left(\frac{\alpha^{-1}}{\alpha^{-1} + \mu}\right)^{\alpha^{-1}} \left(\frac{\mu}{\alpha^{-1} + \mu}\right)^{y}; y = 0, 1, 2, ...; \mu > 0; \alpha \ge 0$$

$$[5]$$

Interaction effects in count data models

• Count data model with interaction term x_1x_2 :

$$E(y|\mathbf{x}) = \exp\left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_M x_1 x_2 + \sum_{j=3}^k \beta_j x_j\right)$$
(6)

• Total interaction effect (ι_t)

$$\iota_t = \frac{\partial^2 E(y|\mathbf{x})}{\partial x_1 \partial x_2} = \left[\left(\beta_1 + \beta_M x_2\right) \left(\beta_2 + \beta_M x_1\right) + \beta_M \right] E(y|\mathbf{x})$$
(7)

• Rearranging terms uncovers the model inherent (ι_m) and the product term induced (ι_p) interaction effect

$$\mu_{t} = \underbrace{\beta_{1}\beta_{2}E(y|\mathbf{x})}_{l_{m}} + \underbrace{\beta_{M}\left(\beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{M}x_{1}x_{2} + 1\right)E(y|\mathbf{x})}_{l_{p}} \tag{8}$$

Delta method standard errors

According to Ai & Norton (2003), standard errors for the interaction effects can be obtained by applying the Delta method for variance estimation

• total interaction effect

$$\hat{\sigma}_{\iota_{t}}^{2} = \left(\frac{\partial \iota_{t}}{\partial \boldsymbol{\beta}}\right) \hat{\mathbf{V}} \left(\frac{\partial \iota_{t}}{\partial \boldsymbol{\beta}}\right)^{\prime}$$
(9)

model inherent interaction effect

$$\hat{\sigma}_{\iota_m}^2 = \left(\frac{\partial \iota_m}{\partial \boldsymbol{\beta}}\right) \hat{\boldsymbol{V}} \left(\frac{\partial \iota_m}{\partial \boldsymbol{\beta}}\right)' \tag{10}$$

• product term induced interaction effect

$$\hat{\sigma}_{\iota_{p}}^{2} = \left(\frac{\partial \iota_{p}}{\partial \boldsymbol{\beta}}\right) \hat{\boldsymbol{\mathsf{V}}} \left(\frac{\partial \iota_{p}}{\partial \boldsymbol{\beta}}\right)'$$

(11)

Example with artificial data ($eta_1 < 0; eta_2 > 0; eta_M > 0$)

- Simulation of a Poisson model with $\eta = -6 2x_1 + 2x_2 + .5x_1x_2 x_1$, $x_2 \sim N(0; 1)$; n = 10.000
- Estimation results (poisson command)

variable	coef.	se	р
constant	-6.148	.172	<.001
<i>x</i> ₁	-2.038	.073	<.001
<i>x</i> ₂	1.990	.086	<.001
<i>x</i> ₁ <i>x</i> ₂	.493	.042	<.001

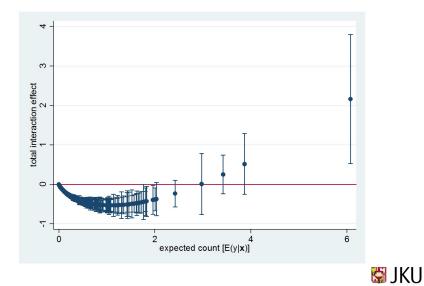
- *LL* = -935.011; LR-Test (Nullmodell): χ^2 = 1,424.69; *df* = 3; *p* < .001; *PseudoR*² = .432; *AIC* = 1,878.022; *BIC* = 1,906.82
- Calculation of interaction effects and standard errors via predictnl command
 IKU

Calculation of ι_t , ι_m , ι_p & standard errors with predictnl

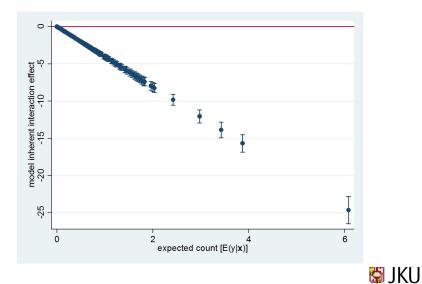
- Estimate Poisson model poisson y x1 x2 x1x2
- Calculate predicted count predict expcount
- Calculate total, model inherent & product term induced interaction effects and corresponding standard errors
 predictnl total = ((_b[x1] + _b[x1x2]*x2)*(_b[x2] +
 _b[x1x2]*x1) + _b[x1x2])*expcount, se(setotal)
 predictnl inherent = _b[x1]*b[x2]*expcount,
 se(seinherent)
 nlpredict product = _b[x1x2]*(_b[x1]*x1 + _b[x2]*x2 +
 - _b[x1x2]*x1*x2 + 1)*expcount, se(seproduct)

😫 JKU

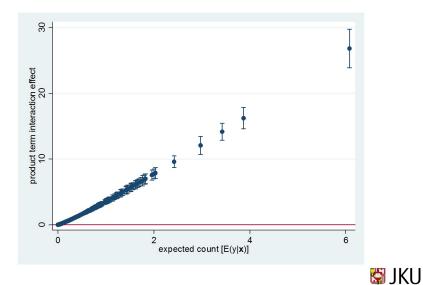
Total interaction effect



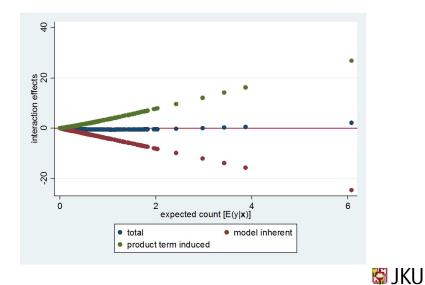
Model interent interaction effect



Product-term induced interaction effect



All interaction effects



- Calculate average interaction effects & corresponding standard errors (analogous to AMEs)
- Calculate interaction effects & corresponding standard errors for dichotomous covariates
- Allow for more than one two-way and for three-way interactions?!?
- Put all these features into a Stata program
- Simulate distributions of interaction effects from a theoretical perspective (e.g. exploring the relevance of *ι_m*)
 → Learn how to adequately interpret these interaction effects in nonlinear models

heinz.leitgoeb@jku.at Reference list can be requested via email

