xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder Decomposition Approach to longitudinal data analyses

Hannes Kröger, Jörg Hartmann

German Institute for Economic Research (DIW), Berlin
University of Göttingen
24.05.2019

Who would benefit from using xtoaxaca

- You have at least two time points
- You want a flexible way to decompose the level over time

■ You want a (counterfactual) decomposition of change over time

Prior approaches

■ Based on different research questions very many different decompositions can be chosen

- At the moment we cannot make a systematic comparison

■ We present our preferred solution

Traditional approach Kitagawa-Oaxaca-Blinder decomposition

- $R=E\left(Y_{A}\right)-E\left(Y_{B}\right)$

Traditional approach Kitagawa-Oaxaca-Blinder decomposition

- $R=E\left(Y_{A}\right)-E\left(Y_{B}\right)$
- $Y_{l}=X_{l} \beta_{l}+\epsilon_{l}, E\left(\epsilon_{l}\right)=0, I \in\{A, B\}$

Traditional approach Kitagawa-Oaxaca-Blinder decomposition

- $R=E\left(Y_{A}\right)-E\left(Y_{B}\right)$
- $Y_{l}=X_{l} \beta_{l}+\epsilon_{l}, E\left(\epsilon_{l}\right)=0, I \in\{A, B\}$
- $R=E+C+I$
- $R=\left[E\left(X_{B}\right)-E\left(X_{A}\right)\right] \beta_{A}+E\left(X_{A}\right)\left(\beta_{B}-\beta_{A}\right)+\left[E\left(X_{B}\right)-E\left(X_{A}\right)\right]\left(\beta_{B}-\beta_{A}\right)$

Traditional approach Kitagawa-Oaxaca-Blinder decomposition

- $R=E\left(Y_{A}\right)-E\left(Y_{B}\right)$
- $Y_{l}=X_{l} \beta_{l}+\epsilon_{l}, E\left(\epsilon_{l}\right)=0, I \in\{A, B\}$
- $R=E+C+I$
- $R=\left[E\left(X_{B}\right)-E\left(X_{A}\right)\right] \beta_{A}+E\left(X_{A}\right)\left(\beta_{B}-\beta_{A}\right)+\left[E\left(X_{B}\right)-E\left(X_{A}\right)\right]\left(\beta_{B}-\beta_{A}\right)$

Traditional approach Kitagawa-Oaxaca-Blinder decomposition

- $R=E\left(Y_{A}\right)-E\left(Y_{B}\right)$
- $Y_{l}=X_{l} \beta_{l}+\epsilon_{l}, E\left(\epsilon_{l}\right)=0, I \in\{A, B\}$
- $R=E+C+I$
- $R=\left[E\left(X_{B}\right)-E\left(X_{A}\right)\right] \beta_{A}+E\left(X_{A}\right)\left(\beta_{B}-\beta_{A}\right)+\left[E\left(X_{B}\right)-E\left(X_{A}\right)\right]\left(\beta_{B}-\beta_{A}\right)$

Traditional approach Kitagawa-Oaxaca-Blinder decomposition

- $R=E\left(Y_{A}\right)-E\left(Y_{B}\right)$
- $Y_{l}=X_{l} \beta_{l}+\epsilon_{l}, E\left(\epsilon_{l}\right)=0, I \in\{A, B\}$
- $R=E+C+I$
- $R=\left[E\left(X_{B}\right)-E\left(X_{A}\right)\right] \beta_{A}+E\left(X_{A}\right)\left(\beta_{B}-\beta_{A}\right)+\left[E\left(X_{B}\right)-E\left(X_{A}\right)\right]\left(\beta_{B}-\beta_{A}\right)$

Research questions for the parts of the decomposition

■ E: How much smaller/bigger would the gap be, if the endowments of group A were the same as for group B?

Research questions for the parts of the decomposition

- E: How much smaller/bigger would the gap be, if the endowments of group A were the same as for group B?

■ C: How much smaller/bigger would the gap be, if the effect of the explanatory variables of group A were the same as the effects for group B?

GC prediction approach

- $R(t)=E\left(Y_{B}(t)-Y_{A}(t)\right)$
- Latent growth curve model for change in happiness
- parametric, semi-parametric, non-parametric

Predictions of happiness

Counterfactual predictions of happiness

Counterfactual predictions of happiness

Predictions of happiness

Counterfactual predictions of happiness

Counterfactual predictions of happiness

GC decomposition approach

- $R(t)=E(t)+C(t)+I(t)$
- Decomposition is time dependent

GC decomposition approach

$\square R(t)=E(t)+C(t)+I(t)$

- Decomposition is time dependent

■ $R=\left[E\left(X_{h t}\right)-E\left(X_{l t}\right)\right] \beta_{l t}+E\left(X_{l t}\right)\left(\beta_{h t}-\beta_{l t}\right)+\left[E\left(X_{h t}\right)-E\left(X_{l t}\right)\right]\left(\beta_{h t}-\beta_{l t}\right)$

- Conditional on functional form of time

GC decomposition approach

$\square R(t)=E(t)+C(t)+I(t)$

- Decomposition is time dependent

■ $R=\left[E\left(X_{h t}\right)-E\left(X_{l t}\right)\right] \beta_{l t}+E\left(X_{l t}\right)\left(\beta_{h t}-\beta_{l t}\right)+\left[E\left(X_{h t}\right)-E\left(X_{l t}\right)\right]\left(\beta_{h t}-\beta_{l t}\right)$

- Conditional on functional form of time

GC decomposition approach

- $R(t)=E(t)+C(t)+I(t)$
- Decomposition is time dependent
- $R=\left[E\left(X_{h t}\right)-E\left(X_{t t}\right)\right] \beta_{\beta_{t}}+E\left(X_{t t}\right)\left(\beta_{h t}-\beta_{t t}\right)+\left[E\left(X_{h t}\right)-E\left(X_{t t}\right)\right]\left(\beta_{h t}-\beta_{t t}\right)$
- Conditional on functional form of time

GC decomposition approach

$\square R(t)=E(t)+C(t)+I(t)$

- Decomposition is time dependent

■ $R=\left[E\left(X_{h t}\right)-E\left(X_{l t}\right)\right] \beta_{l t}+E\left(X_{l t}\right)\left(\beta_{h t}-\beta_{l t}\right)+\left[E\left(X_{h t}\right)-E\left(X_{l t}\right)\right]\left(\beta_{h t}-\beta_{l t}\right)$

- Conditional on functional form of time

Decomposition of change

■ Decomposing the change in happiness

- it always needs two time points to compare

Decomposition of change

$$
\begin{aligned}
\Delta Y^{\prime} & =Y_{t}^{\prime}-Y_{s}^{\prime} \\
& =\bar{X}_{t}^{\prime} \beta_{t}^{\prime}-\bar{X}_{s}^{\prime} \beta_{s}^{\prime}
\end{aligned}
$$

Decomposition of change

$$
\begin{aligned}
\Delta Y^{\prime} & =Y_{t}^{\prime}-Y_{s}^{\prime} \\
& =\bar{X}_{t}^{\prime} \beta_{t}^{\prime}-\bar{X}_{s}^{\prime} \beta_{s}^{\prime}
\end{aligned}
$$

and the change of the group difference over time then is

$$
\begin{aligned}
\Delta Y & =\Delta Y^{A}-\Delta Y^{B} \\
& =\left(\bar{X}_{t}^{A} \beta_{t}^{A}-\bar{X}_{s}^{A} \beta_{s}^{A}\right)-\left(\bar{X}_{t}^{B} \beta_{t}^{B}-\bar{X}_{s}^{B} \beta_{s}^{B}\right) \\
& =\bar{X}_{t}^{A} \beta_{t}^{A}-\bar{X}_{s}^{A} \beta_{s}^{A}-\bar{X}_{t}^{B} \beta_{t}^{B}+\bar{X}_{s}^{B} \beta_{s}^{B}
\end{aligned}
$$

Change due to endowment

$$
\Delta Y_{E}=\left(\bar{X}_{t}^{A}-\bar{X}_{s}^{A}\right) \beta_{s}^{A}-\left(\bar{X}_{t}^{B}-\bar{X}_{s}^{B}\right) \beta_{s}^{B}
$$

Change due to endowment

$$
\Delta Y_{E}=\left(\bar{X}_{t}^{A}-\bar{X}_{s}^{A}\right) \beta_{s}^{A}-\left(\bar{X}_{t}^{B}-\bar{X}_{s}^{B}\right) \beta_{s}^{B}
$$

Change due to coefficients

$$
\Delta Y_{C}=\left(\beta_{t}^{A}-\beta_{s}^{A}\right) \bar{X}_{s}^{A}-\left(\beta_{t}^{B}-\beta_{s}^{B}\right) \bar{X}_{s}^{B}
$$

Change due to coefficients

$$
\Delta Y_{C}=\left(\beta_{t}^{A}-\beta_{s}^{A}\right) \bar{X}_{s}^{A}-\left(\beta_{t}^{B}-\beta_{s}^{B}\right) \bar{X}_{s}^{B}
$$

Research questions for the parts of the decomposition

■ dE: How much smaller/bigger would the change in the gap be, if the endowments of group A had changed in the same way as for group B (and the difference in coefficients had stayed the same)?

Research questions for the parts of the decomposition

- dE: How much smaller/bigger would the change in the gap be, if the endowments of group A had changed in the same way as for group B (and the difference in coefficients had stayed the same)?

■ dC: How much smaller/bigger would the change in the gap be, if the coefficients of group A had changed in the same way as for group B (and the difference in endowments had stayed the same)?
\Leftrightarrow

Quick note on the use of margins

- all decompositions are done at means or other specified values
- calculation of average over the population not necessary
- margins conducted only on one observation
- speed of the calculation of margins (not mean) independent of sample size

xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

```
xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time)
times(1 3 5 ) /// model1(base) model2(control) ///
timebandwidth(1) basecontrols(edu) change timeref(1)
```


xtoaxaca in action

Stata example

General problems with decomposition

- Reference group

■ Reference group of decomposition variables

Extensions?

■ Different forms of change decomposition (e.g. Kim, Makepiece)

■ Different counterfactual scenarios

- Reduce to one model estimation

■ Extension for SEM

