xtlhazard: Linear discrete time hazard estimation using Stata

Harald Tauchmann^{1,2,3}

¹FAU, ²RWI, ³CINCH

May 24th 2019

2019 German Stata Users Group Meeting

work in progress

Outline

- Motivation
- 2 Theory
- Monte Carlo Simulations
- Stata Implementation
- Real Data Application
- Conclusions

Motivation

Hazard models / duration analysis / survival analysis / models for non-repeated events & absorbing states

» Modelling (directional) transitions

Continuous time hazard models

- » Parametric (Weibull, Gompertz, exponential, ...) models (→streg)
- » Semi-parametric (Cox) models (→stcox)
- » Not considered in this talk

2. Discrete time hazard models

» Stacked binary outcome models (probit, logit, ...)

Motivation II

- ► Unobserved individual heterogeneity ("frailty")
 - » Random effects
 - > Straightforward (integrating out)
 - > No correlation with regressors allowed
 - » Fixed effects
 - > Incidental parameters problem
 - > Computationally demanding (possibly intractable)
- ► Linear probability model alternative that allows for linear fixed effects estimation?

5/29

Does Linear Fixed Effects Estimation Work?

- ▶ **Left-hand-side** $y_{i1}, ..., y_{iT}$ for unit i in panel of length T
 - » 0, 0, ..., 0, 0, 0, 0 (censored)
 - $0, 0, \ldots, 0, 1, 1, 1$ (\rightarrow no info in second, third, \ldots 1)
 - $0, 0, \ldots, 0, 1$ (\rightarrow effectively $T_i \leq T$ obs. if not cens.)
- ▶ Within-transformed lhs variable (i observed T_i periods)
 - » 0, 0, ..., 0, 0, 0 (censored)
 - » $-\frac{1}{T_i}$, $-\frac{1}{T_i}$, ..., $-\frac{1}{T_i}$, $\frac{T_i-1}{T_i}$ (not censored)
 - » Transformation has **little effect** on lhs (at least for large T_i)
- ► **First-differenced** lhs variable (*i* observed *T_i* periods)
 - » 0,...,0,0,0,0 (censored)
 - » 0, ..., 0, 1 (not censored)
 - » (Besides loosing y_{i1}) transformation has **no effect at all** due to $y_{it-1} = 0$

Harald Tauchmann (FAU) xtlhazard May 24th 2019

6/29

Does Linear Fixed Effects Estimation Work? II

- Can transformations that (almost) do not transform the left-hand-side variable eliminate individual heterogeneity?
- Implicit answer of the literature seems to be "yes":
 - » Miguel et al. (2004, Journal of Political Economy)
 - » Ciccone (2011, AEJ: Applied)
 - » Brown and Laschever (2012, AEJ: Applied)
 - » Cantoni (2012, Economic Journal)
 - » Harding and Stasavage (2014, Journal of Politics)
 - » Jacobson and von Schedvin (2015, Econometrica)
 - » Wang et al. (2017, WP)
 - » Bogart (2018, Economic Journal)

Harald Tauchmann (FAU) xtlhazard May 24th 2019

The Data Generating Process

$$y_{it} = a_i + \mathbf{x}_{it}\beta + \varepsilon_{it}$$

$$\varepsilon_{it} = \begin{cases} 1 - a_i - \mathbf{x}_{it}\beta & \text{if} \quad t = T_i \quad \text{and } i \text{ is not censored} \\ -a_i - \mathbf{x}_{it}\beta & \text{if} \quad t = T_i \quad \text{and } i \text{ is censored} \\ -a_i - \mathbf{x}_{it}\beta & \text{if} \quad t < T_i \end{cases}$$

- $ightharpoonup a_i$ unobserved time-invariant individual heterogeneity
- $ightharpoonup a_i + \mathbf{x}_{it}\beta \in [0,1] \ \forall \ it$

Assumption rendering above equation regression model:

$$\begin{split} & \mathsf{E}\left(\boldsymbol{\varepsilon}_{it} \big| \boldsymbol{a}_i, \mathbf{x}_{it}, \mathbf{y}_{it^-} = \mathbf{0}\right) = 0 \qquad \text{with} \quad \mathbf{y}_{it^-} \equiv [y_{i0} ... y_{it-1}] \\ \Rightarrow & \mathsf{P}(y_{it} = 1 \big| \boldsymbol{a}_i, \mathbf{x}_{it}, \mathbf{y}_{it^-} = \mathbf{0}) = \boldsymbol{a}_i + \mathbf{x}_{it} \boldsymbol{\beta} \end{split}$$

Harald Tauchmann (FAU) xtlhazard May 24th 2019

Estimation by pooled OLS

$$y_{it} = \alpha^c + \mathbf{x}_{it}\beta + \varepsilon_{it}^{OLS}$$

 \triangleright $\varepsilon_{it}^{OLS} \neq \varepsilon_{it}$, since a_i not included as regressor

Conditional mean of disturbance:

$$E\left(\varepsilon_{it}^{\text{OLS}}|a_{i},\mathbf{x}_{it},\mathbf{y}_{it^{-}}=\mathbf{0}\right) = (a_{i}+\mathbf{x}_{it}\beta)\left(1-\alpha^{c}-\mathbf{x}_{it}\beta\right) \\ + \left(1-a_{i}-\mathbf{x}_{it}\beta\right)\left(-\alpha^{c}-\mathbf{x}_{it}\beta\right) \\ = a_{i}-\alpha^{c}$$

- ▶ Renders OLS biased and inconsistent if $Cov(a_i, \mathbf{x}_{it}) \neq \mathbf{0}$
- ► First-differences or within-transformation to eliminate *a_i*?

Estimation by First-Differences Estimation

$$y_{it} = \Delta \mathbf{x}_{it} \boldsymbol{\beta} + \varepsilon_{it}^{\mathsf{FD}}$$
 $(y_{it} = \Delta y_{it} \text{ due to absorbing state})$

Conditional mean of disturbance:

$$E(\varepsilon_{it}^{\text{FD}}|a_i, \mathbf{x}_{it}, \mathbf{x}_{it-1}, \mathbf{y}_{it^-} = \mathbf{0}) = (a_i + \mathbf{x}_{it}\beta) (1 - \Delta \mathbf{x}_{it}\beta) + (1 - a_i - \mathbf{x}_{it}\beta) (-\Delta \mathbf{x}_{it}\beta) = a_i + \mathbf{x}_{it-1}\beta$$

- ► Taking first-differences
 - » Does not eliminate a_i
 - » Makes \mathbf{x}_{it-1} enter **conditional mean** of disturbance
- ► Similar (yet more involved) result for within-transformation (eqiv. for T = 2) Within-Transformation
- First-diff, and within estimator biased and inconsistent

Harald Tauchmann (FAU) xtlhazard May 24th 2019

First-Differences Estimation with Constant

Including constant term in first-differences estimation improves matters

$$\mathsf{E}(\varepsilon_{it}^{\mathsf{FDC}}|a_i,\mathbf{x}_{it},\mathbf{x}_{it-1},\mathbf{y}_{it^-}=\mathbf{0}) = \tilde{a_i} + \tilde{\mathbf{x}}_{it-1}\tilde{\beta}$$

- Constant captures (estimation sample) mean of a_i
- \blacktriangleright E(\tilde{a}_i |sample) = 0, $\tilde{\beta}' \equiv [\tilde{\alpha}^c \beta']$, $\tilde{\mathbf{x}}_{it-1} \equiv [\mathbf{0} \ \mathbf{x}_{it-1}]$, and $\Delta \mathbf{x}_{it} \equiv [1 \ \Delta \mathbf{x}_{it}]$

Asymptotic Properties of FD Estimation with Constant

Assumption

 $Cov(a_i, \Delta \mathbf{x}_{it}) = \mathbf{0}$, while allowing for $Cov(a_i, \mathbf{x}_{it}) \neq \mathbf{0}$

$$\mathsf{plim}(b^{\mathsf{FDC}}) = \mathsf{plim}\left(I + \left(\frac{1}{N}\sum_{i=1}^{N}\sum_{t=2}^{T_i}\widetilde{\Delta \mathbf{x}}_{it}'\widetilde{\Delta \mathbf{x}}_{it}\right)^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}\sum_{t=2}^{T_i}\widetilde{\Delta \mathbf{x}}_{it}'\widetilde{\mathbf{x}}_{it-1}\right)\right)\widetilde{\beta} \quad \neq \widetilde{\beta}$$

 b^{FDC} is **inconsistent** for β , yet if

- 1. $\beta = \mathbf{0}$, b^{FDC} is **consistent** for β
- 2. \mathbf{x}_{it} follows random walk, b^{FDC} is consistent for β
- 3. \mathbf{x}_{it} is covariance **stationary**, i.e. $\mathrm{E}\left(\mathbf{x}_{it}'\mathbf{x}_{it}\right) = \mathbf{Q}$ and $\mathrm{E}\left(\mathbf{x}_{it}'\mathbf{x}_{it-1}\right) = \mathrm{E}\left(\mathbf{x}_{it-1}'\mathbf{x}_{it}\right) = \mathbf{Q}_{\Delta}$, then b^{FDC} is **consistent** for $\frac{1}{2}\beta$

Harald Tauchmann (FAU) xtlhazard May 24th 2019

A Consistent Adjusted First-Differences Estimator

From the result for $plim(b^{FDC})$, we get

$$\mathsf{plim}\left(\textit{b}^{\mathsf{FDC}}_{\mathsf{adjust}}\right) = \tilde{\beta}$$

with

$$b_{\text{adjust}}^{\text{FDC}} = \underbrace{\left(I + \left(\sum_{i=1}^{N} \sum_{t=2}^{T_{i}} \widetilde{\Delta \mathbf{x}}_{it}' \widetilde{\Delta \mathbf{x}}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=2}^{T_{i}} \widetilde{\Delta \mathbf{x}}_{it}' \widetilde{\mathbf{x}}_{it-1}\right)\right)^{-1}}_{\text{adjustment matrix } \mathbf{W}} \times \underbrace{\left(\sum_{i=1}^{N} \sum_{t=2}^{T_{i}} \widetilde{\Delta \mathbf{x}}_{it}' \widetilde{\Delta \mathbf{x}}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=2}^{T_{i}} \widetilde{\Delta \mathbf{x}}_{it}' y_{it}\right)}_{b^{\text{FDC}}}$$

Harald Tauchmann (FAU) xtlhazard May 24th 2019

A Consistent Adjusted First-Differences Estimator II

Adjusted First-Differences Estimator $b_{\text{adjust}}^{\text{FDC}}$:

- 1. **Consistent** for β , given that $Cov(a_i, \Delta \mathbf{x}_{it}) = \mathbf{0}$
- 2. No assumptions about DGP for \mathbf{x}_{it} required
- 3. Computationally very simple
- 4. Not consistent for α
 - » Constant converges in probability to (plim of) conditional mean $\tilde{\alpha}^c$ rather than to its unconditional counterpart α
- 5. Only exists if W is non-singular
 - » Non-trivial condition
- 6. $Var(\mathbf{b}_{adiust}^{FDC}|\mathbf{X}) = \mathbf{W} \times Var(\mathbf{b}^{FDC}|\mathbf{X}) \times \mathbf{W}$
 - » No serial correlation, just heterosecedasticity

Harald Tauchmann (FAU) xtlhazard May 24th 2019

Higher-Order Differences

- Compared to conventional fixed-effects estimators **much** stronger assumptions required for consistency
 - » Consistency of $b_{\text{adjust}}^{\text{FDC}}$ hinges on $\text{Cov}(a_i, \Delta \mathbf{x}_{it}) = \mathbf{0}$
 - » May well be violated
 - » **Higher-order** differences Δ^{j} **x**_{it} as possible solution
 - $\rightarrow \text{Cov}(a_i, \Delta^j \mathbf{x}_{it}) = \mathbf{0} \text{ required for consistency}$
 - » Technically fully analogous to b FDC adjust
 - » Costly in terms of variation in x that is used for identification

May 24th 2019 xtlhazard 14/29

MC Simulation Design

- Five estimators
 - 1. b^{OLS} (OLS)
 - 2. b^{WI} (within transformation)
 - 3. b^{FD} (first-differences w/o constant)
 - 4. b^{FDC} (first-differences with constant)
 - 5. $b_{\text{adjust}}^{\text{FDC}}$ (adjusted first-differences)
- ► *T* = 5
- ▶ $N = 4 \cdot 10^7$ (large samp.) or N = 400 (small samp.)
- ► Number of MC replications
 - » 1 (large sample)
 - » 10 000 (small sample)
- ► Two variants for small sample
 - 1. \mathbf{x}_{it} and a_i random
 - 2. \mathbf{x}_{it} and a_i fixed

MC Simulation Design II

- ightharpoonup a_i iid. continuous U(0.05, 0.15) ($\rightarrow \alpha = 0.1$)
- ightharpoonup \mathbf{x}_{it} comprises only one variable, three DGPs:
 - 1. **stationary**: $x_{it}^{ST} = 0.1 + a_i + \zeta_{it}$, with $\zeta_{it} \sim \text{iid. } U(-0.035, 0.035)$
 - 2. random walk w/o drift: $x_{it}^{RW} = x_{it-1}^{RW} + \nu_{it}$, with $x_{i1} = 0.1 + a_i$ and $\nu_{it} \sim \text{iid. } U(-0.05, 0.05)$
 - 3. trended with increasing variance: $x_{ir}^{TR} = 0.075 + a_i + \eta_{it}$, with $\eta_{it} \sim \text{iid. } U(0, 0.025t)$
 - » $Cov(a_i, x_{it}) > 0$ and $Cov(a_i, \Delta x_{it}) = 0$
 - $a_i + x_{it}\beta \in [0, 1] \ \forall i, t = 1...5$
 - » $P(y_{it} = 1)$ and $Var(\Delta x_{it})$ very similar across DGPs
- \triangleright $\beta = 1$

Harald Tauchmann (FAU) xtlhazard May 24th 2019 16/29

Large Sample Simulation Results

	_b oLS		_b wı		b^{FD}		$b^{ extsf{FDC}}$		b FDC adjust	
	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.
x _{it} ST	stationa	ry								
β	1.6671	0.0012	0.9024	0.0025	0.7072	0.0022	0.5008	0.0019	0.9980	0.0037
â	-0.0345	0.0002	0.1160	0.0005			0.2899	0.0001	0.0955	0.0007
x_{it}^{RV}	follows	random w	alk							
β	1.4267	0.0009	0.9472	0.0019	1.0011	0.0022	1.0000	0.0018	0.9999	0.0018
â	0.0134	0.0002	0.1072	0.0004			0.2882	0.0001	0.0951	0.0004
x_{it}^{TR}	trended	with incre	asing vari	ance arou	nd trend					
Â	1.5715	0.0012	6.0363	0.0019	4.4998	0.0020	0.6725	0.0019	1.0075	0.0028
â	-0.0180	0.0002	-0.9154	0.0004			0.2950	0.0001	0.0936	0.0006

Notes: True coefficient values: $\beta = \mathbf{1}$, $\alpha = \mathbf{0.1}$; $N = 4 \cdot 10^7$, T = 5; the # of observations for x_{it}^{ST} is 71 748 906, the corresponding #s of observations for x_{it}^{RW} is 71 823 746 and for x_{it}^{TR} being trended 72 218 321. For b^{OLS} the #s of observations are higher by $4 \cdot 10^7$ observations, since the first wave is not eliminated by the within or the first-differences transformation.

Harald Tauchmann (FAU) xtlhazard May 24th 2019 17/29

Small Sample Simulation Results (x_{it} and a_i random)

	bors		_b wı		b ^{FD}		_b FDC		b FDC adjust	
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
	x_{it} and a_i random									
x_{it}^{ST}	stationa	ry								
β	1.6755	0.3808	0.9208	0.7885	0.7240	0.7038	0.5133	0.5902	1.0167	1.1728
â	-0.0356	0.0746	0.1128	0.1549			0.2903	0.0171	0.0923	0.2286
x ^{RV} it	V follows	random w	alk							
Â	1.4278	0.3004	0.9485	0.6089	1.0068	0.69504	1.0019	0.5862	1.0027	0.5856
â	0.0138	0.0582	0.1068	0.1195			0.2887	0.0170	0.0954	0.1131
X_{it}^{TR}	trended	with incre	asing vari	ance arou	nd trend					
ĝ	1.5763	0.3654	6.0427	0.6069	4.5072	0.67781	0.6691	0.6155	0.9940	0.9147
â	-0.0186	0.0733	-0.9167	0.1167			0.2950	0.0187	0.0965	0.1909

Notes: True coefficient values: $\beta = 1$, $\alpha = 0.1$; N = 400, T = 5; 10 000 replications.

► Very close to large sample simulation results

Harald Tauchmann (FAU) xtlhazard May 24th 2019 18/29

Small Sample Simulation Results (x_{it} and a_i fixed)

	bors		_b wı		bFD		bFDC		b FDC adjust	
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
					x _{it} and a _i	fixed				
x_{it}^{ST}	stationa	ry								
β	1.6443	0.3826	1.3168	0.7160	0.8548	0.6678	0.5351	0.5790	1.0326	1.1189
â	-0.0310	0.0743	0.0324	0.1390			0.2853	0.0168	0.0865	0.2161
x _{it} RV	V follows	random w	alk							
Â	1.4208	0.3227	1.6595	0.5408	1.5261	0.6514	0.9350	0.5921	0.9807	0.6203
â	0.0125	0.0627	-0.0344	0.1054			0.2852	0.0166	0.0969	0.1209
X_{it}^{TR}	trended	with incre	asing vari	ance arou	nd trend					
β	1.5638	0.3795	5.9851	0.5921	4.5432	0.6561	0.6581	0.6064	0.9792	0.9023
â	-0.0172	0.0751	-0.8950	0.1113			0.2903	0.0177	0.0973	0.1855

Notes: True coefficient values: $\beta = 1$, $\alpha = 0.1$; N = 400, T = 5; 10 000 replications.

- \triangleright b^{WI} and b^{FD} sensitive to fixing x_{it} and a_i
- \blacktriangleright b^{WI} and b^{FD} prone to substantial small sample bias

xtlhazard May 24th 2019 19/29

The xtlhazard command

- Requires data to be xtset
- Checks whether depvar is consistent with absorbing state

Syntax of xtlhazard

```
xtlhazard depvar indepvars [if] [in] [weight] [, options]
```

Options for xtlhazard

- noabsorbing forces estimation if depvar is inconsitent with model

The xtlhazard command II

Options for xtlhazard cont'd

xtlhazard postestimation

► Many standard postestimation commands available

individual fixed-effects

▶ predict, margins, test, testnl, lincom, nlcom, ...

22/29

Research Question of Brown and Laschever (2012)

Peer Effects in Retirement of School Teachers? Identification

- ► Two unexpected **pension reforms** exerting **heterogenous incentives** for retirement
- ► Incentives for others teachers as instrument for peer retirement while controlling for own incentives

Data

- ► Short yearly **panel** (1999-2001)
- ► Individual teacher level (LA Unified School District)
- ▶ No longer observed after retirement (→absorbing state)

Result

Significant positive peer effects

Research Question of present Application

Does Method used for Estimation Matter?

- Focus on reduced form model
- Focus on specification that includes teacher fixed effects
- ► Comparing results of **Brown and Laschever (2012)** who use b^{WI} to results from b^{FD} and b^{FDC}_{adjust}
 - » b^{FD} and b^{FDC} coincide because of year dummies

24/29

Results for Key Reduced Form Coefficients

	_b wi‡		_b FDC		b FDC adjust	
	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.
change in pension wealth of peers $(t-1)$ change in pension wealth of peers $(t-2)$	0.003 **	0.001	0.003 **	0.001	-0.007	0.095
	0.002 *	0.001	0.002	0.001	-0.004	0.054
change in own pension wealth	0.033 ***	0.011	-0.003	0.009	-0.005	0.041
change in own peak value	-0.002	0.002	-0.002 *	0.001	-0.005 *	0.003

Notes: 21 290 observations, 8 320 teachers, and 586 school clusters for within-transformation estimation. 12 968 observations, 7 088 teachers, and 578 school clusters for first-differences estimation. *N* redundant observations in the within-transformed model.

- \triangleright Similar results for b^{WI} and b^{FDC}
- Instruments turn insignificant and negative for badjust
- Results from b_{adjust} conflict with retirement incentives for peer teachers mattering for own retirement decision, i.e. peer effects in retirement

Harald Tauchmann (FAU) xtlhazard May 24th 2019

Predicted Conditional Retirement Probabilities

Harald Tauchmann (FAU) xtlhazard May 24th 2019 25/29

Predicted Conditional Retirement Probabilities II

- ▶ Unlike b^{FDC} , predictions from b^{WI} and $b^{\text{FDC}}_{\text{adjust}}$ centered to sample mean of y_{it}
- All estimators yield some predicted probabilities outside unit interval
- ▶ Share of **irregular** estimated probabilities heterogeneous

```
» b<sup>WI</sup>: 77.9%
```

» b^{FDC}: 71.8%

» b**FDC** 19.2%

▶ Something seems to be wrong with b^{FDC} and b^{WI}

Harald Tauchmann (FAU) xtlhazard May 24th 2019 26/29

Results for Age Coefficients

	_b wı‡		bFC	c	b _{ad}	C iust
	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.
change in pension wealth of peers $(t-1)$	0.003 **	0.001	0.003 **	0.001	-0.007	0.095
change in pension wealth of peers ($t-2$)	0.002 *	0.001	0.002	0.001	-0.004	0.054
change in own pension wealth	0.033 ***	0.011	-0.003	0.009	-0.005	0.041
change in own peak value	-0.002	0.002	-0.002 *	0.001	-0.005 *	0.003
:						
	-0.154 ***	0.013	-0.179 ***	0.015		
age ≥ 54 years	-0.154		-0.179		0.016	0.020
age ≥ 55 years	-0.123	0.013 0.012	-0.163	0.015	-0.016 -0.013	0.029 0.011
age ≥ 56 years			-			
age ≥ 57 years	-0.138 ***	0.013	-0.173 ***	0.014	0.001	0.010
age ≥ 58 years	-0.127 ***	0.012	-0.163 ***	0.014	0.008	0.014
age ≥ 59 years	-0.099 ***	0.014	-0.132 ***	0.015	0.030 ***	0.010
age \geq 60 years	-0.051 ***	0.015	-0.076 ***	0.017	0.056 **	0.022
age \geq 61 years	-0.024	0.017	-0.038 **	0.019	0.034	0.028
age ≥ 62 years	0.027	0.020	0.023	0.021	0.060 ***	0.020
age ≥ 63 years	-0.009	0.021	0.001	0.023	-0.022	0.031
age \geq 64 years	-0.055 ***	0.021	-0.054 ***	0.021	-0.052 *	0.030
age ≥ 65 years	0.000	0.025	-0.009	0.026	0.037	0.046
age ≥ 66 years	-0.025	0.026	-0.024	0.026	-0.017	0.034

Notes: 21 290 observations, 8 320 teachers, and 586 school clusters for within-transformation estimation. 12 968 observations, 7 088 teachers, and 578 school clusters for first-differences estimation. *N* redundant observations in the within-transformed model.

Results for Age Coefficients II

- b^{FDC}_{adjust} does not yield a very distinct pattern for baseline hazard
- ▶ b^{FDC} and b^{WI} yield a steady and steep decrease in the baseline retirement hazard for teachers in their 50th
- ➤ This pattern is in no way mirrored by the unconditional sample retirement rates
- According to $\widehat{\beta^{WI}}$ baseline retirement hazard **decreases** by 83 percentage points between the age of 53 and the age of 60
 - » Seems to make little sense
- ► b^{FDC} and b^{WI} almost certainly yield misleading results regarding the baseline retirement hazard

Conclusions

- Conventional fixed-effects estimators
 (within-transformation, first-differences) inappropriate
 for discrete-time linear hazard model
 - » Bias may well exceed bias of OLS
- Adjusted first-differences consistent alternative
 - » Unobserved individual heterogeneity is not eliminated
 - » Corrects for incorrect 'scaling' of bFDC
 - » Consistency hinges on $Cov(a_i, \Delta \mathbf{x}_{it}) = \mathbf{0}$
 - » Higher-order differences allow for consistent estimation under weaker assumptions
- xtlhazard implements adjusted first (and higher-oder)
 differences estimation in stata

Error Cond. Mean in Within-Transformed Model

$$\mathsf{E}\left(arepsilon_{it}^{\mathsf{WI}}|a_i,\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT_i},\mathbf{y}_{it^-}=\mathbf{0}
ight)=$$

$$(a_{i} + \mathbf{x}_{it}\beta) \left(\frac{t-1}{t} - \left(\mathbf{x}_{it} - \frac{1}{t}\sum_{s=1}^{t}\mathbf{x}_{is}\right)\beta\right)$$

$$+ \sum_{T_{i}=t+1}^{T} (a_{i} + \mathbf{x}_{iT_{i}}\beta) \left[\prod_{s=t}^{T_{i}-1} (1 - a_{i} - \mathbf{x}_{is}\beta)\right] \left(-\frac{1}{T_{i}} - \left(\mathbf{x}_{it} - \frac{1}{T_{i}}\sum_{s=1}^{T_{i}}\mathbf{x}_{is}\right)\beta\right)$$

$$+ \left[\prod_{s=t}^{T} (1 - a_{i} - \mathbf{x}_{is}\beta)\right] \left(-\left(\mathbf{x}_{it} - \frac{1}{T_{i}}\sum_{s=1}^{T}\mathbf{x}_{is}\right)\beta\right)$$

Error Cond. Mean in Within-Transformed Model II

For t = T, conditional mean simplifies to:

$$\mathsf{E}\left(\varepsilon_{iT}^{\mathsf{WI}}|a_i,\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT},\mathbf{y}_{iT^-}=\mathbf{0}\right) = \left(\frac{T-1}{T}\right)a_i + \frac{1}{T}\left(\sum_{s=1}^{T-1}\mathbf{x}_{is}\right)\beta$$

For T=2, we get

$$\mathsf{E}\left(\varepsilon_{i2}^{\mathsf{WI}}|a_{i},\mathbf{x}_{i1},\mathbf{x}_{i2},y_{i1}=0\right)=\frac{1}{2}a_{i}+\frac{1}{2}\mathbf{x}_{i1}\beta$$

which coincides with result for $E(\varepsilon_{it}^{FD}|a_i, \mathbf{x}_{it}, \mathbf{x}_{it-1}, \mathbf{y}_{it-1} = \mathbf{0})$.

Estimator based on Higher-Order Differences

$$\begin{aligned} b_{\text{adjust}}^{\text{JDC}} &= \left(I + \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}}_{it}' \widetilde{\Delta^j \mathbf{x}}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}}_{it}' (\mathbf{x}_{it} - \Delta^j \mathbf{x}_{it})\right)\right)^{-1} \\ &\times \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}}_{it}' \widetilde{\Delta^j \mathbf{x}}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}}_{it}' \mathbf{y}_{it}\right) \\ \text{for } j = 2, 3, \dots \\ \Delta^2 \mathbf{x}_{it} &= \Delta \mathbf{x}_{it} - \Delta \mathbf{x}_{it-1} \\ &= \mathbf{x}_{it} - 2 \mathbf{x}_{it-1} + \mathbf{x}_{it-2} \end{aligned}$$

Harald Tauchmann (FAU) xtlhazard

 $\Delta^3 \mathbf{x}_{it} = (\Delta \mathbf{x}_{it} - \Delta \mathbf{x}_{it-1}) - (\Delta \mathbf{x}_{it-1} - \Delta \mathbf{x}_{it-2})$ $= \mathbf{x}_{it} - 3\mathbf{x}_{it-1} + 3\mathbf{x}_{it-2} - \mathbf{x}_{it-3}$