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Motivation

Motivation

Hazard models / duration analysis / survival analysis /

models for non-repeated events & absorbing states

» Modelling (directional) transitions

1. Continuous time hazard models

» Parametric (Weibull, Gompertz, exponential, ...) models

(→streg)

» Semi-parametric (Cox) models (→stcox)

» Not considered in this talk

2. Discrete time hazard models

» Stacked binary outcome models (probit, logit, ...)
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Motivation

Motivation II

◮ Unobserved individual heterogeneity (“frailty”)

» Random effects

› Straightforward (integrating out)

› No correlation with regressors allowed

» Fixed effects

› Incidental parameters problem

› Computationally demanding (possibly intractable)

◮ Linear probability model alternative that allows for

linear fixed effects estimation?
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Motivation Does Linear Fixed Effects Estimation Work?

Does Linear Fixed Effects Estimation Work?

◮ Left-hand-side yi1, . . . , yiT for unit i in panel of length T

» 0,0, . . . ,0,0,0,0 (censored)

» 0,0, . . . ,0,1,1,1 (→ no info in second, third, ... 1)

» 0,0, . . . ,0,1 (→ effectively Ti ≤ T obs. if not cens.)

◮ Within-transformed lhs variable (i observed Ti periods)

» 0,0, . . . ,0,0,0,0 (censored)

» − 1
Ti
,− 1

Ti
, . . . ,− 1

Ti
,
Ti−1
Ti

(not censored)

» Transformation has little effect on lhs (at least for large Ti)

◮ First-differenced lhs variable (i observed Ti periods)

» 0, . . . ,0,0,0,0 (censored)

» 0, . . . ,0,1 (not censored)

» (Besides loosing yi1) transformation has no effect at all

due to yit−1 = 0
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Motivation Does Linear Fixed Effects Estimation Work?

Does Linear Fixed Effects Estimation Work? II

◮ Can transformations that (almost) do not transform

the left-hand-side variable eliminate individual

heterogeneity?

◮ Implicit answer of the literature seems to be “yes”:

» Miguel et al. (2004, Journal of Political Economy)

» Ciccone (2011, AEJ: Applied)

» Brown and Laschever (2012, AEJ: Applied)

» Cantoni (2012, Economic Journal)

» Harding and Stasavage (2014, Journal of Politics)

» Jacobson and von Schedvin (2015, Econometrica)

» Wang et al. (2017, WP)

» Bogart (2018, Economic Journal)
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Theory The Data Generating Process

The Data Generating Process

yit = ai + xitβ + ε it

ε it =





1− ai − xitβ if t = Ti and i is not censored

−ai − xitβ if t = Ti and i is censored

−ai − xitβ if t < Ti

◮ ai unobserved time-invariant individual heterogeneity

◮ ai + xitβ ∈ [0,1] ∀ it

Assumption rendering above equation regression model:

E (ε it|ai,xit,yit− = 0) = 0 with y
it−≡[yi0...yit−1]

⇒P(yit = 1|ai,xit,yit− = 0) = ai + xitβ
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Theory Estimation by OLS

Estimation by pooled OLS

yit = αc + xitβ + εOLSit

◮ εOLSit 6= ε it, since ai not included as regressor

Conditional mean of disturbance:

E
(
εOLSit |ai,xit,yit− = 0

)
= (ai + xitβ) (1− αc − xitβ)

+(1− ai − xitβ) (−αc − xitβ)

= ai − αc

◮ Renders OLS biased and inconsistent if Cov(ai,xit) 6= 0

◮ First-differences or within-transformation to eliminate ai?
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Theory First-Differences Estimation

Estimation by First-Differences Estimation

yit = ∆xitβ + εFDit (yit = ∆yit due to absorbing state)

Conditional mean of disturbance:

E(εFDit |ai,xit,xit−1,yit− = 0) = (ai + xitβ) (1− ∆xitβ)

+(1− ai − xitβ) (−∆xitβ)

= ai + xit−1β

◮ Taking first-differences

» Does not eliminate ai

» Makes xit−1 enter conditional mean of disturbance

◮ Similar (yet more involved) result for

within-transformation (eqiv. for T = 2) Within-Transformation

◮ First-diff. and within estimator biased and inconsistent
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Theory First-Differences Estimation with Constant

First-Differences Estimation with Constant

◮ Including constant term in first-differences estimation

improves matters

E(εFDCit |ai,xit,xit−1,yit− = 0) = ãi + x̃it−1 β̃

◮ Constant captures (estimation sample) mean of ai

◮ E(ãi|sample) = 0, β̃′ ≡ [α̃c β′], x̃it−1 ≡ [0 xit−1], and

∆̃xit ≡ [1 ∆xit]
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Theory Asymptotic Properties

Asymptotic Properties of FD Estimation with Constant

Assumption

Cov(ai,∆xit) = 0, while allowing for Cov(ai,xit) 6= 0

plim(bFDC) = plim


I+

(
1

N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1(
1

N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
itx̃it−1

)
 β̃ 6= β̃

bFDC is inconsistent for β, yet if

1. β = 0, bFDC is consistent for β

2. xit follows random walk, bFDC is consistent for β

3. xit is covariance stationary, i.e. E (x′itxit) = Q

and E (x′itxit−1) = E
(
x′it−1xit

)
= Q∆,

then bFDC is consistent for 1

2
β
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Theory Asymptotic Properties

A Consistent Adjusted First-Differences Estimator

From the result for plim(bFDC), we get

plim
(
bFDCadjust

)
= β̃

with

bFDCadjust =


I+

(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
itx̃it−1

)


−1

︸ ︷︷ ︸
adjustment matrixW

×

(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
ityit

)

︸ ︷︷ ︸
bFDC
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Theory Asymptotic Properties

A Consistent Adjusted First-Differences Estimator II

Adjusted First-Differences Estimator bFDCadjust:

1. Consistent for β, given that Cov(ai,∆xit) = 0

2. No assumptions about DGP for xit required

3. Computationally very simple

4. Not consistent for α

» Constant converges in probability to (plim of) conditional

mean α̃c rather than to its unconditional counterpart α

5. Only exists if W is non-singular

» Non-trivial condition

6. Var(bFDC
adjust|X) = W× Var(bFDC|X)×W

» No serial correlation, just heterosecedasticity
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Theory Higher-Order Differences

Higher-Order Differences

◮ Compared to conventional fixed-effects estimators much

stronger assumptions required for consistency

» Consistency of bFDCadjust hinges on Cov(ai,∆xit) = 0

» May well be violated

» Higher-order differences ∆jxit as possible solution
Higher-Order

› Cov(ai,∆jxit) = 0 required for consitency

» Technically fully analogous to bFDCadjust

» Costly in terms of variation in x that is used for

identification
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Monte Carlo Simulations Design

MC Simulation Design

◮ Five estimators

1. bOLS (OLS)

2. bWI (within transformation)

3. bFD (first-differences w/o constant)

4. bFDC (first-differences with constant)

5. bFDCadjust (adjusted first-differences)

◮ T = 5

◮ N = 4 · 107 (large samp.) or N = 400 (small samp.)

◮ Number of MC replications

» 1 (large sample)

» 10000 (small sample)

◮ Two variants for small sample

1. xit and ai random

2. xit and ai fixed
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Monte Carlo Simulations Design

MC Simulation Design II

◮ ai iid. continuous U(0.05,0.15) (→ α = 0.1)

◮ xit comprises only one variable, three DGPs:

1. stationary: xSTit = 0.1+ ai + ζit, with

ζit ∼ iid. U(−0.035,0.035)

2. random walk w/o drift: xRWit = xRWit−1 + νit, with

xi1 = 0.1+ ai and νit ∼ iid. U(−0.05,0.05)

3. trended with increasing variance:

xTRit = 0.075+ ai + ηit, with ηit ∼ iid. U(0,0.025t)

» Cov(ai, xit) > 0 and Cov(ai,∆xit) = 0

» ai + xitβ ∈ [0,1] ∀ i, t = 1 . . . 5

» P(yit = 1) and Var(∆xit) very similar across DGPs

◮ β = 1
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Monte Carlo Simulations Large Sample Results

Large Sample Simulation Results

bOLS bWI bFD bFDC bFDC
adjust

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it

stationary

β̂ 1.6671 0.0012 0.9024 0.0025 0.7072 0.0022 0.5008 0.0019 0.9980 0.0037

α̂ -0.0345 0.0002 0.1160 0.0005 0.2899 0.0001 0.0955 0.0007

xRW
it

follows random walk

β̂ 1.4267 0.0009 0.9472 0.0019 1.0011 0.0022 1.0000 0.0018 0.9999 0.0018

α̂ 0.0134 0.0002 0.1072 0.0004 0.2882 0.0001 0.0951 0.0004

xTR
it

trended with increasing variance around trend

β̂ 1.5715 0.0012 6.0363 0.0019 4.4998 0.0020 0.6725 0.0019 1.0075 0.0028

α̂ -0.0180 0.0002 -0.9154 0.0004 0.2950 0.0001 0.0936 0.0006

Notes: True coefficient values: β = 1, α = 0.1; N = 4 · 107, T = 5; the # of observations for xST
it

is 71 748906,

the corresponding #s of observations for xRW
it

is 71 823746 and for xTR
it

being trended 72218321. For bOLS the

#s of observations are higher by 4 · 107 observations, since the first wave is not eliminated by the within or the

first-differences transformation.
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Monte Carlo Simulations Small Sample Results

Small Sample Simulation Results (xit and ai random)

bOLS bWI bFD bFDC bFDC
adjust

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

xit and ai random

xST
it

stationary

β̂ 1.6755 0.3808 0.9208 0.7885 0.7240 0.7038 0.5133 0.5902 1.0167 1.1728

α̂ -0.0356 0.0746 0.1128 0.1549 0.2903 0.0171 0.0923 0.2286

xRW
it

follows random walk

β̂ 1.4278 0.3004 0.9485 0.6089 1.0068 0.69504 1.0019 0.5862 1.0027 0.5856

α̂ 0.0138 0.0582 0.1068 0.1195 0.2887 0.0170 0.0954 0.1131

xTR
it

trended with increasing variance around trend

β̂ 1.5763 0.3654 6.0427 0.6069 4.5072 0.67781 0.6691 0.6155 0.9940 0.9147

α̂ -0.0186 0.0733 -0.9167 0.1167 0.2950 0.0187 0.0965 0.1909

Notes: True coefficient values: β = 1, α = 0.1; N = 400, T = 5; 10000 replications.

◮ Very close to large sample simulation results
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Monte Carlo Simulations Small Sample Results

Small Sample Simulation Results (xit and ai fixed)

bOLS bWI bFD bFDC bFDC
adjust

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

xit and ai fixed

xST
it

stationary

β̂ 1.6443 0.3826 1.3168 0.7160 0.8548 0.6678 0.5351 0.5790 1.0326 1.1189

α̂ -0.0310 0.0743 0.0324 0.1390 0.2853 0.0168 0.0865 0.2161

xRW
it

follows random walk

β̂ 1.4208 0.3227 1.6595 0.5408 1.5261 0.6514 0.9350 0.5921 0.9807 0.6203

α̂ 0.0125 0.0627 -0.0344 0.1054 0.2852 0.0166 0.0969 0.1209

xTR
it

trended with increasing variance around trend

β̂ 1.5638 0.3795 5.9851 0.5921 4.5432 0.6561 0.6581 0.6064 0.9792 0.9023

α̂ -0.0172 0.0751 -0.8950 0.1113 0.2903 0.0177 0.0973 0.1855

Notes: True coefficient values: β = 1, α = 0.1; N = 400, T = 5; 10000 replications.

◮ bWI and bFD sensitive to fixing xit and ai

◮ bWI and bFD prone to substantial small sample bias
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Stata Implementation

The xtlhazard command

◮ Requires data to be xtset

◮ Checks whether depvar is consistent with absorbing state

Syntax of xtlhazard

xtlhazard depvar indepvars [if] [in] [weight] [, options]

Options for xtlhazard

difference(#) set order of differencing; difference(1) that is

first-differences is the default

noabsorbing forces estimation if depvar is inconsitent with

model

tolerance(#) set tolerance for luinv(); tolerance(3) is the

default

edittozero(#) use Mata function edittozero() to set matrix

entries close to zero to zero; edittozero(0) that

is no editing is the default
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Stata Implementation

The xtlhazard command II

Options for xtlhazard cont’d

vce(vcetype) vcetype may be robust, cluster clustvar, model [,

force], or ols; vce(robust) is the default

noeomitted do not consider omitted collinear variables in e(b)

and e(V)

level(#) set confidence level; default as set by set level

.

.

.

ieffect(newvar) generate variable newvar containing estimated

individual fixed-effects

xtlhazard postestimation

◮ Many standard postestimation commands availavle

◮ predict, margins, test, testnl, lincom, nlcom, ...
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Real Data Application Based on Brown and Laschever (2012)

Research Question of Brown and Laschever (2012)

Peer Effects in Retirement of School Teachers?

Identification

◮ Two unexpected pension reforms exerting

heterogenous incentives for retirement

◮ Incentives for others teachers as instrument for peer

retirement while controlling for own incentives

Data

◮ Short yearly panel (1999-2001)

◮ Individual teacher level (LA Unified School District)

◮ No longer observed after retirement (→absorbing state)

Result

◮ Significant positive peer effects
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Real Data Application Based on Brown and Laschever (2012)

Research Question of present Application

Does Method used for Estimation Matter?

◮ Focus on reduced form model

◮ Focus on specification that includes teacher fixed

effects

◮ Comparing results of Brown and Laschever (2012) who

use bWI to results from bFD and bFDCadjust

» bFD and bFDC coincide because of year dummies
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Real Data Application Based on Brown and Laschever (2012)

Results for Key Reduced Form Coefficients

bWI ‡ bFDC bFDC
adjust

Coef. S.E. Coef. S.E. Coef. S.E.

change in pension wealth of peers (t− 1) 0.003 ∗∗ 0.001 0.003 ∗∗ 0.001 -0.007 0.095

change in pension wealth of peers (t− 2) 0.002 ∗ 0.001 0.002 0.001 -0.004 0.054

change in own pension wealth 0.033 ∗∗∗ 0.011 -0.003 0.009 -0.005 0.041

change in own peak value -0.002 0.002 -0.002 ∗ 0.001 -0.005 ∗ 0.003

Notes: 21290 observations, 8320 teachers, and 586 school clusters for within-transformation estimation.

12968 observations, 7088 teachers, and 578 school clusters for first-differences estimation. N redundant

observations in the within-transformed model.

◮ Similar results for bWI and bFDC

◮ Instruments turn insignificant and negative for bFDCadjust

◮ Results from bFDCadjust conflict with retirement incentives for

peer teachers mattering for own retirement decision,

i.e. peer effects in retirement
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Real Data Application Based on Brown and Laschever (2012)

Predicted Conditional Retirement Probabilities

k
er

n
el

 d
en

si
ty

−1 0 1 2
Predicted Conditional Retirement Probability

b
WI

b
FDC

b
FDC

adjust
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Real Data Application Based on Brown and Laschever (2012)

Predicted Conditional Retirement Probabilities II

◮ Unlike bFDC, predictions from bWI and bFDCadjust centered to

sample mean of yit

◮ All estimators yield some predicted probabilities outside

unit interval

◮ Share of irregular estimated probabilities heterogeneous

» bWI: 77.9%

» bFDC: 71.8%

» bFDCadjust: 19.2%

◮ Something seems to be wrong with bFDC and bWI
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Real Data Application Based on Brown and Laschever (2012)

Results for Age Coefficients

bWI ‡ bFDC bFDC
adjust

Coef. S.E. Coef. S.E. Coef. S.E.

change in pension wealth of peers (t− 1) 0.003 ∗∗ 0.001 0.003 ∗∗ 0.001 -0.007 0.095

change in pension wealth of peers (t− 2) 0.002 ∗ 0.001 0.002 0.001 -0.004 0.054

change in own pension wealth 0.033 ∗∗∗ 0.011 -0.003 0.009 -0.005 0.041

change in own peak value -0.002 0.002 -0.002 ∗ 0.001 -0.005 ∗ 0.003

.

.

.

age ≥ 54 years -0.154 ∗∗∗ 0.013 -0.179 ∗∗∗ 0.015

age ≥ 55 years -0.123 ∗∗∗ 0.013 -0.163 ∗∗∗ 0.015 -0.016 0.029

age ≥ 56 years -0.140 ∗∗∗ 0.012 -0.174 ∗∗∗ 0.014 -0.013 0.011

age ≥ 57 years -0.138 ∗∗∗ 0.013 -0.173 ∗∗∗ 0.014 0.001 0.010

age ≥ 58 years -0.127 ∗∗∗ 0.012 -0.163 ∗∗∗ 0.014 0.008 0.014

age ≥ 59 years -0.099 ∗∗∗ 0.014 -0.132 ∗∗∗ 0.015 0.030 ∗∗∗ 0.010

age ≥ 60 years -0.051 ∗∗∗ 0.015 -0.076 ∗∗∗ 0.017 0.056 ∗∗ 0.022

age ≥ 61 years -0.024 0.017 -0.038 ∗∗ 0.019 0.034 0.028

age ≥ 62 years 0.027 0.020 0.023 0.021 0.060 ∗∗∗ 0.020

age ≥ 63 years -0.009 0.021 0.001 0.023 -0.022 0.031

age ≥ 64 years -0.055 ∗∗∗ 0.021 -0.054 ∗∗∗ 0.021 -0.052 ∗ 0.030

age ≥ 65 years 0.000 0.025 -0.009 0.026 0.037 0.046

age ≥ 66 years -0.025 0.026 -0.024 0.026 -0.017 0.034

Notes: 21290 observations, 8320 teachers, and 586 school clusters for within-transformation estimation.

12968 observations, 7088 teachers, and 578 school clusters for first-differences estimation. N redundant

observations in the within-transformed model.
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Real Data Application Based on Brown and Laschever (2012)

Results for Age Coefficients II

◮ bFDCadjust does not yield a very distinct pattern for baseline

hazard

◮ bFDC and bWI yield a steady and steep decrease in the

baseline retirement hazard for teachers in their 50th

◮ This pattern is in no way mirrored by the unconditional

sample retirement rates

◮ According to β̂WI baseline retirement hazard decreases

by 83 percentage points between the age of 53 and the

age of 60

» Seems to make little sense

◮ bFDC and bWI almost certainly yieldmisleading results

regarding the baseline retirement hazard
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Conclusions

Conclusions

◮ Conventional fixed-effects estimators

(within-transformation, first-differences) inappropriate

for discrete-time linear hazard model

» Bias may well exceed bias of OLS

◮ Adjusted first-differences consistent alternative

» Unobserved individual heterogeneity is not eliminated

» Corrects for incorrect ‘scaling’ of bFDC

» Consistency hinges on Cov(ai,∆xit) = 0

» Higher-order differences allow for consistent estimation

under weaker assumptions

◮ xtlhazard implements adjusted first (and higher-oder)

differences estimation in stata
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Backup

Error Cond. Mean in Within-Transformed Model

E
(
εWI
it |ai,xi1, . . . ,xiTi ,yit− = 0

)
=

(ai + xitβ)

(
t− 1

t
−

(
xit −

1

t

t

∑
s=1

xis

)
β

)

+
T

∑
Ti=t+1

(ai + xiTiβ)

[
Ti−1

∏
s=t

(1− ai − xisβ)

](
−
1

Ti
−

(
xit −

1

Ti

Ti

∑
s=1

xis

)
β

)

+

[
T

∏
s=t

(1− ai − xisβ)

](
−

(
xit −

1

Ti

T

∑
s=1

xis

)
β

)
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Backup

Error Cond. Mean in Within-Transformed Model II

For t = T, conditional mean simplifies to:

E
(
εWI
iT |ai,xi1, . . . ,xiT ,yiT− = 0

)
=

(
T − 1

T

)
ai +

1

T

(
T−1

∑
s=1

xis

)
β

For T = 2, we get

E
(
εWI
i2 |ai,xi1,xi2, yi1 = 0

)
=

1

2
ai +

1

2
xi1β

which coincides with result for E(εFDit |ai,xit,xit−1,yit− = 0).
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Backup

Estimator based on Higher-Order Differences

b
JDC
adjust

=


I+

(
N

∑
i=1

Ti

∑
t=j+1

∆̃jx
′

it∆̃
jxit

)−1(
N

∑
i=1

Ti

∑
t=j+1

∆̃jx
′

it
˜(xit − ∆jxit)

)


−1

×

(
N

∑
i=1

Ti

∑
t=j+1

∆̃jx
′

it∆̃
jxit

)−1(
N

∑
i=1

Ti

∑
t=j+1

∆̃jx
′

ityit

)

for j = 2,3, . . .

∆2xit = ∆xit − ∆xit−1

= xit − 2xit−1 + xit−2

∆3xit = (∆xit − ∆xit−1)− (∆xit−1 − ∆xit−2)

= xit − 3xit−1 + 3xit−2 − xit−3

...
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