A mixture of ordered probit models with endogenous assignment to two latent classes

$\begin{array}{lll}\text { J. L. Huismans }{ }^{1} & \text { J. W. Nijenhuis } & \text { A. Sirchenko }\end{array}$

${ }^{1}$ Faculty of Economics and Business Economics University of Amsterdam
${ }^{2}$ Faculty of Technical Computer Science
University of Twente
${ }^{3}$ School of Business and Economics
Maastricht University

June 10, 2022

Overview

We introduce the new swopit command that fits a switching ordered probit model with exogenous or endogenous class assignment to two latent regimes.

- produced as a software package for STATA
- model the decisions of the FOMC to change the federal funds rate The swopit model allows for:
- two latent regimes which are estimated by binary probit
- a seperate ordered probit model for each regime
- custom starting values
- exogenous and endogenous switching
- optionally bootstrapped standard errors

Previous work

The following is observed with regard to advancements in the field of endogenous switching:

- existing endogenous switching models deal mainly with continuous or binary data
- fmm: oprobit command can only fit switching ordered probit with exogenous switching
- most finite mixture models use the multinomial logistic distribution to model latent classes, where swopit uses binary probit
- zero-inflated model for endogenous class-assignment does not allow for all outcomes in each regime
The swopit model fits a switching ordered probit model with either exogenous or endogenous switching. There are no restrictions on outcomes in the two regimes.

Switching Ordered Probit Model

The probabilities

$$
\begin{aligned}
& \operatorname{Pr}\left(y_{i}=j \mid x_{i}^{\text {all }}\right) \\
& \\
& \quad=\Phi_{2}\left(\mu-z_{i} \gamma ; \alpha_{1, j}-x_{1, i} \beta_{1} ; \rho_{1}\right) \\
&- \Phi_{2}\left(\mu-z_{i} \gamma ; \alpha_{1, j-1}-x_{1, i} \beta_{1} ; \rho_{1}\right) \\
&+ \Phi_{2}\left(-\mu+z_{i} \gamma ; \alpha_{2, j}-x_{2, i} \beta_{2} ;-\rho_{2}\right) \\
&-\Phi_{2}\left(-\mu+z_{i} \gamma ; \alpha_{2, j-1}-x_{2, i} \beta_{2} ;-\rho_{2}\right)
\end{aligned}
$$

Identification issue: By design, the model has two maxima in maximum likelihood estimation with complete overlap. Changing the signs of the correlation coefficients and the parameters in the class assignment models switches the regime labels and results in two identical likelihood values.

Monte Carlo Simulations (1)

In order to assess the performance of the model, the following Monte Carlo setup was used for a situation with two latent regimes and three classes:
(1) 5 independent variables $g_{j} \sim 4 * \mathcal{N}(0,1)$ were generated and used as covariates.
(2) We simulated three different scenarios: 'complete overlap', 'partial overlap' and 'no overlap' between the covariates.
(3) Parameters were calibrated to ensure that both latent classes have the same theoretical probability. The same holds for the outcomes.
(9) To study consistency of the estimates, the simulation is applied for 250, 500, 1000 and 2000 observations.
(6) For endogenous switching the correlation between unobservables is set to a positive number, for exogenous switching it is fixed at 0 .

Monte Carlo Simulations - Parameters

Sample size	Class assignment: Covariates' overlap:	Exogenous			Endogenous		
		none	partial	complete	none	partial	complete
Slope parameters $\mathrm{p}, \boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$							
250	Bias, $\times 10$	5.5	5.6	5.4	4.8	4.5	4.7
500		1.7	1.7	1.7	1.6	1.6	1.6
1000		0.8	0.7	0.8	0.7	0.7	0.7
2000		0.3	0.3	0.3	0.3	0.3	0.3
250	RMSE, x10	18.2	18.6	16.6	13.3	12.0	12.9
500		4.6	4.3	4.6	4.3	4.1	4.4
1000		2.3	2.2	2.3	2.3	2.2	2.3
2000		1.5	1.4	1.5	1.4	1.4	1.5
250	$\begin{aligned} & \text { Coverage rate } \\ & \text { (at } 95 \% \text { level), } \% \end{aligned}$	97.3	97.3	97.4	87.6	86.1	87.2
500		96.3	96.5	96.4	89.9	87.9	89.8
1000		95.5	95.6	95.4	92.3	90.9	92.6
2000		95.3	95.3	95.4	94.3	93.7	94.1
250	Bias of standard error estimator, x100	95.6	111.8	69.5	46.7	55.9	59.7
500		10.5	8.6	9.7	8.2	8.5	9.9
1000		1.7	1.5	1.6	1.9	1.8	1.5
2000		0.4	0.4	0.4	0.3	0.3	0.4

Monte Carlo Simulations - Thresholds

Threshold parameters $\mu, \boldsymbol{\alpha}_{1}$ and $\boldsymbol{\alpha}_{2}$							
250		26.7	25.0	27.1	22.4	21.5	23.0
500	Bias, xl0	13.3	12.7	13.2	12.6	11.7	12.3
1000		8.4	8.2	8.3	8.2	7.9	8.2
2000		5.7	5.5	5.6	5.7	5.5	5.7
250		27.7	27.0	26.6	24.2	22.8	25.5
500	RMSE, x10	9.3	8.4	9.0	8.8	8.3	8.9
1000		4.9	4.7	4.8	4.8	4.7	4.8
2000		3.1	3.0	3.0	3.0	3.0	3.0
250		97.2	97.0	97.4	86.0	87.5	85.3
500	Coverage rate	96.2	95.9	96.3	88.2	88.4	88.1
1000	(at 95\% level), \%	95.6	95.3	95.4	91.4	91.0	91.6
2000		95.2	95.1	95.3	94.0	93.5	93.6
250	Bias of standard	120.2	123.5	106.5	108.4	100.3	119.1
500	error estimator,	18.2	12.5	15.5	17.1	17.4	20.0
1000	xl00	3.1	2.7	3.0	4.0	4.3	3.5
2000		0.9	0.7	0.7	0.6	0.8	0.8

Application

The model is applied to changes in the interest rate as imposed by the FOMC. First, a standard OP model is fitted. Then, the swopit model with exogenous switching and consecutively the swopit model with endogenous switching. The best model is chosen based on the Akaike Information Criterion (AIC). For the FOMC decisions a swopit model with exogenous switching outperforms the other methods.

Application FOMC decisions - Setup

- y_{t} : decision of the FOMC to decrease (-1), increase (1) or leave the federal funds rate target unchanged (0). This is the target variable.
- house $_{t}$: the Greenbook projection of the total number of new privately owned housing units started for the current quarter. Used as a measure of the housing market.
- $g d p_{t}$: the Greenbook projection of quarterly growth in the nominal gross domestic (before 1992: national) product for the current quarter, annualized percentage points.
- spread $_{t}$: the difference between the one-year treasury constant maturity rate and the effective federal funds rate, three business-day moving average.
- bias $_{t}$: the indicator that we constructed from the policy bias statements at the previous FOMC meeting: it equals 1 if the statement was asymmetric toward tightening, 0 if the statement was symmetric, and -1 if the statement was asymmetric toward easing.

Application FOMC decisions - Results

(Post)estimation command(s)

Within the swopit command the user has the option to choose which covariates should be used in the regime equation, as well as both outcome equations. The user can choose his/her own starting values, which type of switching and limitations on the optimization algorithm.
After estimation, the following postestimation commands are available:

- swopitpredict
- swopitprobabilities
- swopitmargins
- swopitclassification

(Post)estimation command(s)

```
. swopitmargins, at(house=1.56 gdp=5.9 bias=1 spread=-0.41)
\begin{tabular}{crrr} 
Evaluated at: & & \\
house & gdp & bias & spread \\
1.5600 & 5.9000 & 1.0000 & -0.4100
\end{tabular}
Marginal effects of all variables on the probabilities of different outcomes
\begin{tabular}{r|ccc} 
& \(\operatorname{Pr}(y=-1)\) & \(\operatorname{Pr}(y=0)\) & \(\operatorname{Pr}(y=1)\) \\
\hdashline house : & -0.2210 & 0.2361 & -0.0150 \\
gdp & -0.0306 & 0.0326 & -0.0021 \\
bias & -0.0831 & 0.0706 & 0.0125 \\
spread : & -0.2223 & 0.1864 & 0.0359
\end{tabular}
Delta-method standard errors of marginal effects
\begin{tabular}{r|ccc} 
& \(\operatorname{Pr}(y=-1)\) & \(\operatorname{Pr}(y=0)\) & \(\operatorname{Pr}(y=1)\) \\
\hdashline house & 0.1140 & 0.1137 & 0.0143 \\
gdp & 0.0163 & 0.0163 & 0.0020 \\
bias & 0.0198 & 0.0228 & 0.0130 \\
spread & 0.0899 & 0.0994 & 0.0390
\end{tabular}
```

. swopitpredict, regimes tabstat

Variable \|	N	Mean	SD	Variance	Max	Min
swopit_r_0	279	.8363	.2967	.08801	1	.0000455
swopit_r_1	279	.1637	.2967	.08801	1	0

(Post)estimation command(s)

. swopitprobabilities, at(house=1.5 gdp=8.9 bias=1 spread=-0.0633333)
Evaluated at:
house gdp bias spread
$1.50008 .9000 \quad 1.0000 \quad-0.0633$

Predicted probabilities of different outcomes
$\operatorname{Pr}(y=-1) \quad \operatorname{Pr}(y=0) \quad \operatorname{Pr}(y=1)$
$\begin{array}{lll}0.0026 & 0.1186 & 0.8788\end{array}$

Delta-method standard errors of probabilities $\operatorname{Pr}(y=-1) \quad \operatorname{Pr}(y=0) \quad \operatorname{Pr}(y=1)$
$\begin{array}{lll}0.0034 & 0.1241 & 0.1260\end{array}$

Contact \& Questions

- janwillemnijenhuis@gmail.com
- https://github.com/janwillemnijenhuis/Swopit
- Paper is accepted for STATA Journal
- Additional options are in the help files

